Numerical Fractional Differentiation: Stability Estimate and Regularization

Qian, Ailin and Wang, Guangfu (2013) Numerical Fractional Differentiation: Stability Estimate and Regularization. British Journal of Mathematics & Computer Science, 3 (3). pp. 448-457. ISSN 2231-0851

[thumbnail of Qian342013BJMCS3921.pdf] Text
Qian342013BJMCS3921.pdf - Published Version

Download (447kB)

Abstract

It is well known that the problem of fractional differentiation n is an ill-posed problem. So far there exists many approximation methods for solving this problem. In this paper we prove a stability estimate for a problem of fractional differentiation. Based on the obtained stability estimate, we present a Tikhonov regularization method and obtain the error estimate. According to the optimality theory of regularization, the error estimates are order optimal. Numerical experiment shows that the regularization works well.

Item Type: Article
Subjects: Archive Paper Guardians > Mathematical Science
Depositing User: Unnamed user with email support@archive.paperguardians.com
Date Deposited: 22 Jun 2023 10:08
Last Modified: 24 Jan 2024 04:19
URI: http://archives.articleproms.com/id/eprint/1334

Actions (login required)

View Item
View Item