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Abstract

It is well known that the problem of fractional differentiation n is an ill-posed problem. So far
there exists many approximation methods for solving this problem. In this paper we prove a
stability estimate for a problem of fractional differentiation. Based on the obtained stability
estimate, we present a Tikhonov regularization method and obtain the error estimate. According
to the optimality theory of regularization, the error estimates are order optimal. Numerical
experiment shows that the regularization works well.

Keywords: Fractional differentiation, ill-posed problems, Tikhonov regularization, stability,
estimate, error estimate.

1 Introduction

The basic theory and applications of fractional differential equations are covered extensively in
the literature [1,2] etc. However, the topics related to ill-posed inverse problems are few, see
[3,4,5].

Fractional differentiation problems arises in many contexts and have important applications in
science and engineering [6,7,8]. In this paper, we consider the problem of fractional differentiation
in )(2 RL . We want to compute
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which is called the  -th order Riemann-Liouville fractional derivative of the function )(xf with
]1,0( ,where )( is the Euler Gamma function. If there exists noise in )(xf , then

the problem )()( xfDxg  for solving )(xg is an ill-posed problem. The problem of
fractional differentiation amounts to the problem of solving the integral equation of the fist kind
[9,10,11].

   


 )(
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1:))(( 1 xfdt
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This problem have been studied by many authors [12,13,14,15], and a large number of different
solution methods has been proposed. For references we refer the reader to [12,13,14,15,16,17].
Finite difference approaches for numerical differentiation have been used, for example, in[19,20].
However, these approaches require a knowledge of a bound of the second or third derivatives of
the function under consideration that are not always available. Furthermore, there exist infinitely
many functions that do not have bounded second derivatives at all. The same situation occurs also
in numerical fractional differentiation [3]. one requires a high smoothness of the functions under
consideration that does not always exist.

Assume that

,)()(   ff
(1.3)

where  denotes the 2L -norm, and the constant 0 represents the noise level.
Let






 dxexss xi
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(1.4)
be the Fourier transform of the function )()( 2 RLxs  . The corresponding inverse Fourier
transform of the function )(ˆ s is
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(1.5)

In the frequency domain, we have

)(ˆ)(ˆ)(   gfi  (1.6)

From (1.6), we can formulate the problem as an operator equation

)(ˆ)(ˆˆ  fgA  (1.7)
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where )()(:)(ˆ 22 RLRLiA   is a self-adjoint multiplication operator.

Since the factor  )(i in (1.6) as  , it is easy to see that the ill-posedness of
Problem (1.1).

However, most of the literature is devoted to the regularization method and error estimate. The
conditional stability estimate is not clear. In this paper, our task is to establish a stability estimate.
For error estimate of regularization, the method in this study is different from the existing
literature, e.g., [13].

1. (1)In [13], the authors got the error estimate of molliffication regularization by direct
calculation the difference between the regularized solution and exact one.

2. (2) In this study, we use the obtained stability estimate and we only need to estimate one
term.

The advantage of our method for obtaining error estimate over the method in [13] lie in:

1. we can obtain stability estimate which is an important issue for study on ill-posed
problems;

2. fewer quantities are needed to be estimated, thus, our method is easier to obtain
error estimate;

The paper is organized as follows. In Section 2, a conditional stability estimate for problem
(1.1) is proved; in Section 3, the error estimate for a Tikhonov regularization method is given.

2 A Conditional Stability Estimate

A conditional stability estimate for ill-posed problems tells how much any two solutions differ
from each other when some error exists. Since problem (1.1) is linear, we only need to derive the
stability estimate on the solution near zero between the zero one.

For problem (1.1), we assume that there exists a-priori bound:

,)( Eg
p


(2.1)
Where

p
 denotes the norm of Sobolev space )(RH p and 0p , E is a positive constant.

Thus, we can establish the stability estimate for problem (1.1).

Theorem 2.1: Suppose that )(xg is the solution of problem (1.1), and (2.1) is satisfied, then the
following estimate holds:

.)()()()( 
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Proof: Since )(ˆ)()(ˆ   fig  , by Parseval identity we have

.:)(ˆ)(ˆ)(ˆ)( 2
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Further by Holder inequality,
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Hence we have (2.2).
Remark 2.1: For given two functions )(1 f and )(2 f , let )(1 g and )(2 g be the
corresponding solutions, respectively, then




  p
p
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3 Tikhonov Regularization and Error Estimate

Now we focus on the regularization problem. Assume that the noisy data )(f satisfies

  )()( ff
(3.1)
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where 0 is the noise level.

Here we use Tikhonov regularization method [16]. The method consists of looking for the solution
for problem (1.1), and minimizes the quadratic functional:

22 )()(
p

gff   (3.2)

Where 22 / E  .By Parseval’s identity and (1.6) applied to )(f , the variational problem
becomes

22/2
2

)(ˆ)1()(ˆ)(ˆ)(  gfgi p 
 (3.3)

Let )(ˆ g be the solution of above problem, then it satisfies the Euler equation

)(ˆ)()(ˆ))1(( 22  



 figp   (3.4)

The Tikhonov regularization solution )(ˆ g in frequency domain can be given

)(ˆ
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Now we will use the stability estimate (2.3) to derive the error estimate between the regularization
solution and the exact one. Via Parseval’s identity, we have
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Since 0,)1(:)( 12   h has a maximum 2/1 ,
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Hence according to (2.3) we have the error estimate
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Now summarize what we have.

Theorem 3.1: Suppose that )(xg is the exact solution for problem (1.1) with exact data )(xf ,

(3.5) is the Tikhonov regularization solution with noisy data )(xf , (2.1) and (3.1) hold, then we
have
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Remark 3.1: Now we seek a solution in frequency domain for problem (1.1) in ],[ maxmax
2 L ,

where max is a positive number which plays a role of regularization parameter. This is the so-
called Fourier cut-off method. Similar to Tikhonov regularization, we can easily obtain the error
estimate for Fourier cut-off method.

From Theorem 3.1, we find that 
g is an approximation of exact solution g . The approximation

error depends continuously on the measurement error.

4 Numerical Tests

Suppose that the sequence   1
1




m
jjf represents samples from )(xf on an equidistant grid

10 10  mxx  , then we add a perturbation to each data, and obtain the perturbation
data

))(( fsizerandnff   (4.1)

Where
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The function “ )(randn ” generates arrays of random numbers whose elements are normally

distributed with mean 0, variance 12  , and standard deviation 1 , “ ))(( fsizerandn ”
returns an array of random entries that is the same size as f .

We now give a simple description of numerical implementation.

Step 1: taking the Fast Fourier Transform (FFT) for the vector f .
Step 2: computing the vector.
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Where .2,1 li l  

Step 3: taking the inverse FFT for the vector in (4.2) and get )( 
fR .

When using the FFT algorithm we implicitly assume that the vector f represents a periodic
function. This is not realistic in our application, and thus we need to modify the algorithm. A
discussion on how to make the function periodic can be found in [20]. Note also that the error
estimates of section 3 contain norms in )(2 RL , and the numerical experiments here are performed
with a finite interval. However, the method for selecting  works well, also in the case where the
norms are computed for a finite interval. In our computations, we always take 300m (If we
take ,400,200,100 m we can also obtain a satisfactory result). The derivative errors are

measured by the weighted 2l -norms defined as follows:
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Example: We want to reconstruct the )(2/1 xfD ,where )2/exp()( 2xxf  .In numerical
experiment, we add a random noise to the )(xf . The numerical results are shown as following.

Figure 1: we take the optimal regularization parameter 01.0 ;
Figure 2: we take the optimal regularization parameter 001.0 .
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5 Concluding Remark

The issue of conditional stability on inverse ill-posed problems is very important. In this paper, we
give an ‘optimal’ stability estimate. Based on the obtained estimate, the error estimate between
Tikhonov regularization solution and the exact solution can be derived. According to the
optimality theory of regularization, the error estimates are order optimal. Numerical experiment
shows that the regularization works well.
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