Resolving the Complex Evolution of a Supermassive Black Hole Triplet in a Cosmological Simulation

Mannerkoski, Matias and Johansson, Peter H. and Rantala, Antti and Naab, Thorsten and Liao, Shihong (2021) Resolving the Complex Evolution of a Supermassive Black Hole Triplet in a Cosmological Simulation. The Astrophysical Journal Letters, 912 (2). L20. ISSN 2041-8205

[thumbnail of Mannerkoski_2021_ApJL_912_L20.pdf] Text
Mannerkoski_2021_ApJL_912_L20.pdf - Published Version

Download (752kB)

Abstract

We present here a self-consistent cosmological zoom-in simulation of a triple supermassive black hole (SMBH) system forming in a complex multiple galaxy merger. The simulation is run with an updated version of our code KETJU, which is able to follow the motion of SMBHs down to separations of tens of Schwarzschild radii while simultaneously modeling the large-scale astrophysical processes in the surrounding galaxies, such as gas cooling, star formation, and stellar and AGN feedback. Our simulation produces initially an SMBH binary system for which the hardening process is interrupted by the late arrival of a third SMBH. The KETJU code is able to accurately model the complex behavior occurring in such a triple SMBH system, including the ejection of one SMBH to a kiloparsec-scale orbit in the galaxy due to strong three-body interactions as well as Lidov–Kozai oscillations suppressed by relativistic precession when the SMBHs are in a hierarchical configuration. One pair of SMBHs merges ∼3 Gyr after the initial galaxy merger, while the remaining binary is at a parsec-scale separation when the simulation ends at redshift z = 0. We also show that KETJU can capture the effects of the SMBH binaries and triplets on the surrounding stellar population, which can affect the binary merger timescales as the stellar density in the system evolves. Our results demonstrate the importance of dynamically resolving the complex behavior of multiple SMBHs in galactic mergers, as such systems cannot be readily modeled using simple orbit-averaged semianalytic models.

Item Type: Article
Subjects: Archive Paper Guardians > Physics and Astronomy
Depositing User: Unnamed user with email support@archive.paperguardians.com
Date Deposited: 16 May 2023 08:22
Last Modified: 06 Feb 2024 04:22
URI: http://archives.articleproms.com/id/eprint/932

Actions (login required)

View Item
View Item