Characterization of the 3,4-Dichloroaniline Degradation Gene Cluster in Acinetobacter soli GFJ2

Gibu, Namiko and Kasai, Daisuke and Sato, Saki and Tabata, Michiro and Vangnai, Alisa and Fukuda, Masao (2024) Characterization of the 3,4-Dichloroaniline Degradation Gene Cluster in Acinetobacter soli GFJ2. Microorganisms, 12 (3). p. 613. ISSN 2076-2607

[thumbnail of microorganisms-12-00613.pdf] Text
microorganisms-12-00613.pdf - Published Version

Download (1MB)

Abstract

Characterization of the 3,4-Dichloroaniline Degradation Gene Cluster in Acinetobacter soli GFJ2 Namiko Gibu Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka 940-2188, Niigata, Japan Daisuke Kasai Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka 940-2188, Niigata, Japan http://orcid.org/0000-0001-9495-7740 Saki Sato Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka 940-2188, Niigata, Japan Michiro Tabata Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka 940-2188, Niigata, Japan Alisa Vangnai Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand http://orcid.org/0000-0001-9485-5672 Masao Fukuda Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka 940-2188, Niigata, Japan

3,4-Dichloroaniline (34DCA), a major metabolite of phenylurea herbicides, causes environmental contamination owing to its toxicity and recalcitrant properties. Acinetobacter soli strain GFJ2, isolated from soil potentially contaminated with herbicides, can degrade 34DCA. This study aimed to identify and characterize the 34DCA degradation gene cluster responsible for the conversion of 34DCA to 4,5-dichlorocatechol in the strain GFJ2. Genome analysis revealed one chromosome and seven plasmids in GFJ2, comprising 21, 75, and 3309 copies of rRNA, 75 tRNA, and protein-encoding genes, respectively. A gene cluster responsible for 34DCA degradation was identified, comprising dcdA, dcdB, and dcdC, which encode dioxygenase, flavin reductase, and aldehyde dehydrogenase, respectively. Transcriptional analysis indicated that this gene cluster is constructed as an operon, induced during 34DCA utilization. The heterologous expression of dcdA and dcdB in Escherichia coli confirmed their activity in degrading 34DCA to an intermediate metabolite, converted to 4,5-dichlorocatechol via a reaction involving the dcdC gene product, suggesting their involvement in 34DCA conversion to 4,5-dichlorocatechol. Deletion mutants of dcdA and dcdB lost 34DCA degradation ability, confirming their importance in 34DCA utilization in GFJ2. This study provides insights into the genetic mechanisms of 34DCA degradation by GFJ2, with potential applications in the bioremediation of environments contaminated by phenylurea herbicides.
03 19 2024 613 microorganisms12030613 Grant-in-Aid for Scientific Research http://dx.doi.org/10.13039/ 20J15659 https://creativecommons.org/licenses/by/4.0/ 10.3390/microorganisms12030613 https://www.mdpi.com/2076-2607/12/3/613 https://www.mdpi.com/2076-2607/12/3/613/pdf Tran Determination of commonly used polar herbicides in agricultural drainage waters in Australia by HPLC Chemosphere 2007 10.1016/j.chemosphere.2006.11.002 67 944 Hussain Abiotic and biotic processes governing the fate of phenylurea herbicides in soils: A review Crit. Rev. Environ. Sci. Technol. 2015 10.1080/10643389.2014.1001141 45 1947 Burant Trace organic contaminants in urban runoff: Associations with urban land-use Environ. Pollut. 2018 10.1016/j.envpol.2018.06.066 242 2068 Boscolo Diuron metabolites act as endocrine disruptors and alter aggressive behavior in Nile tilapia (Oreochromis niloticus) Chemosphere 2018 10.1016/j.chemosphere.2017.10.009 191 832 10.3390/ijerph19031365 Alba, L.M., Esmeralda, M., and Jaime, V. (2022). Enhanced biodegradation of phenylurea herbicides by Ochrobactrum anthrophi CD3 assessment of its feasibility in diuron-contaminated soils. Int. J. Environ. Res. Public Health, 19. Guzzella Fate of diuron and linuron in a field lysimeter experiment J. Environ. Qual. 2006 10.2134/jeq2004.0025 35 312 Dejonghe Diversity of 3-chloroaniline and 3,4-dichloroaniline degrading bacteria isolated from three different soils and involvement of their plasmids in chloroaniline degradation FEMS Microbiol. Ecol. 2002 10.1111/j.1574-6941.2002.tb01021.x 42 315 Zhang Characterization of the propanil biodegradation pathway in Sphingomonas sp. Y57 and cloning of the propanil hydrolase gene prpH J. Hazard. Mater. 2011 10.1016/j.jhazmat.2011.09.040 196 412 Sorensen Elucidating the key member of a linuron-mineralizing bacterial community by PCR and reverse transcription-PCR denaturing gradient gel electrophoresis 16S rRNA gene fingerprinting and cultivation Appl. Environ. Microbiol. 2005 10.1128/AEM.71.7.4144-4148.2005 71 4144 Horemans Functional redundancy of linuron degradation in microbial communities in agricultural soil and biopurification systems Appl. Environ. Microbiol. 2016 10.1128/AEM.04018-15 82 2843 Bers A novel hydrolase identified by genomic-proteomic analysis of phenylurea herbicide mineralization by Variovorax sp. strain SRS16 Appl. Environ. Microbiol. 2011 10.1128/AEM.06162-11 77 8754 Nitisakulkan Degradation of chloroanilines by toluene dioxygenase from Pseudomonas putida T57 J. Biosci. Bioeng. 2014 10.1016/j.jbiosc.2013.08.012 117 292 Yao Degradation of dichloroaniline isomers by a newly isolated strain, Bacillus megaterium IMT21 Microbiology (Reading) 2011 10.1099/mic.0.045393-0 157 721 10.3389/fmicb.2015.00820 Arora, P.K. (2015). Bacterial degradation of monocyclic aromatic amines. Front. Microbiol., 6. Hongsawat Biodegradation pathways of chloroanilines by Acinetobacter baylyi strain GFJ2 J. Hazard. Mater. 2011 10.1016/j.jhazmat.2010.12.002 186 1300 Araki Glucose-mediated transcriptional repression of PCB/biphenyl catabolic genes in Rhodococcus jostii RHA1 J. Mol. Microb. Biotech. 2011 20 53 Masai Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1 Appl. Environ. Microbiol. 1995 10.1128/aem.61.6.2079-2085.1995 61 2079 Kasai Uncovering the protocatechuate 2,3-cleavage pathway genes J. Bacteriol. 2009 10.1128/JB.00840-09 191 6758 Tatusova NCBI prokaryotic genome annotation pipeline Nucleic Acids Res. 2016 10.1093/nar/gkw569 44 6614 10.1186/1471-2164-9-75 Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., Gerdes, S., Glass, E.M., and Kubal, M. (2008). The RAST server: Rapid annotations using subsystems technology. BMC Genom., 9. Lagesen RNAmmer: Consistent and rapid annotation of ribosomal RNA genes Nucleic Acids Res. 2007 10.1093/nar/gkm160 35 3100 Lowe tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes Nucleic Acids Res. 2016 10.1093/nar/gkw413 44 W54 Sharp An inducible propane monooxygenase is responsible for N-nitrosodimethylamine degradation by Rhodococcus sp. strain RHA1 Appl. Environ. Microbiol. 2007 10.1128/AEM.01697-07 73 6930 Hessels Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid Δ1-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker FEMS Microbiol. Lett. 2001 205 197 Goncalves Transcriptomic assessment of isozymes in the biphenyl pathway of Rhodococcus sp. strain RHA1 Appl. Environ. Microbiol. 2006 10.1128/AEM.00947-06 72 6183 Kasai Identification of natural rubber degradation gene in Rhizobacter gummiphilus NS21 Biosci. Biotechnol. Biochem. 2017 10.1080/09168451.2016.1263147 81 614 Sadauskas Indole biodegradation in Acinetobacter sp. strain O153: Genetic and biochemical characterization Appl. Environ. Microbiol. 2017 10.1128/AEM.01453-17 83 e01453-17 10.1016/j.bioorg.2021.104644 Rabuffetti, M., Cannazza, P., Contente, M.L., Pinto, A., Romano, D., Hoyos, P., Alcantara, A.R., Eberini, I., Laurenzi, T., and Gourlay, L. (2021). Structural insights into the desymmetrization of bulky 1,2-dicarbonyls through enzymatic monoreduction. Bioorg. Chem., 108. You Stimulation of 3,4-dichloroaniline mineralization by aniline Appl. Environ. Microbiol. 1982 10.1128/aem.44.3.678-681.1982 44 678 10.1371/journal.pone.0138798 Lin, G.H., Chen, H.P., and Shu, H.Y. (2015). Detoxification of indole by an indole-induced flavoprotein oxygenase from Acinetobacter baumannii. PLoS ONE, 10. Gallegos AraC/XylS family of transcriptional regulators Microbiol. Mol. Biol. Rev. 1997 61 393 Lee Repression of the araBAD promoter from araO1 J. Mol. Biol. 1992 10.1016/0022-2836(92)90998-Y 224 335 Dunn An operator at -280 base pairs that is required for repression of araBAD operon promoter: Addition of DNA helical turns between the operator and promoter cyclically hinders repression Proc. Natl. Acad. Sci. USA 1984 10.1073/pnas.81.16.5017 81 5017 Miyada Regulation of the araC gene of Escherichia coli: Catabolite repression, autoregulation, and effect on araBAD expression Proc. Natl. Acad. Sci. USA 1984 10.1073/pnas.81.13.4120 81 4120

Item Type: Article
Subjects: Archive Paper Guardians > Multidisciplinary
Depositing User: Unnamed user with email support@archive.paperguardians.com
Date Deposited: 19 Mar 2024 12:56
Last Modified: 19 Mar 2024 12:56
URI: http://archives.articleproms.com/id/eprint/2697

Actions (login required)

View Item
View Item