On the Mathematical Modeling of Slender Biomedical Continuum Robots

Gilbert, Hunter B. (2021) On the Mathematical Modeling of Slender Biomedical Continuum Robots. Frontiers in Robotics and AI, 8. ISSN 2296-9144

[thumbnail of pubmed-zip/versions/1/package-entries/frobt-08-732643/frobt-08-732643.pdf] Text
pubmed-zip/versions/1/package-entries/frobt-08-732643/frobt-08-732643.pdf - Published Version

Download (2MB)

Abstract

The passive, mechanical adaptation of slender, deformable robots to their environment, whether the robot be made of hard materials or soft ones, makes them desirable as tools for medical procedures. Their reduced physical compliance can provide a form of embodied intelligence that allows the natural dynamics of interaction between the robot and its environment to guide the evolution of the combined robot-environment system. To design these systems, the problems of analysis, design optimization, control, and motion planning remain of great importance because, in general, the advantages afforded by increased mechanical compliance must be balanced against penalties such as slower dynamics, increased difficulty in the design of control systems, and greater kinematic uncertainty. The models that form the basis of these problems should be reasonably accurate yet not prohibitively expensive to formulate and solve. In this article, the state-of-the-art modeling techniques for continuum robots are reviewed and cast in a common language. Classical theories of mechanics are used to outline formal guidelines for the selection of appropriate degrees of freedom in models of continuum robots, both in terms of number and of quality, for geometrically nonlinear models built from the general family of one-dimensional rod models of continuum mechanics. Consideration is also given to the variety of actuators found in existing designs, the types of interaction that occur between continuum robots and their biomedical environments, the imposition of constraints on degrees of freedom, and to the numerical solution of the family of models under study. Finally, some open problems of modeling are discussed and future challenges are identified.

Item Type: Article
Subjects: Archive Paper Guardians > Mathematical Science
Depositing User: Unnamed user with email support@archive.paperguardians.com
Date Deposited: 23 Jun 2023 07:26
Last Modified: 12 Dec 2023 04:32
URI: http://archives.articleproms.com/id/eprint/1346

Actions (login required)

View Item
View Item