Arango, Ivan and Pineda, Fabio and Ruiz, Oscar (2013) Bifurcations and Sequences of Elements in Non-Smooth Systems Cycles. American Journal of Computational Mathematics, 03 (03). pp. 222-230. ISSN 2161-1203
AJCM_2013082111462729.pdf - Published Version
Download (1MB)
Abstract
This article describes the implementation of a novel method for detection and continuation of bifurcations in non-smooth complex dynamic systems. The method is an alternative to existing ones for the follow-up of associated phenomena, precisely in the circumstances in which the traditional ones have limitations (simultaneous impact, Filippov and first derivative discontinuities and multiple discontinuous boundaries). The topology of cycles in non-smooth systems is determined by a group of ordered segments and points of different regions and their boundaries. In this article, we compare the limit cycles of non-smooth systems against the sequences of elements, in order to find patterns. To achieve this goal, a method was used, which characterizes and records the elements comprising the cycles in the order that they appear during the integration process. The characterization discriminates: a) types of points and segments; b) direction of sliding segments; and c) regions or discontinuity boundaries to which each element belongs. When a change takes place in the value of a parameter of a system, our comparison method is an alternative to determine topological changes and hence bifurcations and associated phenomena. This comparison has been tested in systems with discontinuities of three types: 1) impact; 2) Filippov and 3) first derivative discontinuities. By coding well-known cycles as sequences of elements, an initial comparison database was built. Our comparison method offers a convenient approach for large systems with more than two regions and more than two sliding segments.
Item Type: | Article |
---|---|
Subjects: | Archive Paper Guardians > Mathematical Science |
Depositing User: | Unnamed user with email support@archive.paperguardians.com |
Date Deposited: | 22 Jun 2023 08:49 |
Last Modified: | 23 Jan 2024 04:30 |
URI: | http://archives.articleproms.com/id/eprint/1294 |