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ABSTRACT

Aims: This study aimed to find the cardiac cells which can participate in the processes of
regeneration at patients with heart failure due to ischaemic heart disease. To investigate the
participation of myosin activating protein kinases in sarcomerogenesis, because sarcomerogenesis
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is the crucial part of cardiomyocyte differentiation process.
Study Design: Resident cardiomyocyte progenitors and dedifferentiated cardiomyocytes were
found in left atrial appendages from patients with heart failure due to ischaemic heart disease. We
used a cell model of fetal cardiomyocytes with the disassembly contractile apparatus to study the
forming of new myofibrils (or sarcomerogenesis) regulated by myosin activating protein kinases.
Place and Duration of Study: Cardiology Research and Production Center, Research Center for
Obstetrics, Gynecology and Perinatology, Department of Fundamental and Applied Neurobiology of
V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology between June 2014 and
October 2015.
Methodology: We included 10 patients with heart failure due to ischaemic heart disease. Resident
cardiomyocyte progenitors and dedifferentiated cardiomyocytes were found by the
immunofluorescence approach and the electron microscopy. To determine the myosin activating
protein kinases localization in human fetal cardiomyocytes at the 8-9 week heart gestation stage
immunofluorescence approach was used.
Results: We detected the cardiomyocyte progenitor cells which express c-Kit and Nkx-2.5, other
cells express Mdr-1 and GATA-4. Dedifferentiated cardiomyocytes were found. It has been
established that smooth muscle, nonmuscle and skeletal myosin light chain kinases are colocalized
with nonmuscle myosin in premyofibrils in  fetal human cardiomyocytes.
Conclusion: We demonstrated that the heart of patients with heart failure  due to ischaemic heart
disease contains the progenitor resident cardiomyocytes and dedifferentiated cardiomyocytes.
These cardiac cells possibly can proliferate and differentiate to mature cardiomyocytes and recover
heart function and structure after injury. Myosin activating protein kinases may contribute in myofibril
formation during the cardiomyocyte differentiation.

Keywords: Resident cardiomyocyte progenitors; dedifferentiated cardiomyocytes; regeneration;
redifferentiation; myosin activating protein kinases; ischaemic heart disease; heart failure.

ABBREVIATIONS

IHD : Ischaemic Heart Disease
HF : Heart Failure
Mdr-1 : Multiple drug resistance-1
MLCK : 108- smooth muscle Myosin Light Chain Kinase
MLCK : 210- nonmuscle Myosin Light Chain Kinase
sk MLCK : skeletal Myosin Light Chain Kinase
NMIIB : Nonmuscle Myosin II type B
PBS : Phosphate Buffered Saline
FBS : Fetal Bovine Serum
BSA : Bovine Serum Albumin
DMEM : Dulbecco’s modified Eagle medium
SP : Side Population
ABC : Adenosine Tri-Phosphate-Binding Cassette

1. INTRODUCTION

Many years it was thought that the heart is a
terminally differentiated organ, and the adult
mammalian heart is not capable of regeneration.
The loss of cardiomyocytes due to
cardiovascular disease is a major mechanism
resulting to ventricular dysfunction and heart
failure (HF). Cardiovascular disease is the
leading cause of death in the world today [1], and
patients with heart failure due to ischaemic heart
disease (IHD) too represent a large part [2-6].
Half of patients with HF will die within 5 years of

diagnosis [7,8]. These statistics support the need
to find complementary treatment for HF. The
cardiomyocyte loss associated with the disease
triggers pathological remodeling characterized by
progressive changes in ventricular size, shape
and function which leads to further loss
of cardiomyocytes [9-11]. Standard drug
therapy, ventricular assist devices, cardiac
resynchronization therapy and cardiac
transplantation have been used for disease
treatment. But the conventional treatment cannot
resolve the problem of the cardiomyocyte loss.
Cardiac transplantation improves outcomes in
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end-stage HF, but this procedure is connected
with many difficulties. Remarkable works by
Bergmann et al have established that human
cardiomyocytes are renewed throughought life
[12,13]. Recently it has been found that the adult
mammalian heart contains progenitor (or stem)
cells that can generate functional cells [14-21].

Formation of new functional cardiomyocytes may
come both of dedifferentiation and proliferation of
pre-existing cardiomyocytes without complete
reversion to a cardiac progenitor state [22], or
by cardiac differentiation of stem cells
(embryological or dedifferentiated origin) [23-25].
The main features of dedifferentiated
cardiomyocytes are changes of the sarcomeric
structure of cardiomyocytes and fetal gene
expression, the phenotype of these cells is
similar to fetal cell phenotype.

Changes of the regulated sarcomeric structure of
cardiomyocytes under pathological conditions
are characterized by the disappearance of highly
organized patterns of myosins, titin and desmin
and the phenotype of these cardiomyocytes
resembles the phenotype of fetal cardiomyocytes
[26]. Such dedifferentiated cardiomyocytes were
found in infarction border zones [27,28] and
fibrillating atria [29]. Cardiomyocytes found in
hibernating myocardium show a dedifferentiated
phenotype with structural hallmarks of fetal
cardiomyocytes [27]. All changes are
accompanied by important alterations in the
expression and organization of contractile and
cytoskeletal proteins [30]. The dedifferentiation
state might enable cardiomyocytes to survive
pathological conditions [31].

Cardiomyocyte differentiation includes
sarcomerogenesis. Sarcomerogenesis in
cardiomyocytes is regulated by some myosin
activating protein kinases. Smooth muscle
myosin light chain kinase (MLCK-108) functional
activity decreasing results to sarcomerogenesis
inhibition, but increased skeletal myosin light
chain kinase (sk MLCK) level accelerates
sarcomere formation in rat cultured
cardiomyocytes [32]. However their participating
in sarcomerogenesis of human cardiomyocytes
has not been investigated yet. Studying the
molecular mechanisms of sarcomerogenesis
regulated by protein kinases is important for
understanding cardiomyocyte differentiation and
redifferentiation mechanisms and understanding
of the myocardial regeneration processes.

In our work dedifferentiated cardiomyocytes and
resident cardiomyocyte progenitors have been

found in left atrial appendages from patients with
HF. Human cardiomyocyte sarcomerogenesis
has been studied at a cell model.

2. MATERIALS AND METHODS

2.1 Tissue Samples

Ethical approval was obtained from local
research ethics committee (Re: N208).

Left atrial appendages of patients with IHD and
HF were obtained using standard techniques. A
total 10 atrial appendages specimens were
collected from 10 patients during the routine
procedure of open heart surgery from Cardiology
Research and Production Centre. The
specimens were from left atrial appendages and
the size of samples varied from 50 to 500 mg.
Samples were placed in the medium for freezing
tissue Tissue-Tek (Sacura Finetechnical Co.,
Ltd.) and frozen in liquid nitrogen for subsequent
preparation of cryosections.

No information was able to be collected in terms
of patient’s age, sex and properties of noncardiac
diseases, and other medical history of patients. A
written consent agreement was obtained from all
patients.

2.2 Reagents and Antibodies

General reagents of analytical grade were
purchased from Sigma and Life Technologies
(USA). Cell culture reagents and plastic were
obtained from Hyclone (USA) and Corning
(Netherlands). Electron microscopy reagents
were obtained from Agar Scientific (UK) and
LADD Research Industries (USA).

Following primary antibodies were used:  NMIIB
(Covance, USA), MLCK-108 and MLCK-210
(clone К-36, Sigma, USA), skMLCK (Santa-Cruz,
USA), GATA-4 (Santa-Cruz, USA), Nkx-2.5
(Santa-Cruz, USA), Mdr-1 (Santa-Cruz, USA), c-
Kit (Santa-Cruz, USA). Secondary Alexa- labeled
antibodies were obtained from Molecular Probes
(USA).

2.3 Cell Culture

Ethical approval was obtained from local
research ethics committee (Re: N13). Fetal
cardiomyocytes were isolated from 8-9 week
fetuses resulting from medical abortions carried
out for medical reasons. The hearts were minced
and washed with phosphate buffered saline
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(PBS). Cell isolation was performed with 0.2%
trypsin and 1 mg/ml type II collagenase in 0.02%
glucose/PBS, pH7.4 solution at 37°C. After
dissection, cells were incubated on plastic culture
dishes for 2 hours at 37°C to separate cells for
adherent and non-adherent cells, with
Dulbecco’s modified Eagle medium (DMEM)
containing penicillin and streptomycin and
supplemented with 10% fetal bovine serum
(FBS). After incubation, the supernatant with
non-adherent cells was transferred to new
culture dishes and maintained in a 5% CO2
incubator at 37°C with the culture medium
DMEM, 10% FBS replaced every 3 days.

2.4 Electron Microscopy

For transmission electron microscopy myocardial
tissue was fixed in 2.5% glutaraldehyde buffered
with 90 mM KH2PO4, pH 7.4, After rinsing in the
same buffer for 24 hrs, the samples were
postfixed for 1 hr in 2% OsO4 buffered to pH 7.4
with 0.1 M veronal acetate. Additional
impregnation of myocardium tissue was
performed in 1% uranyl acetate in 0.1 M veronal
acetate, pH 5.2. The myocardium samples were
dehydrated in graded series of ethanol and
routinely embedded in Epon (LADD Research
Industries).

Ultrathin sections were counterstained with
uranyl acetate and lead citrate, prior to
examination in a microscope Libra-120 (Zeiss).

2.5 Immunofluorescence

Cardiomyocytes grown on glass coverslips were
fixed in 4% formaldehyde/PBS for 5 min at room
temperature and treatment with 1% Triton-X100
in PBS for 5 min. Cells were washed in PBS at
room temperature and treatment with blocking
solution 10% FBS in PBS for 30 min at room
temperature. After that cardiomyocytes were
incubated with appropriate primary and
secondary antibodies diluted in 1% BSA (bovine
serum albumin) in PBS during 1 h.

Sections (6 µm) of left atrial appendages of
patients with IHD and HF were fixed in acetone
for 10 min. After washes with PBS sections were
treatment with blocking solution and
subsequently incubated 1 h with primary and
secondary antibodies diluted in 1% BSA in PBS.

Cells on coverslips and tissue sections
were mounted in Aquapolymount medium
(Polysciences, Warrington, PA) and

immunofluorescent images were obtained using
Zeiss Observer.Z1 microscope (Zeiss, Germany)
equipped with Axiocam cooled CCD camera and
Axiovision v.4.8  software.

3. RESULTS

3.1 Resident Cardiomyocyte Progenitors
in Left Atrial Appendages of Patients
with IHD and HF

Cells expressing stem cell markers c-Kit, Mdr-1
and early cardiac transcription factors GATA-4
and Nkx-2.5 were identificated in left atrial
appendages  from  all patients with  ischaemic
heart disease and heart failure by
immunofluorescence approach. Detected cells
are small, and they have the rounded shape.
Cardiomyocyte progenitor cells express c-Kit and
Nkx-2.5 (Fig. 1). Other cells express Mdr-1 and
GATA-4 (Fig. 2). Cell markers are located as
follows: c-Kit and Mdr-1 on the cell membrane
(Figs. 1A, 2A), Nkx- 2.5 and GATA-4 in the
nucleus (Figs. 1B, 2B). Localization of nucleus
was identificated by DAPI staining (Figs. 1C, 2C).

3.2 Dedifferentiated Cardiomyocytes in
Left Atrial Appendages of Patients
with HF

Cardiomyocytes with hallmarks of
dedifferentiation as evaluated by electron
microscopy have been found  in this study in left
atrial appendages  from patients with    IHD and
HF. Revealed cardiomyocytes have main
features of dedifferentiated cardiomyocytes  such
as sarcomere disorganization, enhanced
glycogen content, mitochondria disposition,
changes in size and  shape of cardiomyocytes
(Fig. 3).

3.3 Identification of Myosin Activating
Protein Kinases in Human Fetal
Cardiomyocytes

The myosin activating protein kinases
localization was detected in human fetal
cardiomyocytes by immunofluorescence
approach. It was established that skMLCK
colocalized with nonmuscle myosin IIB (NMIIB) in
premyofibrils (Fig. 4). MLCK-108 and its high
molecular weight isoform nonmuscle myosin light
chain kinase (MLCK- 210) detected in our study
immunoblotting approach (unpublished data)
localized along NMIIB positive premyofibrils
(Fig. 5).
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4. DISCUSSION
Regeneration processes are different in the
body organs and are connected with
development during embryogenesis. Mammalian
cardiomyocytes have two ways for growth and
generation. During embryogenesis the
proliferation of cardiomyocytes takes place, but
after the birth only the cell size increased. Many
years it was believed that the postnatal human
heart had no capacity to regeneration; recently
this opinion has changed [12], but the rate of
regeneration and the source of it are still
unclear. Some studies suggest that there is a
high level of differentiation of progenitors to
cardiomyocytes [33] and their turnover is high
[34]. Other studies demonstrate that new
cardiomyocytes are made at a very low level [12,
35]. Kikuchi et al. [36] propose that the source of
the new cells is the division of existing
cardiomyocytes. Other researchers propose that
the new cells come from progenitors residing in
the heart [15] or from exogenous niches, such as
the bone marrow [37].

Resident cardiomyocyte progenitors have been
found in our study in left atrial appendages  from
patients with IHD and HF. Cardiomyocyte
progenitor cells express simultaneously  stem

cell markers c-Kit, Mdr-1 and early cardiac
transcription factors Nkx-2,5 and GATA-4
respectively. We detected that the cells express
c-Kit and Nkx-2.5, other cells express Mdr-1 and
GATA-4. These cells represent different
populations of adult cardiac progenitor cells (c-Kit
and SP).

The existence of c-Kit positive resident
progenitor population in the heart was first
reported in 2003, when Beltrami and colleagues
reported isolating clonogenic, self renewing cells
that are capable of differentiating into
cardiomyocytes, vascular smooth muscle cells,
and endothelial cells [15]. These cells are
negative for many blood lineage markers (Lin-),
and positive for c-Kit, the receptor for stem cell
factor. In the adult rat myocardium, c-Kit+ cells
are rare (1 per 10,000 myocytes), and
heterogeneous, with a minority (7%-10%)
expressing early cardiac transcription factors
such as GATA-4, Mef2, and Nkx-2.5 [15].

Population of cells with stem cell-like properties
has been identified in bone marrow, muscle, and
skin by their ability to exclude Hoechst dye and
certain anticancer drugs, named as “side
population” or SP [38]. Some groups have
identified SP cells in adult mouse hearts marked

Fig. 1. Resident cardiomyocyte progenitors in left atrial appendages from patients with HF
A - c-Kit - antibodies (localization on the membrane), B – Nkx-2.5- antibodies (nuclear localization), C- DAPI,

D- Merged images
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Fig. 2. Resident cardiomyocyte progenitors in left atrial appendages from patients with HF
A- Mdr-1- antibodies (localization on the membrane), B- GATA-4- antibodies (nuclear localization), C- DAPI,

D- Merged images

by the expression of Abcg2 and Mdr-1, two
genes belonging to the ATP-binding cassette
(ABC) transporter superfamily that constitute the
molecular basis for the dye efflux [18,39-
41].While their clonogenic potential, capacity for
self-renewal, and developmental origin remain to
be determined, upon coculture with adult
rat ventricular cardiomyocytes, these cells
demonstrate not only biochemical differentiation,
as evidenced by the expression of cardiac
transcription factors GATA-4 and Nkx-2.5 and
contractile proteins, but also functional
cardiomyogenic differentiation, as determined by
sarcomeric organization, intracellular calcium
transients, and cellular contraction [40].

Three populations of adult cardiac progenitor
cells (c-Kit+, Sca-1+, SP) represent 0.005-2% of
the total cellular content in the heart, enter the
cell cycle when growth of the heart is attenuated,
proliferate in culture, and form cells expressing
cardiomyogenic markers [42]. They appear
phenotypically distinct from one another and
show differential expression of surface markers
[43-45]. Other studies suggest that the side
population of adult cardiac progenitor cells
express also the stem cell antigen-1 [46].
Recently the researchers defined four

subpopulations of cardiac progenitor/stem cells
in adult mouse myocardium all sharing stem cell
antigen-1 (Sca1), based on side population (SP)
phenotype [47]. To date, the exact lineage
relationships between the adult cardiac
progenitor cell populations and embryonic
cardiac progenitor cells remain unknown.

Fig. 3. Electron microscopy of left atrial
appendages from patients with ischaemic

heart disease and heart failure show a
dedifferentiating cardiomyocyte with obvious
disruption of the sarcomeric apparatus and

glycogen accumulation
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Fig. 4. Sk MLCK localization in human fetal cardiomyocytes
A - sk MLCK antibodies, B - Nonmuscle myosin IIB antibodies, C - Merged images

Fig. 5. MLCK-108 and MLCK-210 localization in human fetal cardiomyocytes
A – MLCK-108 and MLCK-210 antibodies, B - Nonmuscle myosin IIB antibodies, C - Merged images

A B

C
10 µm
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The presence of endogenous cardiac progenitors
in the rodent adult heart has prompted studies
into whether similar populations exist in the
human adult heart. As was demonstrated in
rodents, a heterogeneous population of cardiac
cells defined by the expression of the primitive
stem cell markers c-Kit, Mdr-1, or a Sca-1-like
epitope could also be found in human cardiac
specimens from patients with aortic stenosis [48]
myocardial infarction [49] and in the post-mortem
hearts of patients who had undergone cardiac
transplantation [50]. The human cardiac c-Kit+
subset was reported to give rise to
cardiomyocytes, vascular smooth muscle cells,
and endothelial cells in vitro, and following
transplantation into immunodefficient mice  [19].

The researchers from the laboratory Richard T.
Lee  showed,  by combining two different pulse-
chase approaches - genetic fate-mapping with
stable isotope labelling, and multi –isotope
imaging mass spectroscopy- that the genesis of
cardiomyocytes occurs at a low rate by the
division of pre-existing cardiomyocytes during
normal ageing, a process that increases adjacent
to areas of myocardial injury [51]. They found
that cell activity during normal ageing and
after injury led to polyploidy and multinucleation,
but also to new diploid, mononucleate
cardiomyocytes  [51]. The data of this work
at a mouse model revealed pre-existing
cardiomyocytes as a dominant source of
cardiomyocyte replacement in normal
mammalian myocardial homeostasis as well as
after myocardial injury [51].

Dedifferentiated cardiomyocytes have been
found in our study in left atrial appendages
from patients with IHD and HF. Revealed
cardiomyocytes have main features of
dedifferentiated cardiomyocytes such as
sarcomere disorganization, enhanced glycogen
content, mitochondria disposition, changes in
size and shape of cardiomyocytes. The transient
dedifferentiation of the sarcomeric structure
during cytokinesis  supports the notion of normal
cell division resulting in two functional
cardiomyocytes. This phenomenon was
previously demonstrated in fetal cardiomyocytes
[52,53]. Investigators showed that neonatal
cardiomyocytes transiently dedifferentiate, stop
beating, undergo cytokinesis, redifferentiate and
begin beating again [54]. We propose that
obvious disruption of the sarcomeric apparatus is
characteristic of dedifferentiated cardiomyocyte.

Formation of functional cardiomyocytes may
come both of dedifferentiation and proliferation of

pre-existing cardiomyocytes without complete
reversion to a cardiac progenitor state [22] and
their subsequent differentiation (so called
redifferentiation), or by cardiac differentiation of
stem cells (embryological or dedifferentiated
origin) [23-25]. Sarcomerogenesis is an
important part of the formation of functional
cardiomyocytes. We used a cell model of fetal
cardiomyocytes with the disassembly contractile
apparatus to study this process. The phenotype
of dedifferentiated cardiomyocytes resembles the
phenotype of fetal cardiomyocytes [26].

The cardiomyocyte differentiation includes
myofibrils formation process –
sarcomerogenesis. The premyofibril transition
to myofibril, containing sarcomeres and
replacement of premyofibril nonmuscle proteins
to sarcomeric proteins is a crucial
sarcomerogenesis stage. Premyofibril stability is
an important part in sarcomerogenesis. The main
premyofibril protein is nonmuscle myosin II type
B, and its phosphorylation is an obligatory
condition for stable filament formation. NMIIB
phosphorylation is necessary for nonmuscle
myosine filament assembly from monomers and
myosine activation [55]. It was shown in vitro that
NMIIB can be phosphorylated by smooth muscle
myosin light chain kinase and skeletal myosin
light chain kinase [56]. Nonmuscle myosin IIB is
likely to be a natural substrate for MLCK-108
since this kinase is collocated with nonmuscle
myosin both in premyofibrils and in the Z- disks
of mature sarcomeres [57]. MLCK-108 functional
activity decreasing results to sarcomerogenesis
inhibition, but increased sk MLCK level
accelerates sarcomere formation in rat cultured
cardiomyocytes [32]. All these data testify to
MLCK-108 is a natural nonmuscle stabilizator.
Controversy reigns in the sarcomerogenesis
regulation mechanisms area: which myosin
activating protein kinases take part in this
process for premyofibril stabilization. In this study
the myosin activating protein kinases localization
was studied in fetal cardiomyocytes.

In our research myosin light chain kinase isoform
MLCK-210 was found in studied fetal
cardiomyocytes by quantitive immunoblotting
approach (unpublished data). To localize
MLCK-108 and MLCK-210 isoforms by
immunofluorescence approach we used
monoclonal antibodies (clone K-36 Sigma) which
can detect both isoforms. So the detected
localization of both isoforms coincide (Fig. 1A). It
was established that MLCK-108 and its high
molecular weight isoform MLCK- 210, sk MLCK
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colocalized with non-muscle myosin in
premyofibril composition. Non-muscle myosin
may be the substrate for above mentioned
myosin-activating protein kinases, its
phosphorylation by these protein kinases may
contribute to premyofibril stabilization during
cardiomyocyte differentiation.

5. CONCLUSION

This study aimed to find the cardiac cells which
can participate in the processes of regeneration
at patients with heart failure due to ischaemic
heart disease. Our study demonstrated that the
heart of these patients contains the progenitor
resident cardiomyocytes and dedifferentiated
cardiomyocytes. Such cardiomyocytes possibly
can recover heart function and structure after
injury. Myosin activating protein kinases may
contribute in myofibril formation during the
cardiomyocyte differentiation and these protein
kinases may be pharmacological tools in
regenerative medicine.
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