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Abstract

Astrophysical disks that are sufficiently cold and dense are linearly unstable to the formation of axisymmetric rings
as a result of the disk’s gravity. In practice, spiral structures are formed, which may in turn produce bound
fragments. We study a nonlinear dynamical path that can explain the development of spirals in a local model of a
gaseous disk on the subcritical side of the gravitational instability bifurcation. Axisymmetric equilibria can be
radially periodic or localized, in the form of standing solitary waves. The solitary solutions have energy slightly
larger than a smooth disk. They are further unstable to nonaxisymmetric perturbations with a wide range of
azimuthal wavenumbers. The solitary waves may act as a pathway to spirals and fragmentation.

Unified Astronomy Thesaurus concepts: Gravitational instability (668); Spiral arms (1559); Spiral galaxies (1560);
Circumstellar disks (235)

1. Introduction

Spirality is ubiquitous in astrophysics. The grand-design
spirals in galaxies and some circumstellar disks are believed to
be global spiral density waves. Spirals can further regulate the
formation of stars in galaxies (Roberts 1969) and collapse to
form planets in circumstellar disks (see, e.g., Durisen et al.
2007; Deng et al. 2021). In this Letter, we study the
development of spiral structures through the gravitational
instability (GI) of a massive gaseous disk orbiting in a central
potential.

The physics of GI can readily be appreciated in a local patch
of a thin gaseous disk (Goldreich & Lynden-Bell 1965). In this
2D local model, x and y correspond to the radial and azimuthal
directions. Fluid orbiting the center at an angular velocity
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where u is the velocity, D/Dt is the material derivative, Σ and
P are the vertically integrated density and pressure, Φ is the
gravitational potential due to gas self-gravity, and Φt=−ΩSx2

is the tidal potential. For uniform Σ and P, the steady solution
ˆ= -u eSx y0 represents the basic orbital motion with shear rate

= - WS d d rln , which equals 3Ω/2 for a Keplerian disk
dominated by a central mass. Hereafter we consider only the
deviation from this background shear flow, v= u− u0.

Axisymmetric perturbations with radial wavenumber kx
oscillate at an angular frequency ω given by

∣ ∣ ( )w k p= - S +G k c k2 , 2x x
2 2 2 2

where c is the sound speed. Long-wavelength (small kx)
perturbations are stabilized by the κ2= 2Ω(2Ω− S) term

(squared epicyclic frequency) resulting from the conservation
of angular momentum, while short-wavelength perturbations
are stabilized by gas pressure (Shu 2016). A band of
intermediate-scale axisymmetric perturbations exists when
Q= κc/πGΣ< 1 (Toomre 1964). The growth of nonaxisym-
metric spirals is less well understood and possibly linked to the
overreflection of waves at the location that corotates with the
spiral pattern. If somehow the reflected wave is deflected again
toward the corotation region, a feedback loop can be
established so that the wave grows exponentially (Mark 1976;
Nakagawa & Sekiya 1992; Shu 2016). However, this
mechanism only works efficiently for disks hovering on the
brink of GI and with enough radial structure to reflect the
waves. In 3D numerical simulations of gaseous disks, spirals
start to grow at Q≈ 1.5 (Durisen et al. 2007), and ring
structures are often observed as transitions to spirals (Mayer &
Gawryszczak 2008; Hirose & Shi 2019; Deng et al. 2017).
Inspired by these numerical simulations, we investigated

nonlinear steady axisymmetric structures in the local model as
transitions to spirality. We unexpectedly discovered a class of
standing solitary waves in a nonlinear integro-differential
equation describing the radial force balance. Self-gravity of the
gas introduces nonlocality through a Hilbert transform,
resembling the Benjamin–Ono equation, which also admits
solitons (Benjamin 1967; Ono 1975). The solitary waves are
found to transition to spiral structures via secondary instability.
We solve for nonlinear axisymmetric structures in Section 2,
examine their energy and stability in Sections 3 and 4,
respectively, and draw conclusions in Section 5.

2. Nonlinear Axisymmetric Structures

Two material invariants of the ideal fluid model are the
specific entropy and the potential vorticity (PV)
(2Ω− S+ ∂xvy−∂yvx)/Σ. Throughout this paper, we consider
accessible solutions with the same uniform entropy, PV, and
mean density as a uniform sheet (denoted by a subscript zero).
For a perfect gas of (2D) adiabatic index Γ> 1, isentropy
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implies the polytropic relations P= AΣΓ and dP/Σ= dW, with
specific enthalpy W= AΓΣΓ−1/(Γ− 1)= c2/(Γ− 1). Hydro-
static 3D disks have an effective Γ between (3γ− 1)/(γ+ 1)
and 3− 2/γ (Gammie 2001), i.e., 1.33< Γ< 1.57 for a cold
disk of molecular hydrogen with γ= 1.4. Lower effective
values of Γ may be relevant when radiative processes are taken
into account, with Γ= 1 corresponding to the isothermal limit
of instantaneous thermal relaxation.

For steady axisymmetric solutions (vx= 0), the PV con-
straint implies

( )k
s¶ =

W
v

2
, 3x y

2

where σ=Σ/Σ0− 1 is the fractional density variation. The
radial force balance reads

( )- W = -¶ - ¶ Fv W2 4y x x

and combines with Equation (3) to give
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The dimensionless enthalpy perturbation
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reduces to ( )s= +w ln 1 in the isothermal limit (Γ→ 1). Φ is
related to Σ through Poisson’s equation in 3D, regarding the
disk as razor-thin. This can be solved after taking a Fourier
transform in x and y, with the result that
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for any wavenumber = + ¹k k k 0x y
2 2 . In Fourier space,

Equation (5), when combined with Equation (7), gives
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We adopt c0/κ as a natural unit of length. Radial force balance
can be expressed in real space as

( )s s+ =-w Q2 , 9xx x
1

where Q−1= πGΣ0/κc0 and  is the Hilbert transform
(King 2009). The polytropic relation (Equation (6)) makes
the problem nonlinear. We look for periodic solutions with a
basic wavenumber K in the form of a cosine series,
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so that the coefficients are related by

( ) ( ) ( )s- =-Q nK nK w2 1 . 11n n
1 2

Asymptotic analysis is possible when the disk is nearly
marginally stable, i.e., Q−1 and K are close to 1 with small
increments δ(Q−1) and δK. For weakly nonlinear solutions,
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in which the left-hand side measures supercriticality with
respect to the GI: It is positive when Q< 1 and K is sufficiently
close to 1. For Γ< 5/3, which is expected, solutions exist on
the subcritical side of the bifurcation with δ(Q−1)< 0, i.e.,
Q> 1. Using these approximate solutions as initial guesses, we

solve Equations (6) and (11) by the Newton–Raphson iteration
for a range of parameters Q−1, K, and Γ. We utilize Fast
Fourier Transform (FFT) algorithms with up to 5000 points to
achieve good convergence when K is small.
In Figure 1, we plot the steady axisymmetric structures in

various conditions. For a given (Q−1, Γ) pair, the short-
wavelength solutions (K> 1) possess a single strong peak that
tends to be infinitely sharp at large K, whereas the long-
wavelength (K< 1) solutions gradually approach a solitary
wave. For example, in Figure 1(a) the solitary wave is already
established at K= 0.1, and we observe no change in the pattern
by tripling the base wavelength, 2π/K. Hereafter, the reported
solitary waves for various (Q−1, Γ), whose shapes are well
established, are all calculated with a base wavenumber
K= 0.08. A smaller Q−1 or a larger Γ leads to a more strongly
peaked wave.
With a fixed wavenumber K= 1 and Γ< 5/3, we show the

peak density perturbation of periodic ring structures as a
function of Q−1 in Figure 2. The rings become more peaked
when Q−1 decreases from 1 until the solutions turn onto an
upper branch at a critical Q−1 (0.712, 0.825, 0.900, and 0.950
for Γ= 1.1, 1.2, 1.3, and 1.4). The peak density continues to
increase with Q−1 until the first trough in the periodic structure
(similar to Figure 1) reaches zero and the upper branch ceases.

3. Energy Budget

The energy per unit area of the axisymmetric structures,
relative to the uniform disk, is

( ) ( )
k
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where the first two terms combine the kinetic and tidal
energies. Considering the isovortical constraint (Equation (3))
and radial force balance (Equation (5)), and after integration by
parts, assuming that vy, σ, and Φ are either periodic or decaying
in x, the total energy change due to the axisymmetric structure
is
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So the mean energy change of periodic structures per unit area
is
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We plot the energy change due to periodic ring structures
and solitary waves in Figure 3. For the K= 1 solutions in
Figure 2, the energy first increases as Q−1 decreases along the
lower branch as shown in Figure 3(a). This is expected for a
subcritical bifurcation because the uniform disk is linearly
stable and a local minimum of the energy. When the solution
moves onto the upper branch, the energy turns over and falls
with increasing Q−1. The turnover points are stationary points
of the energy (Burke & Knobloch 2006), and the upper branch
solutions for Γ> 1.4 can have energy lower than the
undisturbed smooth sheet. The lower-branch solutions are
expected to be unstable.
In Figure 3(b), the energy change of the axisymmetric

structure mostly increases with K except around the local
minima near K= 1. In the long-wavelength limit (K→ 0), the
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energy perturbation per unit area scales linearly with K, i.e.,
ΔE/K tends to a constant. This is a sign that the solution
converges to a solitary wave with a fixed total energy change.
In Figure 3(c), the energy of solitary waves increases with Γ
and Q.

4. Nonaxisymmetric Instability

We investigate the stability of the periodic and solitary
waves to nonaxisymmetric perturbations (ky≠ 0). The evol-
ution of linear perturbations (primed variables) is governed by

( ) ( )
¢
- W ¢ = -¶ ¢ + F¢

Dv

Dt
v W2 , 16x

y x

( ) ( ) ( )
¢
+ W - + ¶ ¢ = -¶ ¢ + F¢

Dv

Dt
S v v W2 , 17

y
x y x y

( ) ( )S¢
+ ¢¶ S = -S ¶ ¢ + ¶ ¢D

Dt
v v v , 18x x x x y y

where D/Dt= ∂t+ (− Sx+ vy)∂y is the material derivative on
the axisymmetric equilibrium. The perturbation can be
expressed as a ladder of shearing waves (Goldreich &
Lynden-Bell 1965), e.g.,

( ) ( ) ( )å¢ = ¢ +
=-¥

¥

v v t ik x ik yexp , 19
n

n x n y,

Figure 1. Nonlinear periodic ring structures and solitary waves. (a) Periodic structures (only one wavelength is shown) with base wavenumber K in an isothermal disk
with Q−1 = 0.95. As K decreases, the solutions transition to a solitary pattern (only the central part is shown here). (b), (c) Solitary waves for different Q−1 and
different Γ parameters, focusing on the central part of the solitary waves. The different line colors sweep the K, Q−1, or Γ parameters at constant rates, with the cooler
colors representing smaller coefficients.

Figure 2. The maxima of σ as a function of Q−1 when K = 1.
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with kx,n= nK+ kySt. We only consider isovortical perturba-
tions with zero potential vorticity change, i.e.,

( )
¶ ¢ - ¶ ¢

W -
=

S¢
S

v v

S2
. 20

x y y x

0

The density perturbation can thus be directly related to the
velocity perturbations, leaving two coupled linear ordinary
differential equations (ODEs) for each n:
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Here, the Fourier coefficients of vy and ∂xvy for the
axisymmetric equilibrium can be easily obtained from the
cosine series. The Fourier coefficients of S¢ can be related to
the velocity perturbation coefficients by the isovortical
condition. F¢n is readily obtained from S¢n by the Poisson
equation, and ¢Wn can be calculated via a convolution between
S¢n and ( )Sc n

2 .
The ODEs have t-dependent coefficients but the system is

periodic in t, because the kx,n ladder shifts one place in n after
the recurrence time T=K/kyS. Hence, Floquet’s method can be
used to determine the growth rates of various perturbations
with |n| not exceeding a truncation order N (Vanon &
Ogilvie 2016). To that end, a 2(2N+ 1)× 2(2N+ 1) mono-
dromy matrix was produced by applying 2(2N+ 1) sets of
initial conditions where all variables but one are set to zero,
with a different nonzero variable in each case, to
Equation (21a) and integrating it for one recurrence time. To
ensure the ¢v N entries are properly evaluated, we extended the
Fourier series, employing 2(N+ N0)+ 1 wavenumbers for
each variable in Equation (21a). Here, N0 is the number of
nonzero (>10−14) modes in the equilibrium axisymmetric
structures so that the convolutions in Equation (21a) are
properly handled for all modes (−N→ N) in the monodromy
matrix. We used up to N= 800 wavenumbers for some

strongly peaked solitary waves with N0 up to 700. FFT and
inverse FFT were utilized for the convolutions.
The growth rate s is determined by the eigenvalues λ of the

monodromy matrix (i.e., Floquet multipliers):

( ) ( )l=s
T

1
maxRe ln . 22

The corresponding eigenvectors give the velocity perturbations
in the Fourier space. We note that there is typically only one
growing mode for a given ky. We focus on the stability of the
solitary waves because they are localized and not affected by
the radial boundary condition. In Figure 4(c), we plot the
growth rates of nonaxisymmetric modes with different ky in
isothermal disks. The sharper solitary waves at smaller Q−1 are
susceptible to more vigorous instabilities over a wider ky range.
We note that a larger value of Γ narrows the window of
unstable modes in ky, but the fastest growth rate over all ky is
only slightly affected.
The ¢vx structure for the fastest-growing mode with

Q−1= 0.95 is shown in Figure 4(b). We verified our Floquet
analysis by carrying out direct hydrodynamic simulations with
the ATHENA code (Stone et al. 2008).3 We initialized the
solitary wave in a square sheet of size 2π/K and added a
random velocity noise of 0.1% of the sound speed. The sheet is
resolved by 8192 cells, i.e., 104 cells per /kc0 , to minimize
numerical dissipation, and we note that the instability grows
slower in low-resolution simulations. In Figure 4(a), the
simulation reproduces the velocity structure in the analytical
calculation, and the measured fastest-growing mode in the
simulation has the predicted wavelength and growth rate.
Figure 4(a) shows contamination by other modes close to
ky≈ 2.5 because they have comparable growth rates.
The solitary waves are expected to transition quickly to

spiral structures. In our direct simulations of isothermal disks,
the growing nonaxisymmetric perturbation leads to the run-
away collapse of the solitary wave on scales of a few tenths of
c0/κ (Deng et al. 2021). This is expected in isothermal
environments and resolving the collapsing clumps becomes

Figure 3. Energy change per unit area due to periodic rings or solitary waves. (a) Energy change for K = 1 solutions. (b) Energy change as a function of the base
wavenumber K in isothermal disks. At a sufficiently small K, ΔE/K tends to a constant because the solution transits to a solitary wave and the total energy change is
invariant. (c) Energy change due to solitary waves (calculated with K = 0.08). The total energy change per unit length in the y-direction is 78.54 ΔE.

3 The version 4.2 we downloaded from the official website has a wrong
implementation of 2D self-gravity. It calculates gravity by the 3D gravitational
stress tensor, which does not apply to 2D systems. Instead, we modified the
code and added the gravity force as a source term.
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increasingly challenging. Unfortunately, solving the energy
equation in the Γ≠ 1 case with our current hydrodynamical
code (Mullen et al. 2021) leads to inaccuracy, preventing us
from directly simulating the expected transition to spirals.
Further analysis and simulations on the effects of vertical
stratification and the equation of state are desirable.

5. Conclusions

We investigated the structure of nonlinear axisymmetric
equilibria on the subcritical side of the GI bifurcation. Periodic
ring structures of a wide range of length scales exist. A class of
solitary waves with slightly higher energy than the smooth disk
is of particular interest, which may be induced by external
perturbations. The solitary waves are unstable to nonaxisym-
metric perturbations, providing a new way of understanding the
generation of spirals in subcritical self-gravitating accretion
disks.
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of the paper.

Software: SciPy (Virtanen et al. 2020), ATHENA (Stone
et al. 2008).

ORCID iDs

Hongping Deng https://orcid.org/0000-0001-6858-1006
Gordon I. Ogilvie https://orcid.org/0000-0002-7756-1944

References

Benjamin, T. B. 1967, JFM, 29, 559
Burke, J., & Knobloch, E. 2006, PhRvE, 73, 056211
Deng, H., Mayer, L., & Helled, R. 2021, NatAs, 5, 440
Deng, H., Mayer, L., & Meru, F. 2017, ApJ, 847, 43
Durisen, R. H., Boss, A. P., Mayer, L., et al. 2007, in Protostars and Planets V,

951, ed. B. Reipurth, D. Jewitt, & K. Keil (Tucson, AZ: Univ. Arizona
Press), 607

Gammie, C. F. 2001, ApJ, 553, 174
Goldreich, P., & Lynden-Bell, D. 1965, MNRAS, 130, 125
Hirose, S., & Shi, J.-M. 2019, MNRAS, 485, 266
King, F. W. 2009, Encyclopedia of Mathematics and its Applications, Hilbert

Transforms, Vol. 1 (Cambridge: Cambridge Univ. Press)
Mark, J. W. K. 1976, ApJ, 205, 363
Mayer, L., & Gawryszczak, A. J. 2008, in ASP Conf. Ser., Extreme Solar

Systems, 398, ed. D. Fischer et al. (San Francisco, CA: ASP), 243
Mullen, P. D., Hanawa, T., & Gammie, C. F. 2021, ApJS, 252, 30
Nakagawa, Y., & Sekiya, M. 1992, MNRAS, 256, 685
Ono, H. 1975, JPSJ, 39, 1082
Roberts, W. 1969, ApJ, 158, 123
Shu, F. H. 2016, ARA&A, 54, 667
Stone, J. M., Gardiner, T. A., Teuben, P., Hawley, J. F., & Simon, J. B. 2008,

ApJS, 178, 137
Toomre, A. 1964, ApJ, 139, 1217
Vanon, R., & Ogilvie, G. I. 2016, MNRAS, 463, 3725
Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nat. Methods, 17, 261

Figure 4. Nonaxisymmetric modes attacking the solitary waves, and their growth rates. (a) Growing modes ( ¢vx) attacking the solitary wave in a direct numerical
simulation (K = 0.08, only the central part plotted) of an isothermal disk with Q−1 = 0.95. (b) Fastest-growing mode (Floquet analysis, arbitrary units) attacking the
same solitary wave as in (a). (c) Growth rates of modes with various ky in isothermal disks with solitary waves. The star symbol indicates the fastest growth rate
measured in the numerical simulation in (a).

5

The Astrophysical Journal Letters, 934:L19 (5pp), 2022 August 1 Deng & Ogilvie

https://orcid.org/0000-0001-6858-1006
https://orcid.org/0000-0001-6858-1006
https://orcid.org/0000-0001-6858-1006
https://orcid.org/0000-0001-6858-1006
https://orcid.org/0000-0001-6858-1006
https://orcid.org/0000-0001-6858-1006
https://orcid.org/0000-0001-6858-1006
https://orcid.org/0000-0001-6858-1006
https://orcid.org/0000-0002-7756-1944
https://orcid.org/0000-0002-7756-1944
https://orcid.org/0000-0002-7756-1944
https://orcid.org/0000-0002-7756-1944
https://orcid.org/0000-0002-7756-1944
https://orcid.org/0000-0002-7756-1944
https://orcid.org/0000-0002-7756-1944
https://orcid.org/0000-0002-7756-1944
https://doi.org/10.1017/S002211206700103X
https://ui.adsabs.harvard.edu/abs/1967JFM....29..559B/abstract
https://doi.org/10.1103/PhysRevE.73.056211
https://ui.adsabs.harvard.edu/abs/2006PhRvE..73e6211B/abstract
https://doi.org/10.1038/s41550-020-01297-6
https://ui.adsabs.harvard.edu/abs/2021NatAs...5..440D/abstract
https://doi.org/10.3847/1538-4357/aa872b
https://ui.adsabs.harvard.edu/abs/2017ApJ...847...43D/abstract
https://ui.adsabs.harvard.edu/abs/2007prpl.conf..607D/abstract
https://ui.adsabs.harvard.edu/abs/2007prpl.conf..607D/abstract
https://ui.adsabs.harvard.edu/abs/2007prpl.conf..607D/abstract
https://doi.org/10.1086/320631
https://ui.adsabs.harvard.edu/abs/2001ApJ...553..174G/abstract
https://doi.org/10.1093/mnras/130.2.125
https://ui.adsabs.harvard.edu/abs/1965MNRAS.130..125G/abstract
https://doi.org/10.1093/mnras/stz163
https://ui.adsabs.harvard.edu/abs/2019MNRAS.485..266H/abstract
https://doi.org/10.1086/154287
https://ui.adsabs.harvard.edu/abs/1976ApJ...205..363M/abstract
https://ui.adsabs.harvard.edu/abs/2008ASPC..398..243M/abstract
https://doi.org/10.3847/1538-4365/abcfbd
https://ui.adsabs.harvard.edu/abs/2021ApJS..252...30M/abstract
https://doi.org/10.1093/mnras/256.4.685
https://ui.adsabs.harvard.edu/abs/1992MNRAS.256..685N/abstract
https://doi.org/10.1143/JPSJ.39.1082
https://ui.adsabs.harvard.edu/abs/1975JPSJ...39.1082O/abstract
https://doi.org/10.1086/150177
https://ui.adsabs.harvard.edu/abs/1969ApJ...158..123R/abstract
https://doi.org/10.1146/annurev-astro-081915-023426
https://ui.adsabs.harvard.edu/abs/2016ARA&A..54..667S/abstract
https://doi.org/10.1086/588755
https://ui.adsabs.harvard.edu/abs/2008ApJS..178..137S/abstract
https://doi.org/10.1086/147861
https://ui.adsabs.harvard.edu/abs/1964ApJ...139.1217T/abstract
https://doi.org/10.1093/mnras/stw2238
https://ui.adsabs.harvard.edu/abs/2016MNRAS.463.3725V/abstract
https://doi.org/10.1038/s41592-019-0686-2
https://ui.adsabs.harvard.edu/abs/2020NatMe..17..261V/abstract

	1. Introduction
	2. Nonlinear Axisymmetric Structures
	3. Energy Budget
	4. Nonaxisymmetric Instability
	5. Conclusions
	References



