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Brain extraction (skull stripping) is an essential step in the magnetic resonance

imaging (MRI) analysis of brain sciences. However, most of the current brain

extraction methods that achieve satisfactory results for human brains are often

challenged by non-human primate brains. Due to the small sample characteristics

and the nature of thick-slice scanning of macaque MRI data, traditional deep

convolutional neural networks (DCNNs) are unable to obtain excellent results. To

overcome this challenge, this study proposed a symmetrical end-to-end trainable

hybrid convolutional neural network (HC-Net). It makes full use of the spatial

information between adjacent slices of the MRI image sequence and combines

three consecutive slices from three axes for 3D convolutions, which reduces the

calculation consumption and promotes accuracy. The HC-Net consists of encoding

and decoding structures of 3D convolutions and 2D convolutions in series. The

effective use of 2D convolutions and 3D convolutions relieves the underfitting of

2D convolutions to spatial features and the overfitting of 3D convolutions to small

samples. After evaluating macaque brain data from different sites, the results showed

that HC-Net performed better in inference time (approximately 13 s per volume) and

accuracy (mean Dice coefficient reached 95.46%). The HC-Net model also had good

generalization ability and stability in different modes of brain extraction tasks.

KEYWORDS

brain extraction, deep learning, hybrid convolution network, hybrid features, non-human
primate MRI

1. Introduction

With the launch of brain science programs in various countries, macaques have become an
important non-human primate animal model (Zhang and Shi, 1993; Li et al., 2019). Researchers
have conducted invasive experiments (such as electrophoresis, biology, histology, and lesions)
on macaque brains to verify hypotheses that cannot be carried out on human brains (Liu
et al., 2018; Cai et al., 2020). In brain science research, MRI has become an essential medical
technology to study the brain because of its non-invasiveness, ease of collecting information
many times, and rich and detailed tissue information. Brain extraction is one of the initial steps
of MRI image processing (Esteban et al., 2019; Tasserie et al., 2020). By removing non-brain
tissues (skull, muscle, eye, dura mater, external blood vessels, and nerves), the accuracy of brain
image processing steps can be improved, such as anatomy-based brain registration, meningeal
surface reconstruction, brain volume measurement, and tissue recognition (Xi et al., 2019a,b;
Autio et al., 2020; Lepage et al., 2021). However, the performance of existing brain extraction
tools is lacking when applied to the macaque brain (Zhao et al., 2018).

Frontiers in Computational Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2023.1113381
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2023.1113381&domain=pdf&date_stamp=2023-02-09
https://doi.org/10.3389/fncom.2023.1113381
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2023.1113381/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-17-1113381 February 7, 2023 Time: 8:29 # 2

Fei et al. 10.3389/fncom.2023.1113381

The particularity of the macaque’s brain makes brain extraction
more challenging than in humans. It mainly includes the following
aspects: (1) The evolutionary distance of 25 million years makes
the brain weight of macaques approximately one-tenth that of
humans (Nei et al., 2001; Donahue et al., 2016). The narrow and
prominent frontal lobe and the eyes surrounded by fatty tissue
near the brain of macaques all make it difficult to extract with
methods based on humans, as shown in Figure 1. (2) The species
differences between macaques and humans necessitate increased
spatial resolution to achieve the anatomical resolution that can
be compared between them. However, a smaller voxel means a
lower signal-to-noise ratio. To improve the signal-to-noise ratio,
researchers have collected macaque data under higher field strengths
(such as 4.7 T, 7 T, 9.4 T, and 11.7 T). The ultrahigh field strength
will increase the heterogeneity of B0 and B1, which will strongly
influence the tissue contrast, thus reducing the data quality (Van
de Moortele et al., 2005). (3) Different macaque data collection
sites use specific collection protocols and equipment (Milham et al.,
2018), resulting in significant differences in the data quality and
characteristics. To solve these challenges, other researchers have
proposed methods for non-human primate data [i.e., a new option
“-monkey” in AFNI (Cox, 1996), registration methods (Lohmeier
et al., 2019; Jung et al., 2021)]. However, the final results mostly
require manual intervention. Therefore, an automatic, rapid, and
robust brain extraction method for macaques is highly desirable in
non-human primate studies.

In recent years, following the revival of deep neural networks
(Seyedhosseini et al., 2013; Yan et al., 2015) and the development of
parallel computing (Coates et al., 2013; Schmidhuber, 2015), DCNNs
have shown excellent performance in various computer vision tasks
and have been widely used in medical image segmentation for
human body tissue (Zhao et al., 2018; Wang et al., 2021, 2022;
Huang et al., 2022; Sun et al., 2022). The methods based on DCNN
architecture can be divided into 2D (2D convolution kernel) and
3D (3D convolution kernel) methods. Based on the excellent feature
extraction ability of the 2D convolution kernel, the 2D methods can
extract features quickly from original volumes. However, the input
of a 2D convolution network is usually a slice cut along the Z-axis,
which ignores the spatial information of volume data. This would
lead to limiting the ability of model segmentation. To overcome
this limitation, 2D methods that make use of information from
adjacent slices have been introduced (Lucena et al., 2019; Zhang
et al., 2019). Specifically, adjacent slices cropped from volumetric
images are fed into the 2D networks as the 3D segmentation
volume by simply stacking the 2D slices. Although adjacent slices
are employed, it is still not enough to probe the spatial information
along the third dimension, which leads to the underfitting of 2D
convolution to spatial information. In particular, macaque brain
samples have the nature of thick-slice scanning, and more voxels are
primarily anisotropic (0.60× 1.20× 0.60 mm, 0.50× 0.55× 0.55
mm, 0.75× 0.75× 0.75 mm), which corrupts the extraction of brain
tissue from macaque brain MRI images. To make full use of the
context information of 3D medical volume data, 3D DCNNs are
applied to the field of brain image segmentation (Hwang et al., 2019;
Coupeau et al., 2022). Kleesiek et al. (2016) first proposed an end-to-
end 3D DCNN for human brain extraction, and then 2D U-Net was
also extended to 3D for the 3D dataset (Çiçek et al., 2016). Milletari
et al. (2016) used 3D FCN and dice loss to construct a v-net network
for MR image segmentation, and then Dolz et al. (2018) used it to
segment subcutaneous brain tissue. Compared with 2D networks, 3D

networks suffer from high computational costs and GPU memory
consumption. The high memory consumption limits the depth of
the network as well as the filter’s field of view. To take advantage of
3D information and reduce the negative impact of 3D networks, Li
et al. (2018) used a 2D H-DenseUNet to extract the features within
the slices and a 3D H-DenseUNet to extract the features between
the slices. Furthermore, the work formulated the learning process
in an end-to-end manner. The intra-slice representations and inter-
slice features were fused by the HFF layer, which improved the
segmentation effect of the liver and tumor. In human brain data,
hundreds of training samples and validation samples are used to
ensure accuracy and relieve the overfitting of the model. However,
compared with the human brain, the small sample characteristics of
macaques limit the training of an additional 3D network. On the
other hand, Prasoon et al. (2013) sliced on the X, Y, and Z axes
and input the slices of the different axes into three 2D FCNs to
compensate for the absence of the 3D features in training. Similarly,
to reduce training time, Chen et al. (2021) proposed a triple U-Net
composed of three U-Net networks, and the input of three networks is
one frame slice image (each frame of slice data contains three adjacent
slices). Two auxiliary U-Net networks supplemented and constrained
the training of the main U-Net network, which significantly improved
the accuracy of whole-brain segmentation. These studies have shown
that the applications of intra-slice representations and inter-slice
features are more conducive to improving accuracy in medical image
segmentation. However, using multiple networks for feature fusion
will increase the complexity and computational cost of the network.
Therefore, a separate network to fuse 2D and 3D information to
reduce the amount of calculation and simplify the training process
for macaque brain extraction requires further research.

The present work attempts to overcome the above problems to
develop a general brain extraction model based on deep learning
for non-human primates. To achieve higher accuracy, the model
can efficiently extract the intra-slice representations and inter-slice
features from insufficient macaque data. It can also have better
generalization and stability on untrained data sites. The main
contributions of our research are threefold. First, to overcome the
challenge of small sample sizes, the present work increases the
amount of data by using slices in three directions of volume data.
Second, our research uses 3D convolutions to extract the brain
directly from the “Data Block”, which effectively represents more
spatial features and relieves the underfitting of 2D convolutions
to spatial features. Compared with directly loading 3D volume
data, this method reduces the amount of computation. Finally, this
research proposes an end-to-end hybrid convolutional encoding
and decoding structure model (HC-Net) to balance the calculation
and performance. The model represents the spatial information of
existing data better and achieves higher extraction accuracy. Besides,
the model reduces the learning burdens and the training complexity.

2. Materials and methods

2.1. Dataset

The MRI macaque data are publicly available from the recent
NHP data-sharing consortium - the non-human PRIMate Data
Exchange (PRIME-DE) (Milham et al., 2018). This research selected
one anatomical T1w image per macaque in our study. Because the
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FIGURE 1

Examples of brain magnetic resonance imaging (MRI) images showing the tissue structure different between human and macaque brain. The red regions
denote the brain. Compared with human brain, the macaque has narrow and prominent frontal lobe and eyes surrounded by adipose tissue.

number of samples of individual data site is too small, we used the
joint data of multiple sites [Newcastle University Medical School
(Newcastle), N = 5, the University of California, Davis (ucdavis),
N = 5, Mount Sinai School of Medicine (Phillips) [Mountsinai-
P], N = 5, Stem Cell and Brain Research Institute (sbri), N = 5,
University of Minnesota (UMN), N = 2, Institute of Neuroscience
(Ion), N = 5, East China Normal University Chen (ecnu-chen),
N = 5] for training and testing (Macaque dataset I, N = 32). The
data of different field strengths [Lyon Neuroscience Research Center
(Lyon), 1.5 T, N = 4; Mount Sinai School of Medicine Siemens
scanner (mountsinai-S), 3 T, N=5; Newcastle University Medical
School (Newcastle), 4.7 T, N = 5; University of Minnesota (UMN),
7 T, N = 2; University of Western Ontario (UWO), 7 T, N = 3] were
used as an additional dataset (Macaque dataset II, N = 19) to further
verify the performance of the model. Detailed data information about
the data alliance can be found on the website https://fcon_1000.
projects.nitrc.org/indi/indiPRIME.html. Each selected T1w image
was segmented manually to make a ground truth mask.

Human T1w MRI images and macaque B0 images were used
to extend the proposed model to facilitate the brain extraction of
different species and modes. The human data used in the present
study are publicly available from the Human Connectome Project
(HCP) (Van Essen et al., 2012), WU-Minn 1,200 subjects data
release. In this study, the training dataset included 50 brain T1w
subjects, and the test dataset included 17 subjects. The ground truth
masks were created by their corresponding brain tissue files. The
macaque B0 images were obtained from diffusion-weighted imaging
(DWI) data in the UWM dataset of PRIME-DE. To improve the
image quality, head motion eddy current correction and gradient
direction correction were carried out for the original DWI images.
In particular, to reduce the workload of manual brain extraction, this
work applied the existing T1w image mask registration to B0 images
to eliminate most non-brain tissue. At this time, the B0 images still
contain non-brain tissues such as eyeballs and fat. The ground truth
masks were manually made for the B0 images. The samples of 25
macaques were used for training, and 10 were tested.

2.2. “Data Block” pre-processing

The macaque MRI image is a three-dimensional volume, and
there is context information between consecutive slices. For training,
the slices will be independently input into the model, which will

destroy the dependency between slices. Therefore, this research took
three consecutive slices as a “Data Block” to maintain this relationship
between slices and smooth the contour of brain tissue by constraints
from adjacent slices. Figure 2 shows the manufacturing process of
the “Data Block”. We continuously read three adjacent 2D slices
s− 1, s, s+ 1 (s ∈ [2, N − 1], where N is the number of sample slices)
as a “Data Block” in gray mode. This research took the middle slice
label of this block as the label. The reading step was set to 1, that
was, the ith block was (s− 1, s, s+ 1), and the block (i+ 1)th was
(s, s+ 1, s+ 2).

To increase the training data, each sample was sliced along
the coronal plane, sagittal plane, and horizontal plane. The final
dataset was obtained by splicing slices of three planes. The initial
T1w data are anisotropic. To merge the probability maps of the
three axes, we resampled the image to a size of 256× 256 by using
the double trilinear interpolation method. Furthermore, to reduce
the heterogeneity between the data of different sites and improve
the quality of images, the intensity of the data was standardized
so that the intensity values were between 0 and 1. T1w MRI
images of humans and B0 images of macaques were also pre-
processed in this way.

2.3. HC-Net network

Although 2D convolutions have achieved great success in many
segmentation tasks, they are incapable of exploring inter-slice
information. To this end, this study first uses two 3D convolution
blocks to obtain more context information of slices from the original
volumes. Then, to reduce the amount of computation and increase
the receptive field of the network, the proposed model employs
the encoding and decoding structure to construct the HC-Net
network, which can be trained with a small dataset. Finally, the
skip connection retains the details after each encoding to reduce
the loss of bottom features and integrate multiscale information to
improve performance.

The network structure of HC-Net is shown in Figure 3. It
includes the encoding path and decoding path. The encoding path
comprises five encoders, and each encoder is composed of two
convolution layers. The first and second encoders are 3D convolution
modules connected with a normalization operation and a ReLU
activation function after convolution. With the 3D convolution
kernels, these encoders can better extract spatial information from

Frontiers in Computational Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2023.1113381
https://fcon_1000.projects.nitrc.org/indi/indiPRIME.html
https://fcon_1000.projects.nitrc.org/indi/indiPRIME.html
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-17-1113381 February 7, 2023 Time: 8:29 # 4

Fei et al. 10.3389/fncom.2023.1113381

FIGURE 2

The manufacturing process of the “Data Block”.

FIGURE 3

Architecture of the hybrid convolutional neural network (HC-Net). Given the input “Data Block”, two 3D encoders are first used to obtain more context
information of slices. Then, 2D encoders are utilized to reduce the amount of computation. Finally, the encoding and decoding structure are used to
increase the receptive field of the network and to restore the size of the original image.

the original volumes. The third to fifth encoders are 2D convolution
modules. They can significantly reduce the number of parameters and
complexity of model training. To achieve this, the To_4D operation
is used to convert tensors of different dimensions. A max-pooling
operation is used after each encoder to reduce the image resolution in
the encoding path. In the decoding path, there are four decoders. The
first two decoders are 2D modules, and the last two decoders are 3D
modules. Each decoder is connected with a permutation convolution
and a ReLU activation function for upsampling. After upsampling,
each decoder concatenates the feature maps of the corresponding size
in the encoding path by the skip connection. After upsampling three
times, through the To_5D operation, the feature maps are converted
into 5-dimensional tensors and concatenated with the corresponding
feature maps in the encoding path. Then, the hybrid feature maps are
input into 3D decoders. After the last decoder, this study employs a
1× 1× 1 convolution layer to map the final feature maps to a two-
class map. Finally, a softmax layer is used to obtain the probability
map for the brain tissue.

We denote the input training samples as IN ∈ RN×C×D×H×W

with ground truth labels G ∈ RN×C×D×H×W , where N denotes the
batch size of the input training samples, C denotes the channel, and
D×H×W denotes the size of the samples. G(x, y, z) = 0 or 1 indicates
that the pixel (x, y, z) is tagged with the class brain (1) or non-brain
(0). Let IN3d ∈ RN×1×3×256×256 denote the input of the first encoder
and F3d denote some sequence operations of 3D convolution, batch
normalization, and the activation function. The learning process of
3D convolutions in the encoding path can be described as follows:

Xe2 = F3d(IN3d),Xe2 ∈ RN×32×3×64×64 (1)

where Xe2 represents the features after the second encoder. The
To_4D operation converts the 5-dimensional tensors into 4-
dimensional tensors by stacking the batch and depth dimensions
and inputting them into the 2D encoder. First, this research records
the depth dimension and then swaps the channel dimension and
depth dimension. Second, the data are split along the batch size
dimension and then spliced along the depth dimension. Finally, the
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FIGURE 4

Details of the To_4D operation and To_5D operation.

tensor is compressed into a 4-dimensional tensor. The details of the
To_4D operation are shown in Figure 4. The To_4D operation is as
follows:

X
′

e2 = To_4D(Xe2),X
′

e2 ∈ R3N×32×64×64 (2)

where X
′

e2 denotes the input data of the third encoder.
F2d denotes some sequence operations of the 2D convolution,

batch normalization, and activation functions, and the training
processing of the 2D encoder and decoder can be denoted as:

Xd3 = F2d(X
′

e2),Xd3 ∈ R3N×32×128×128 (3)

where Xd3 denotes the feature maps from the third upsampling layer.
The 4D tensor is converted into the 5D tensor by splitting the batch
size dimension to restore the depth dimension,

X
′

d3 = To_5D(Xd3, D),X
′

d3 ∈ RN×32×3×128×128 (4)

where D denotes the depth dimension from the To_4D operation and
X
′

d3 denotes the 5D tensor feature volume from the third upsampling
layer. The details of the To_5D operation are shown in Figure 4.
Especially after 2D convolution in the decoding path, the 3D decoder
is trained based not only on the features detected in the 2D decoder
but also on the 3D context features from the second encoder. The
hybrid features from the 2D and 3D convolutions are jointly learned
after the third upsampling layer in the decoding path. The hybrid
operation can be described as follows:

Xh = X
′

d3 + Xe2’,Xh ∈ RN×64×3×128×128, Xe2′ ∈ RN×32×3×128×128

(5)
Where Xh denotes the hybrid features and Xe2′ denotes the output of
the second encoder without max-pooling. More details of the HC-Net
network are given in Table 1.

2.4. Loss function and evaluation
indicators

The cross-entropy loss function was employed as the loss
function in this study to train the networks, which can be described
as:

Loss(y, ŷ) =
1
N

∑
i

−[yc
i log(p1

i )+ (1− yc
i ) log(1− p1

i )] (6)

Where yc
i indicates the ground truth label for voxel i (brain or non-

brain) and p1
i denotes the probability of voxel i belonging to the brain.

In this paper, true position (TP), true negative (TN), false positive
(FP), and false negative (FN) were used to mark the comparison
between the extraction result and ground truth. The Dice coefficient
(Dice), sensitivity (Sen), specificity (Spe), and volumetric overlap
error (VOE) are mainly used to evaluate the model’s performance
in medical image segmentation. These evaluation indicators can be
formulated as follows:

Dice =
2TP

2TP + FP + FN
(7)

Sensitivity(Sen) =
TP

TP + FN
(8)

Specificity(Spe) =
TN

FP + TN
(9)

VOE = 1−
TP

FN + TP + FP
(10)

The Dice coefficient is used to calculate the similarity between two
samples whose value ranges between 0 and 1, and a higher value
indicates similarity. This measurement function represents the ratio
of the intersection area of two samples to the total area. Sensitivity is
an index to measure the ability of the extraction algorithm to correctly
identify the brain, which indicates the proportion of pixels correctly
judged as brain tissue. Specificity is an index to measure the ability of
the brain extraction algorithm to correctly identify non-brain tissue,
indicating the proportion of pixels that are non-brain tissue that
is correctly judged as non-brain tissue. The lower the volumetric
overlap error is, the higher the sample similarity.

3. Experiments and results

3.1. Implementation details

The HC-Net model was implemented with the PyTorch
framework and ran on an NVIDIA RTX 3090 GPU. It is trained
end-to-end, which means that the “Data Block” is provided as
input without any other process or additional network. The initial
minimum learning rate was 1× 10−4, the training batch size was
20, and the training epoch was 50. To train this network, this
research employed the cross-entropy loss function to calculate the
loss between the ground-truth labels and the predicted labels of
the “Data Block”. The training time of the HC-Net model was
approximately 4 h. For a fair comparison, state-of-the-art methods
such as SegNet (Badrinarayanan et al., 2017), 2D U-Net (Ronneberger
et al., 2015), 3D U-Net (Çiçek et al., 2016), U2-Net (Qin et al., 2020),
and UNet 3+ (Huang et al., 2020) were trained with the same training
data and tested on the same test data in all experiments.

3.2. Comparison with other methods

In this section, we conduct comprehensive experiments to
analyze the effectiveness of our proposed method on dataset I.

Figure 5 shows the training losses of 2D U-Net, 3D U-Net, and
HC-Net. The loss converged faster for the HC-Net model than for
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TABLE 1 Architectures of the proposed HC-Net. The feature size column indicates the output size of the current stage. The “(3D, 3 × 3 × 3, 1, 1) × 2”
corresponds to the 3D convolution with two convolution kernels of 3 × 3 × 3, stride 1 and padding 1. “MaxPool3d, 1 × 2 × 2, 1 × 2 × 2 ” corresponds to
max-pooling with a sliding window size of 1 × 2 × 2, stride 1 × 2 × 2. “2DCT, 4 × 4, 1, 1” corresponds to 2D transpose convolution with a kernel of 4 × 4,
stride 1, and padding 1.

HC-Net Feature size HC-Net Feature size

Input − 3× 256× 256 Encode 1 (2D, 3× 3, 1, 1)× 2 128× 32× 32

Encoder1 (3D, 3× 3× 3, 1, 1)× 2 16× 3× 256× 256 Upconv 2DCT, 4× 4, 2, 1 64× 64× 64

MaxPool3d 1× 2× 2, 1× 2× 2 16× 3× 128× 128 Concatenate − 128× 64× 64

Encoder2 (3D, 3× 3× 3, 1, 1)× 2 32× 3× 128× 128 Decoder 2 (2D, 3× 3, 1, 1)× 2 64× 64× 64

MaxPool3d 1× 2× 2, 1× 2× 2 32× 3× 64× 64 Upconv 2DCT, 4× 4, 2, 1 32× 128× 128

To_4D − 3× 32× 64× 64 To_5D − 32× 3× 128× 128

Encoder3 (2D, 3× 3, 1, 1)× 2 64× 64× 64 Concatenate − 64× 3× 128× 128

MaxPool2d 2× 2 64× 32× 32 Decoder3 (3D, 3× 3× 3, 1, 1)× 2 32× 3× 128× 128

Encoder 4 (2D, 3× 3, 1, 1)× 2 128× 32× 32 Upconv 3DCT, 3× 4× 4, 2, 1 16× 3× 128× 128

MaxPool2d 2× 2 128× 16× 16 Concatenate − 32× 3× 256× 256

Encoder 5 (2D, 3× 3, 1, 1)× 2 256× 16× 16 Decoder 4 (3D, 3× 3×, 1, 1)× 2
(3D, 3× 3× 3, 1, 1)× 2

16× 3× 256× 256

Upconv 2DCT, 4× 4, 2, 1 128× 32× 32 Out layer 3D, 3× 3× 3, 1, 1 2× 3× 256× 256

Concatenate − 256× 32× 32 − − −

FIGURE 5

Loss in the training process of hybrid convolutional neural network
(HC-Net), 2D U-Net, and 3D U-Net.

the 2D U-Net and 3D U-Net models. In addition, the loss of the HC-
Net model was the smallest. Figure 6 shows that the Dice coefficients
are more stable for the HC-Net model in the validation dataset. As
shown in Figures 5, 6, the performance of the 3D U-Net model
was always lower than that of the 2D U-Net model under the same
epoch (higher loss and lower Dice coefficients across 50 epochs). This
highlighted the effectiveness and efficiency of 2D convolutions. This
was because the 3D convolutions consume a large amount of GPU
memory, so the network converged slowly. After the 40th epoch,
the Dice coefficients of the validation set in the 3D U-Net model
were relatively stable, but the values were lower than 0.9, and the
expressiveness was weak. The HC-Net model showed a higher Dice
coefficient, and the performance of the model tended to be stable.
The result meant our model achieved better performance in macaque
brain extraction.

The performances of different brain extraction methods were
evaluated by using T1w images of 12 samples. These samples were not
the participants for training and were located in different sites from

FIGURE 6

Dice coefficients on the validation set.

the training sets. The extraction results from all test volumes were
obtained and compared with the ground truth labels. Table 2 shows
the average of the indicators. The HC-Net model outperformed the
state-of-the-art methods by a margin on Dice. All the evaluation
indicators of the HC-Net network were higher than those of FSL and
AFNI. Compared with the Dice coefficient indicator, the proposed
method was approximately 0.3% ∼10.48% higher than SegNet,
2D U-Net, 3D U-Net, U2-Net, and UNet3+. Experimental results
confirmed that our model can robustly handle each example by
incorporating the advantages of 3D convolution and 2D convolution
for learning feature representations on intra-slice and inter-slice
features.

Table 3 shows the parameters of each model and the average
inference time per macaque brain for each network. Compared with
3D U-Net, SegNet, U2-Net, and UNet3+, the proposed model had
fewer parameters and less average inference time. Although the next
best performance in Table 2 was the U2-Net model, it had at least 8.13
times more parameters and requires 1.32 more inference time than
the HC-Net network. With fewer parameters, the HC-Net model had
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TABLE 2 Evaluation results of different methods.

Method Dice Sen Spe VOE

FSL 0.7832 0.9372 0.9678 0.3251

AFNI 0.8471 0.8180 0.9928 0.2241

SegNet 0.9427 0.9652 0.9940 0.1079

2D U-Net 0.9454 0.9775 0.9929 0.1030

3D U-Net 0.8498 0.8234 0.9891 0.2197

U2-Net 0.9516 0.9787 0.9939 0.1068

UNet3+ 0.9430 0.9775 0.9932 0.1121

HC-Net 0.9546 0.9464 0.9973 0.0860

TABLE 3 Comparison of weights and testing times of different methods on
the test dataset.

Model Weights (M) Inference time (minute)

SegNet 24.9444 1.1573

2D U-Net 2.4666 0.1120

3D U-Net 8.0826 0.5436

U2-Net 44.0237 0.3020

UNet 3+ 26.9747 6.6886

HC-Net 5.4117 0.2273

an advantage in computational efficiency with the added advantage
of being trainable with a smaller dataset without compromising
performance. The parameters and inference time were not inferior to
those of the 2D U-Net model. This result was reasonable because of
the 3D convolution in the HC-Net network. However, the accuracy
of HC-Net was higher than that of the 2D U-Net model. It also
confirmed that adding context information to our HC-Net model was
effective for the extraction of macaque brains.

The box plot results shown in Figure 7 show that the median of
HC-Net was the highest. There was no prominent oscillation of the
Dice coefficient on the test dataset, which showed good generalization
and stability. Furthermore, Figure 8 shows the sample results of the
brain extraction obtained by the present study and other methods
on dataset I. The blue areas represent the true positive, the red areas
mean the false positive, and the green areas mean the false negative.
Compared with FSL, AFNI performed better by using the 3dskullstrip
(-monkey) command dedicated to brain extraction. AFNI tended
to be conservative in brain extraction and showed lower sensitivity,
while FSL had low specificity and retains too many non-brain voxels.
The 3D U-Net recognized some skulls as the brain. The possible
reason was that for low-quality and small sample macaque data,
3D convolution also introduced more noise when retaining more
information, resulting in over segmentation. The HC-Net generated a
relatively complete mask without extending into the skull and missing
parts of the brain tissue.

3.3. Evaluating the “Data Block”

This section used different data loading methods to verify the
effectiveness of the “Data Block” used in this paper by dataset I.
Experiments were carried out on the HC-Net model and 2D U-Net

FIGURE 7

Box diagram of different methods.

FIGURE 8

Comparison of segmentation results of different methods. The blue
areas mean true positive (TP); the red areas mean false positive (FP);
the green areas mean false negative (FN); and the rest areas mean true
negative (TN).

model with similar parameters. The same hyper parameters were used
in all experiments (learning rate, loss function, etc.). This research
used three pre-processing methods to process the data. The first
method was to slice along the Z-axis of volume data and input one
slice (1A1S) to the 2D U-Net model. The second method was to slice
along the Z-axis and input three adjacent slices into the HC-Net and
2D U-Net models (1A3S). To increase the dataset, the setting step
was also set to 1, that is, (s− 1, s, s+ 1, (s, s+ 1, s+ 2), where “s”
represents the slice number. The third method (3A3S) was the “Data
Block” introduced in part 2, which adds slices of the X and Y axes
based on the second method.

Table 4 shows the experimental results. By inputting three axes
into the network, the amount of data was three times higher than that
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TABLE 4 The results of different pre-processing methods.

Model Data Dice Sen Spe VOE

2D U-Net 1A1S 0.7612 0.8335 0.9599 0.3494

2D U-Net 1A3S 0.8021 0.8555 0.9564 0.3135

HC-Net 1A3S 0.9175 0.9144 0.9911 0.1493

2D U-Net 3A3S 0.9454 0.9775 0.9929 0.1030

HC-Net 3A3S 0.9546 0.9464 0.9973 0.0860

of a single axis. Compared with the first method, the second method
increased the Dice coefficient in the 2D U-Net model by 4.09%.
Compared with 2D U-Net, using the second method to input adjacent
slices into the HC-Net model dramatically improved the extraction
results of the test data, in which the Dice coefficient, sensitivity, and
specificity were increased by 11.54, 5.98, and 3.47%, respectively, and
the VOE was reduced by 16.42%. The results showed that the HC-
Net model can extract more features from limited data and improve
the extraction effect through the second method. It also proved that
the data pre-processing method of inputting three-axis data into the
HC-Net model and 2D U-Net model can improve the accuracy of
brain extraction with the increase in the training data. At the same
time, HC-Net had higher sensitivity to data with spatial features and
can fully extract the corresponding features. Therefore, the data pre-
processing method of “Data Block” was appropriate for the proposed
model and further improved the performance.

3.4. Evaluating the performance of the
model under data of different field
strengths

Significant differences in the brain signals captured under
different field strengths (FS) are significant. Figure 9 shows the
macaque data under 1.5 T, 3 T, 4.7 T, 7 T, and 9.4 T field strengths.
The stronger the field strength is, the higher the signal-to-noise ratio.
This means that the device can image at a higher or exact resolution,
and the scanning speed is fast. The ultrahigh-field power will also
increase the heterogeneity of B0 and B1, which will strongly influence
the tissue contrast in the structure. To verify the generalization of the
HC-Net model, macaque dataset II of different field strengths was
used as the test dataset to further verify the model’s performance.
Except for Newcastle (4.7 T), which had other data to participate in

the training, other sites’ data had not participated in the training. The
results of the 4.7 T data were for reference only.

Table 5 shows the brain extraction results on the HC-Net
and 2D U-Net models. The Dice coefficient of the HC-Net model
was approximately 0.89∼1.19% higher than that of the 2D U-Net.
Importantly, our proposed model was better than the 2D U-Net
model under different field intensities and had better generalization
on data with different tissue contrasts.

3.5. Evaluating the performance of the
model on different datasets

Here, the human T1w MRI image dataset and the macaque B0
dataset were used to evaluate the utility of our proposed model.
Table 6 shows the Dice coefficient, sensitivity, specificity, and VOE
of the HC-Net model. The Dice coefficient, sensitivity, and specificity
exceeded 98, 98, and 99%, respectively, in the two datasets, and the
VOE was lower than 4%.

The proposed model had good stability in two datasets.
Compared with macaques, the human cerebral cortex forms
more folds on the surface of the brain. As such, folded and
meandering brain morphology is one of the most difficult aspects
of human brain extraction. Our HC-Net model correctly identified
the boundary of the human brain, retained more details of
the gyrus and sulcus, and obtained a more complete brain, as
shown in Figure 10. AFNI and FSL smoothed the gyrus and
sulcus excessively, resulting in loss of brain edge details. FSL
failed when applied to the B0 image of macaques with eyes, as
shown in Figure 11. It did not successfully separate the eyes.
Furthermore, when no significant difference was present between
the intensities of the brain and non-brain edges, it missed brain
tissue. Compared with FSL, AFNI 3dSkullStrip with parameters
customized for macaques showed better performance. However,
AFNI 3dSkullStrip missed identifying the brain tissue around the
eyes. Figure 11 shows two examples of the HC-Net model, and they
performed outstandingly, showing little difference from ground truth
masks.

4. Discussion

The present work demonstrated the feasibility of developing a
brain extraction model of generalization and less training complexity

FIGURE 9

T1w images of macaques under different field strengths.
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TABLE 5 Results of different field strengths using the hybrid convolutional
neural network (HC-Net) and 2D U-Net models.

Model FS(T) Dice Sen Spe VOE

2D U-Net 1.5 0.9674 0.9970 0.9973 0.0629

HC-Net 1.5 0.9793 0.9788 0.9991 0.0405

2D U-Net 3 0.9058 0.9558 0.9933 0.1721

HC-Net 3 0.9125 0.8903 0.9975 0.1595

2D U-Net 4.7 0.9717 0.9813 0.9939 0.0548

HC-Net 4.7 0.9690 0.9488 0.9985 0.0179

2D U-Net 7 0.9415 0.9731 0.9920 0.1104

HC-Net 7 0.9504 0.9324 0.9976 0.0941

TABLE 6 The dice coefficient, sensitivity, specificity, and VOE of the hybrid
convolutional neural network (HC-Net) model on the human
dataset and B0 dataset.

Dataset Dice Sen Spe VOE

humans 0.9830 0.9868 0.9950 0.0332

B0 (macaques) 0.9841 0.9876 0.9989 0.0310

for macaques by concatenating 3D and 2D convolutions. Central
to the success of our effort was that this study fully extracted the
spatial information between volume data by using 3D convolution
and reduced the amount of calculation and parameters by 2D
convolution. Our model overcame the problems of overfitting 3D
convolution on small samples and underfitting 2D convolution on
three-dimensional data. Compared with other cascade modes, our
method reduced the complexity of training. Our work employed
heterogeneous, multisite, different modes and different species of
data resources to evaluate the effectiveness of the model. The results
showed that the proposed model identifies the brains of macaques
more accurately than the traditional methods. Furthermore, it had
smaller parameters and better generalization than the large-scale
model in small datasets. It was worth noting that our model also had
excellent advantages in inference time.

Current works (Wang et al., 2021, 2022) show that macaque
data samples for deep learning may not need to be as many as

FIGURE 10

The results of human brain extraction using masks obtained by the
ground truth, hybrid convolutional neural network (HC-Net model),
AFNI, and FSL.

human data. The reason may be that the folding surface of the
macaque brain is far less complex than that of humans (Hopkins
et al., 2014), and the surface edge of macaque brain tissue is
relatively smooth (Hopkins, 2018). At the same time, Croxson et al.
(2018) showed that the similarity between individual macaques
is higher than that between human samples, which also makes
it possible for deep learning to train on small sample macaque
data.

An essential discovery of the current work was the order of
2D convolution and 3D convolution. The research has proven the
effectiveness of the serial convolution of 3D and then 2D for brain
extraction. This study exchanged 2D and 3D convolution positions to
build a new network. In the encoder stage, the network first used two
2D convolution modules and then three 3D convolution modules,
and in the decoder stage, it first used two 3D convolution modules
and then two 2D convolution modules. This new network reduced
the training time and reasoning time because 3D convolution
processing of large images required more computing power and time.
However, the network was deficient in feature extraction after the
exchange, which was even worse than that of the 2D U-Net model.
The first reason may be that 3D convolution is more challenging

FIGURE 11

The results of macaques brain extraction using masks obtained by the ground truth, HC-Net model, AFNI, and FSL.
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to train in the middle of the model. The second reason may be
that the spatial information that 3D convolution can learn from
the feature map is limited when 3D convolution is trained after 2D
convolution. In the HC-Net model, 3D convolution first extracts the
spatial information of the original image. This spatial information
is not only input into the 2D encoders but also fused with the
information after decoding by skip connection. This method makes
full use of spatial information.

It is worth noting that the HC-Net we proposed is not a complete
3D network, although the 3D network usually tends to have higher
accuracy on large sample data. HC-Net has a smaller network scale,
lower memory cost, and less computing time. In addition, HC-Net
is easier to transplant on platforms with limited memory. The study
used the data of three axes to increase the sample size and smooth
the contour of the brain by constraints from adjacent slices. The
experiment shows that this data enhancement method helps improve
the model’s accuracy. However, there are differences between the data
on the three axes of volume data. At the same time, to synthesize the
final probability map, our study needs to resample the data, which
loses some information. The introduction of data differences and the
loss of information will affect the segmentation results to a certain
extent. Future work may consider reducing the loss of information.

5. Conclusion

This research proposed an end-to-end trainable hybrid
convolutional neural network, HC-Net, for brain extraction from
MRI brain volumes of non-human primates. This study was a new
way to extract inter-slice and intra-slice information from volume
data by concatenating 2D and 3D convolutions. It reduced the
calculation consumption and promotes accuracy by combining
three consecutive slices from three axes for 3D convolutions.
This architecture solved the problem that 2D convolution ignores
the context information of volume data and the overfitting of
3D convolutions to small samples. Our model achieved excellent
performance on limited macaque data samples. Experiments on
human data and macaque B0 data also proved the effectiveness of
our proposed HC-Net model.
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