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Abstract

Full-waveform inversion (FWI) is a non-destructive health monitoring technique that can be used
to identify and quantify the embedded anomalies. The forward modeling of the FWI consists of
a simulation of elastic wave equation to generate synthetic data. Thus the accuracy of the FWI
method highly depends on the simulation method used in the forward modeling. Simulation of a
3-D seismic survey with small-scale heterogeneities is impossible with the classic finite difference
approach even on modern super computers. In this work, we adopted a mesh refinement approach
for simulation of the wave equation in the presence of small-scale heterogeneities. This approach
uses cubic smoothing spline interpolation for spatial mesh refinement step in solving the wave
equation. The simulation results for the 2-D elastic wave equation are presented and compared
with the classic finite difference approach.
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1 Introduction

Full-waveform inversion (FWI) approach [1, 2, 3, 4, 5, 6] is a non-destructive testing method that
can be used to identify and quantify embedded sinkholes. FWI can determine the properties of
the subsurface from seismic data (wavefield data) obtained at receivers, which are placed on the
subsurface. This method offers the potential to produce higher resolution imaging of the subsurface
by extracting information contained in the complete waveforms [2].

The accuracy of the results and the efficacy of the FWI method depend on the numerical approaches
that were used in simulation of seismic wave propagation. In the FWI method, the forward modeling
consists of generating synthetic wavefields. In Ref. [2] the synthetic wavefield is generated by solving
2-D elastic wave equations using a classic velocity-stress staggered-grid finite difference scheme
[7, 8, 9, 10] with a uniform grid. Simulation of elastic wave equations with small-scale heterogeneities
can be done with the classic finite difference approach, at small step sizes, with uniform grid.
However, simulation of a 3-D seismic survey with small-scale heterogeneities is impossible with the
classic finite difference approach, even on modern supercomputers, due to large number of source
gatherings and grid points [11]. Therefore, a mesh refinement approach (or multi-grid method) that
can be applied to different regions of domain with different step sizes is needed.

Ref. [11] introduced an approach for numerical simulation of wave propagation in media with sub-
seismic-scale heterogeneities such as cavities and fractures. Their method is based on local mesh
refinement with respect to time and space. The main features of the approach are the use of
temporal and spatial refinement on two different surfaces, use of the embedded-stencil technique of
grid step with respect to time, and use of the fast Fourier based interpolation to couple variables
for spatial mesh refinement.

We adapted the approach introduced in Ref. [11] with some modifications. For spatial mesh
refinement, Ref. [11] used the fast Fourier based interpolation. However, in this work, we modify
the technique with cubic smoothing spline interpolation [12, 13, 14, 15] rather than the fast Fourier
interpolation for spatial mesh refinement. By using cubic smoothing spline interpolation, we can
achieve better results for wavefield data for the fine grid zone. For the comparison, we simulate a
2-D elastic wave equation with both the modified technique and the technique in Ref. [11]. The
results of both methods are compared with a uniform mesh method. The cubic smoothing spline
interpolation method show a significant improvement of results as compared to the fast Fourier
interpolation method.

The rest of the chapter is arranged as follows. Approximated model of 2-D wave equations using
classic finite difference approximation with a uniform grid is discussed in Section 2. Section 3
presents the modified local mesh refinement method with cubic spline interpolation. The results
for 2-D wave propagation are presented in Section 4.

2 Simulation of 2-D Elastic Wave Equations using a
Uniform Mesh

2.1 2-D wave equation

The FWI technique consists of two stages. The first stage induces forward modeling to generate
synthetic wave-fields, and the second stage includes the model updating by considering when the
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residual between predicted and measured surface velocities are negligible. Forward modeling of
FWI develops the solutions of the 2-D elastic wave equations. We simulate wave propagation by
solving 2-D elastic wave equations [16, 17, 18, 19] numerically using Cartesian coordinates.

Let σxx, σzz, and σxz be the components of stress tensor and u, v be the particle velocity components.
The spatial directions in the 2D plane are x and z.

Then the equations governing particle velocity [2] in 2-D are

∂u

∂t
=

1

ρ

(
∂σxx

∂x
+

∂σxz

∂z

)
= f1 (ρ) (2.1)

∂v

∂t
=

1

ρ

(
∂σxz

∂x
+

∂σzz

∂z

)
= f2 (ρ) (2.2)

and the equations governing stress-strain tensor [2] are

∂σxx

∂t
= (λ+ 2µ)

∂u

∂x
+ λ

∂v

∂z
= f3 (λ, µ) (2.3)

∂σzz

∂t
= λ

∂u

∂x
+ (λ+ 2µ)

∂v

∂z
= f4 (λ, µ) (2.4)

∂σxz

∂t
= µ

(
∂v

∂x
+

∂u

∂z

)
= f5 (µ) (2.5)

Here ρ (x, z) is the mass density, µ (x, z), and λ (x, z) are the Lame’s coefficients of the material.
The equations 2.1-2.5 can be written as

F (ρ (x, z) , µ (x, z) , λ (x, z)) = d, (2.6)

where d = [f1 (ρ) , f2 (ρ) , f3 (λ, µ) , f4 (λ, µ) , f5 (µ)]
T . To solve the above wave equations numerically,

specific boundary conditions are needed. We impose three boundary conditions: the free surface
boundary condition on the top of the domain, the absorbing boundary condition on the right side
of the domain and bottom of the domain, and the symmetric boundary condition on the left-hand
side of the domain.

2.1.1 Free surface boundary conditions

The measurements of the wavefield are generally collected along the earth’s subsurface. Therefore,
we impose the free surface boundary condition on the top of the domain by setting the vertical
stress components are as zero. {

σxz = 0

σzz = 0.
(2.7)

2.1.2 Absorbing boundary conditions

Numerical methods are solved for a region of space by imposing artificial boundaries. Therefore, to
avoid the reflections from the boundaries, absorbing boundary conditions should be applied on the
right-hand side and the bottom of the domain. Thus the absorbing condition at the bottom of the
domain is {

∂u
∂t

+ Vs
∂u
∂z

= 0
∂v
∂t

+ Vp
∂v
∂z

= 0
(2.8)

and at the right-hand side of the domain{
∂u
∂t

+ Vs
∂u
∂x

= 0
∂v
∂t

+ Vp
∂v
∂x

= 0,
(2.9)

where Vs and Vp are sheer and pressure wave velocities, respectively.
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2.1.3 Symmetric condition

We imposed a symmetric condition along the load line. Thus at the left-hand side of the domain,
we set {

σxz = 0

u = 0.
(2.10)

To solve these equations, one can use numerical approaches such as finite difference method, finite
element method, and Fourier/spectral method. Ref. [2] used a classic velocity-stress staggered-
grid finite-difference solution of the 2-D elastic wave equations in the time domain (Virieux, 1986)
with the absorbing boundary conditions (Clayton and Engquist, 1977). In that approach, a direct
discretization of the equations 2.1-2.5, both in time and in space is considered.

2.2 A classic finite difference scheme

To solve Equations 2.1-2.5 with the above boundary conditions 2.7 - 2.10, the derivatives are
discretized using central finite differences. For a field variable f , the temporal finite difference
discretization is

Dt [f ]
k
i,j =

f
k+1/2
i,j − f

k−1/2
i,j

δt
=

∂f

∂t
|ki,j +O(δ∈) (2.11)

and the spatial discretizations we choose are,

Dx [f ]
k
i,j =

fk
i+1/2,j − fk

i−1/2,j

h1
=

∂f

∂x
|ki,j +O(⟨∈∞) (2.12)

Dz [f ]
k
i,j =

fk
i,j+1/2 − fk

i,j−1/2

h3
=

∂f

∂z
|ki,j +O(⟨∈∋), (2.13)

where O (·) is the local truncation error. Here i, j, and k represent the indices used in the
discretization for the directions x, y and time. The domain is discretized in the x, y and time
directions, as shown in Fig. 1. Here, h1, h3, and δt are the grid steps for x, z and time directions,
respectively. The function f can take u, v, σxx, σzz, σxz. For example, the derivative terms ∂u

∂t
,

∂σxx
∂x

, and ∂σxz
∂z

in Eq. 2.1 can be approximated as

∂u

∂t
=

u
k+1/2
i,j − u

k−1/2
i,j

2δt
(2.14)

∂σxx

∂x
=

σxx
k
i+1/2,j − σxx

k
i−1/2,j

2h1
(2.15)

∂σxz

∂z
=

σxz
k
i,j+1/2 − σxz

k
i,j−1/2

2h3
(2.16)

Then, Eq. 2.1 can be approximated using Eqs. 2.14, 2.15, and 2.16 as,

u
k+1/2
i,j − u

k−1/2
i,j

2δt
=

1

ρ

((
σxx

k
i+1/2,j − σxx

k
i−1/2,j

2h1

)
+

(
σxz

k
i,j+1/2 − σxz

k
i,j−1/2

2h3

))
(2.17)

Equations 2.18 - 2.22 are the second order accuracy numerical scheme after discretizing the system
of differential equations, (Virieux, 1986). The velocity field (U, V ) = (u, v) at time

(
k + 1

2

)
δt and

the stress-tensor field (Txx, Tzz, Txz) = (σxx, σzz, σxz) at time (k + 1) δt are explicitly calculated
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Fig. 1. The discretization of the domain ( photo credit: Ref. [2])

with the numerical scheme.

U
k+1/2
i,j = U

k−1/2
i,j +Bi,j

δt

h1

(
Txxk

i+1/2,j − Txxk
i−1/2,j

)
+Bi,j

δt

h3

(
Txzki,j+1/2 − Txzki,j−1/2

)
(2.18)

V
k+1/2

i+1/2,j+1/2 = V
k−1/2

i+1/2,j+1/2 +Bi+1/2,j+1/2
δt

h1

(
Txzki+1,j+1/2 − Txzki,j+1/2

)
+Bi+1/2,j+1/2

δt

h3

(
Tzzki+1/2,j+1 − Txzki+1/2,j

)
(2.19)

Txxk+1
i+1/2,j = Txxk

i+1/2,j + (L+ 2M)i+1/2,j

δt

h1

(
U

k+1/2
i+1,j − U

k+1/2
i,j

)
+ Li+1/2,j

δt

h3

(
V

k+1/2

i+1/2,j+1/2 − U
k+1/2

i+1/2,j−1/2

)
(2.20)

Tzzk+1
i+1/2,j = Tzzki+1/2,j + (L+ 2M)i+1/2,j

δt

h1

(
V

k+1/2

i+1/2,j+1/2 − V
k+1/2

i+1/2,j−1/2

)
+ Li+1/2,j

δt

h3

(
U

k+1/2
i+1,j − U

k+1/2
i,j

)
(2.21)

Txzk+1
i,j+1/2 = Txzki,j+1/2 +Mi,j+1/2

δt

h3

(
U

k+1/2
i,j+1 − U

k+1/2
i,j

)
+Mi,j+1/2

δt

h1

(
V

k+1/2

i+1/2,j+1/2 − V
k+1/2

i−1/2,j+1/2

)
(2.22)

Here, M and L represent the Lame coefficients (µ, λ) and

B =
1

ρ
(2.23)

as shown in Fig. 1.

Moreover, the initial condition at time t = 0 is set such that the stress and velocity are zero
everywhere in the domain. The medium is perturbed by changing vertical stress σzz at the source
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using
R (t) =

[
1− 2π2f2

c (t− t0)
2] exp [−π2f2

c (t− t0)
2] , (2.24)

where fc is the center of the frequency band and t0 is the time shift [2].

2.2.1 Stability criterion

Numerical schemes are generally associated with numerical errors due to the approximation of the
derivatives in the partial differential scheme. It is important to obtain a stable wave propagation
solution from the finite difference scheme. With some numerical schemes, the errors made at one-
time step grow as the computations proceed. Such a numerical scheme is said to be unstable so
the results blow up. If the errors decay with time as the computations proceed, we say a finite
difference scheme is stable. In that case, the numerical solutions are bounded.

To obtain a bounded solution from the finite difference scheme, we obtain δt from the stability
criterion (Virieux, 1986) given by

δt ≤ 1

Vmax

√
1
h2
1
+ 1

h2
3

. (2.25)

Here Vmax is the maximum P-wave velocity in the media.

Inputs for the forward problem are the model parameters such as density, Lames’s moduli, P-wave
velocity, and S-wave velocity. Then the particle velocities and stresses (outputs) are calculated by
implementing the numerical scheme (Eqs. 2.18 - 2.22) in MATlab.

3 Non-uniform Mesh Refinement Method

In this section, we present the non-uniform mesh refinement method proposed in Ref. [11] with some
modification for spatial mesh refinement. Ref. [11] used fast Fourier interpolation for spatial mesh
refinement, but here we use a cubic spline interpolation, which we find better control of smoothing
regularity.

The domain is categorized into a coarse grid and a fine grid. The coarse grid is the regular grid
that we introduced in Section 2.2. Regular grids are considered with integer and half-integer
points. The time grid and the spatial grid are denoted by TC =

{
tN |N = 0, 1/2, 1, ...

}
and

ΩC =
{(

(x)I , (z)J
)
|I = 0,±1/2,±1, ...; J = 0,±1/2,±1, ...

}
, respectively. The grid steps with

respect to time and the spatial directions x and z are τ , h1, and h3, respectively. The sub-grids are
introduced so that they do not intersect with each other. Fig. 2. shows a sketch of the staggered
grid scheme.
The sub grids in the staggered grid can be introduced as

TC
σ =

{
tn+1/2|n ∈ N

}
, TC

u,v = {tn|n ∈ N} (3.1)

ΩC
σxx

=ΩC
σzz

=
{(

(x)i , (z)j

)
|i ∈ Z, j ∈ Z

}
, (3.2)

ΩC
σxz

=
{(

(x)i+1/2 , (z)j+1/2

)
|i ∈ Z, j ∈ Z

}
, (3.3)

ΩC
u =

{(
(x)i+1/2 , (z)j

)
|i ∈ Z, j ∈ Z

}
, (3.4)

ΩC
v =

{(
(x)i , (z)j+1/2

)
|i ∈ Z, j ∈ Z

}
. (3.5)

The fine grid is introduced in such a way that the coarse grid is a subset of the fine grid. Two sub
grids for velocity fields and the stress tensor fields with respect to time in the fine zone are defined.
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Fig. 2. The grid structure for the standard staggered grid scheme

The refinement ratio with respect to time is taken as K.

TF
σ =

{
tn+ 1

2
+ k

K |n ∈ N, k = 1, ...,K
}

(3.6)

TF
u,v =

{
tn+ k

K |n ∈ N, k = 1, ...,K
}

(3.7)

TF =TF
σ + TF

u (3.8)

The fine grid with respect to space for field variables can be introduced as

ΩF
σxx

=ΩF
σzz

=
{(

(x)i+l1/L1
, (z)j+l3/L3

)
|i ∈ Z, j ∈ Z

}
, (3.9)

ΩF
σxz

=
{(

(x)i+1/2+l1/L1
, (z)j+1/2+l3/L3

)
|i ∈ Z, j ∈ Z

}
, (3.10)

ΩF
u =

{(
(x)i+1/2+l1/L1

, (z)j+l3/L3

)
|i ∈ Z, j ∈ Z

}
, (3.11)

ΩF
v =

{(
(x)i+l1/L1

, (z)j+1/2+l3/L3

)
|i ∈ Z, j ∈ Z

}
, (3.12)

for l1 = 1, ..., L1 and l3 = 1, ..., L3.

ΩF = ΩF
σxx

+ΩF
σxz

+ΩF
u +ΩF

v (3.13)

where L1 and L3 are the refinement ratios with respect to the spatial directions in x and z. The
refinement ratios K,L1, and L3 are taken to be odd numbers, which ensures the consistency of all
sub grids.

The transition zone is introduced when switching from coarse grid to the fine grid. A sketch of the
refined grid for the standard staggered grid scheme is shown in Fig. 3.
The refinements are introduced in the following ranges along the spatial direction z:

• a coarse zone - z < j0h3, where j0 is an integer. Both time and space are coarse in this zone.
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Fig. 3. A sketch of the refined grid for the standard staggered grid scheme

• a transition zone - j0h3 < z < j1h3, where j0 is an integer and j1 is an half integer. In this
zone, coarse grid in space and fine grid in time are used.

• a fine zone - z < j1h3. In this zone, both a fine grid in time and space are used.

The grid functions of the field variables can be defined as the cross product of time and the
corresponding spatial domains.

3.1 Wave equation discretization

We discretize the wave equation by the following central difference schemes. This approximation
scheme has of second order accuracy. The Finite difference operations, which are defined on the
field variable f for the coarse grid are given by

DC
t [f ]NI,J =

f
N+1/2
I,J − f

N−1/2
I,J

τ
=

∂f

∂t
|NI,J +O(τ2) (3.14)

DC
x [f ]NI,J =

fN
I+1/2,J − fN

I−1/2,J

h1
=

∂f

∂x
|NI,J +O(h2

1) (3.15)

DC
z [f ]NI,J =

fN
I,J+1/2 − fN

I,J−1/2

h3
=

∂f

∂z
|NI,J +O(h2

3). (3.16)

Here, f represents u, v, σXX , σZZ , and σXZ .

The finite difference operations acting on the fine grid are

DF
t [f ]NI,J =

f
N+1/2K
I,J − f

N−1/2K
I,J

τ/K
=

∂f

∂t
|NI,J +O(τ2) (3.17)

DF
x [f ]NI,J =

fN
I+1/2L1,J

− fN
I−1/2L1,J

h1/L1
=

∂f

∂x
|NI,J +O(h2

1) (3.18)

DF
z [f ]NI,J =

fN
I,J+1/2L3

− fN
I,J−1/2L3

h3/L3
=

∂f

∂z
|NI,J +O(h2

3). (3.19)
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In order to obtain bounded solutions, we need to employ the stability criterion

τ ≤ 1

Vmax

√
1
h2
1
+ 1

h2
3

, (3.20)

where Vmax is the maximum of the P-wave velocity. Thus in the transition zone, successive mesh
refinement is used. Therefore, the fine grid at time TF and the coarse spatial grid, ΩC , are used.
The finite difference operators, acting on the transition zone are

DF
t [f ]NI,J =

f
N+1/2K
I,J − f

N−1/2K
I,J

τ/K
=

∂f

∂t
|NI,J +O(τ∈) (3.21)

DC
x [f ]NI,J =

fN
I+1/2,J − fN

I−1/2,J

h1
=

∂f

∂x
|NI,J +O(⟨∈∞) (3.22)

DC
z [f ]NI,J =

fN
I,J+1/2 − fN

I,J−1/2

h3
=

∂f

∂z
|NI,J +O(⟨∈∋) (3.23)

3.2 Refinement of solutions at interfaces

For a smooth transition from coarse to fine, the transition zone is introduced. At the same time,
solutions at the interfaces z = j0h3 and z = j1h3 should be updated in a special manner for smooth
transition. The solutions at the interface z = j0h3 are calculated before updating the solutions at
the transition zone. At the interface z = j0h3 , only time need to be fined. Similarly, solutions at
the interface z = j1h3 are calculated before updating the solutions in the fine zone.

3.2.1 Refinement of temporal steps at the interface z = j0h3

In the interface z = j0h3, time interval [tn, tn+1] can be divided as t ∈ (tn, tn+1/2]and t ∈
(tn+1/2, tn+1] for an integer n. Fig. 4. shows the section of the time grid at the interface z = j0h3.
Then solution is updated separately inside the sub-time interval. Note that the time step in the
coarse grid and fine grid are τ and τ/K for a positive, odd integer, K. Since only the temporal
refinement occurs in the transition zone, the time step for the transition zone is τ/K.

Fig. 4. A section of the time grid

3.2.2 The time interval t ∈ (tn, tn+1/2]

Since j0 is an integer, only the diagonal component of the stress sensors σXX and σZZ are updated
at the interface. These stress sensors should be updated at the instances tn+(2k−1)/2K for k =
1, 2, ..., (K + 1) /2.
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(a)

(b)

Fig. 5. 2D (t, z) projection of embedded stencils used to update the solution from the
instant tn to tn+1/2. (a) update of stresses at the interface (b) Spatial staggered grid

stencil used to update velocity component

Approximations for the stress tensor at the interface j0h3 are obtained as

(σxx)
n+ 2k−1

K
i,J0

− (σxx)
n− 2k−1

K
i,J0

(2k − 1) τ
2K

=(λ̂i,J0 + 2µ̂i,J0)D
C
1 [u]ni,J0

+λ̂i,J0D
C
3 [v]ni,J0

(3.24)

(σzz)
n+ 2k−1

K
i,J0

− (σzz)
n− 2k−1

K
i,J0

(2k − 1) τ
2K

=λ̂i,J0D
C
1 [u]ni,J0

+ (λ̂i,J0

+2µi,J0)D
C
3 [v]ni,J0

(3.25)

for k = 1, ..., (K + 1)/2. The velocity vector component is updated at the interface z = j0h3 using
the finite difference approximation of the equation,

ρ
∂2u

∂t2
=

∂

∂x

(
(λ+ µ)

∂u

∂x
+ λ

∂v

∂z

)
+

∂

∂z

(
µ
∂v

∂x
+ µ

∂v

∂z

)
. (3.26)
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3.2.3 The time interval t ∈ (tn+1/2, tn+1]

In the time interval t ∈ (tn+1/2, tn+1], the velocity and the stress tensors are updated with the
following equations:

ρ̂i+ 1
2
,J0

(u)
n+ 1

2
+ 2k−1

2K

i+ 1
2
,J0

− (u)
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, (3.27)

for k = 1, ..., (K + 1)/2.
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Fig. 6. 2D (t, z) projection of embedded stencils used to update the solution from the
instant tn+1/2 to tn+1. Stress component at the interface is updated with the stencil

3.2.4 Refinement of the spatial steps at the interface, j1h3

The interface j1h3 appears between the transition zone and the fine grid zone. Notice that j1 is
a half-integer number. The step size of the spatial direction in the transition zone are h1 and h3.
Also, space grid in the transition zone is a coarse grid. Thus the step sizes of the fine grid are taken
as h1/L1 and h3/L3 where L1 and L2 are refinement ratios in the x and z direction. To update
the solution at the interface j1 + 1

2L3
from the coarse to the fine grid, the following equations are

obtained using the finite-difference approximation.
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76



Ambegedara et al.; JAMCS, 36(5): 66-83, 2021; Article no.JAMCS.67713

In the above equations, ˜σZZ and ũ indicates that the up sampling of the variables σZZ and u is
required along the interface j1h3. These components are defined on the line z = j1h3 as shown in
Fig. 7. Thus the 1D interpolation is needed to get these components in the fine grid due to the
shift of the grids. Ref. [11] applied a fast Fourier transform for the interpolation. However, we use
the cubic smoothing spline [20, 21] for the interpolation.

Fig. 7. The grid of the spatial mesh refinement interface (x3)J1

3.3 Cubic smoothing spline interpolation

For a given a set of co-ordinates (xi, yi), for i = 1, 2, ..., n of a function y = f (x),a cubic spline finds
a curve that connects the gap between the two adjacent points (xj , yj) and (xj+1, yj+1). The cubic
spline approach uses cubic functions Si, i = 1, 2, .., n− 1 and their first and second derivatives.

The cubic function [12] can be expressed as

Si (x) = ai (x− xi)
3 + bi (x− xi)

2 + ci (x− xi) + di, (3.32)

where xi ≤ x ≤ xi+1.

In the case of interests of smoothness, one can consider the coordinates of the data given by

yi = f (xi) + ϵi, (3.33)

where ϵi, i = 0, 1, ..., n represents the noise of the curve and a random variable with variance σ2
i .

Thus the spline is smoothed. The function f (x) can be obtained by constructing a spline function,
S (x), which minimizes the function

L = λ
n∑

i=0

(
yi − Si

σi

)2

+ (1− λ)

∫ xn

x0

(
S

′′
(x)
)2

dx, (3.34)

where Si = S (xi) and λ is the smoothing parameter or penalty for the roughness of the function,
which can take any value from 0 to 1.

Here, the first term considers reducing the error between the spline and the data points. So the
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spline should come reasonably close to the data. The second term considers the low curvature of
the spline. Thus the smoothing spline Eq. 3.34 produces a spline that balances these two opposing
criteria.

We implement the above refinement procedure with the defined boundary conditions in Eqs. 2.7 -
2.10, the initial condition in Eq. 2.24, and the stability criterion 3.20 in MAT lab.

4 Wave Propagation Results

In this section, we present the wave propagation results from the above method. A numerical study
was conducted with 2-D domain of size 50 m × 50 m. Step sizes in the spatial directions in the
regular grid are taken as h1 = h3 = 0.5. Thus a 100 × 100 regular mesh in the spatial domain is
created. The time step τ is calculated with the stability criterion (Eq. 3.20) using the maximum P-
wave velocity. The shear wave velocity Vs of the medium was considered as 200 m/s. The pressure
wave velocity Vp was calculated using the defined shear wave velocity and the formula

Vp = Vs

√(
2 (1− ν)

1− 2ν

)
, (4.1)

where ν = 0.33 is used in the numerical calculations. The density of the medium is considered to
be 1800 m/s. A source was located at the grid point (1,50) in the spatial domain. 20 receivers were
positioned in the domain with the 2.5 m spacing on the surface. Thus, the source was placed 24 m
away from the first receiver.

The time refinement and spatial refinement ratios are as K,L1, L3 = 3. A refinement area in the
grid was considered from 6m to 15m in the z direction. Accordingly, the coarse zone, transition
zone, and fine grid zone are defined in Table 1 and Fig. 8.

Fig. 8. Grid cells breakdown

Here, we introduced two transition zones. The first transition zone appears when the wave propagates
from coarse to fine and the second transition zone appears when the wave propagates from fine to
coarse grid zone.

78



Ambegedara et al.; JAMCS, 36(5): 66-83, 2021; Article no.JAMCS.67713

Table 1. Grid cells breakdown in the grid zones

grid zone grid cells

coarse 1-10
transition 10-12

fine 12-30
transition 30-32
coarse 32-100

The wave fields were obtained from the classic finite difference approach using the uniform mesh
and the mesh refinement approach (non uniform mesh) to see the accuracy of the presented method.
Figure 9 shows the wave fields obtained at three depths, 0.5m, 6.5 m, and 16.5 m depths at the
receivers. Note that these three depths are positions in the coarse grid (before the transition zone
to the fine grid), fine grid, and coarse grid (after the transition zone to the fine grid), respectively.

Fig. 9 shows the estimated wave field at receivers. Figure 9 (a),(c), and (e) corresponding to the
observed wavefield data from the mesh grid method and Fig. 9 (b),(d), and (f) correspond to the
estimated field data from the classic finite difference method. One can see that results from both
methods are the same at receivers at the same depth. However, an advantage of the mesh refinement
method is the ability of simulation real models with small-scale heterogeneities. In this study, we
only consider the ability to estimate wavefield data from the mesh refinement method. Also, the
mesh refinement method is able to be applied with different refinement ratios at different surfaces.
In this case, the fine grid zone has the refinement ratios of L1 = L3 = 3 for x, z directions. The
step sizes in the fine grid zone are h1/L1 = 1/6 and h3/L3 = 1/6. Thus the coarse grid zone and
the fine grid zone behave as two layers and the mesh refinement is applied only to one layer, which
contains small-scale heterogeneities.

Moreover, we compare the computational efficiency of the non-uniform mesh method with the
uniform grid method at a smaller step size in spatial directions. The number of cells in the spatial
domain for the two methods are shown in Table 2. For example, if the uniform mesh method is
used with step size 1/6 (refinement ratio L1 = L3 = 3) in the x and z directions, the number of
grid points in the spatial domain is 90000. However, the spatial domain of the non-uniform mesh
refinement method contains only 24400 grid points. Thus less memory storage is required with
non-uniform mesh method than the uniform mesh method.

Fig. 10. shows the number of grid points in the spatial domain as a function of refinement ratio.
The blue color curve represents the number of cells required for the non-uniform mesh method and
the red color curve represents the number of cells required for the uniform mesh method. One
can see that there are eight orders of magnitude increment in the number of cells with uniform
mesh method. However, only 1.5 orders of magnitude increment in the number of cells with the
non-uniform mesh method. Therefore, Non-uniform mesh method required less storage even with
higher refinement ratio.

On the other hand, the less computational time is required to generate the wave field using non-
uniform mesh method on the same standard computer. In the uniform mesh method, when the
refinement ratio increases, Matlab encounters memory problem. This time difference brings the
possibility of being applied to the FWI method [2] for 3-D large scale problems with small-scale
heterogeneities.

Figure 11 shows the wave fields at four receivers at the 6.5m depth using the cubic smoothing spline
interpolation method and the fast Fourier transformation method. At the 6.5m depth, the wave
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Wave fields from the mesh refinement method (non uniform mesh) at (a) 0.5
m depth, (c) 6.5 m depth, and (e) 16.5 m depth. Wave propagation from the uniform

mesh at (b) 0.5 m depth, (d) 6.5 m depth, and (f) 16.5 m depth

Table 2. Domain size of the non uniform mesh method and the uniform grid method
at the spatial directions

Number of cells Number of cells
Refinement Ratio (uniform mesh method ) (non-uniform mesh method)

L1 = L3 = 3 90000 24400
( step size =1/6)

L1 = L3 = 5 250000 53200
( step size =1/10)

propagates in the fine grid area. Thus the spatial mesh refinement is needed. The wave field results
using two interpolation methods are compared with the results from the uniform mesh method.
Note that we assume the uniform mesh method gives accurate wave field solutions. Fig. 11. shows
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the estimated wave fields only at receiver 6, 9, 12, and 15. Blue, red, and black color curves represent
the wave fields using FFT interpolation, cubic smoothing spline interpolation, and the uniform mesh
method (without spatial mesh refinement). One can see that, a good agreement between the results
from the cubic smoothing spline interpolation and uniform mesh method. However, the solutions
with FFT interpolation overestimated the wavefield data.

Fig. 10. Number of cells as a function of refinement ratio

We calculated the l2 norm error of the field data with cubic smoothing spline and FFT interpolation.
Table 3. shows the l2 norm error of the two interpolation methods relative to the uniform mesh
method at four receivers 6, 9, 12, and 15. Cubic smoothing spline gives less error in the wave field
estimation than FFT interpolation.

(a) (b)

(c) (d)

Fig. 11. Comparison between wave fields generated by fast Fourier interpolation and
cubic smoothing spline interpolation.
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Table 3. l2 norm error of the estimated wave field data using FFT interpolation and
cubic smoothing interpolation for spatial mesh refinement

Receiver Error (FFT interpolation) Error (Cubic smoothing spline interpolation)

6 0.55 0.33

9 0.52 0.39

12 0.65 0.51

15 0.65 0.51

5 Conclusions

In this work, we adopted a method for numerical simulation of wave propagations in media with
small scale heterogeneities such as cavities and fractures. This method is introduced by Ref. [11] and
is based on local mesh refinement with respect to both time and space in different media. One of
the main features of their method is the use of fast Fourier transform based interpolation for spatial
mesh refinement. In the work, the spatial mesh refinement step has been calculated using cubic
smoothing spline interpolation instead of fast Fourier transform. The technique was developed using
central finite difference approximation. We presented numerical results for the simulation of seismic
wave propagation. The results using the mesh refinement method are compared with a classic finite
difference approximation scheme with a uniform mesh. The results of the mesh refinement approach
show a good agreement with the results of the wave propagation with the classic finite difference
scheme with uniform grid. The advantage of the mesh refinement method is the capability of the
simulations of 3-D large scale problems in media with small scale heterogeneities.

Moreover, in the section, results for the wave propagation using the cubic smoothing spline interpola-
tion and fast Fourier interpolation are compared. The mesh refinement method with cubic smoothing
spline approach provides better results for wave propagation. Overall, the local time-space mesh
refinement approach with the cubic smoothing spline interpolation will be a good candidate for 3-D
FWI problem as the ability of the simulation of small scale heterogeneities in different surfaces for
large scale problems. In the future, we intend to perform numerical simulations of seismic waves in
3-D heterogeneous media.
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