
Citation: Chen, H.; Lyu, Y.; Shi, J.;

Zhang, W. Robust Support Vector

Data Description with Truncated Loss

Function for Outliers Depression.

Entropy 2024, 26, 628. https://

doi.org/10.3390/e26080628

Academic Editor: Kenji Yamanishi

Received: 11 June 2024

Revised: 19 July 2024

Accepted: 23 July 2024

Published: 25 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Robust Support Vector Data Description with Truncated Loss
Function for Outliers Depression
Huakun Chen , Yongxi Lyu * , Jingping Shi and Weiguo Zhang

Department of Automatic Control, Northwestern Polytechnical University, Xi’an 710072, China;
chenhuakun@mail.nwpu.edu.cn (H.C.); shijingping@nwpu.edu.cn (J.S.); zhangwg@nwpu.edu.cn (W.Z.)
* Correspondence: yongxilyu@nwpu.edu.cn

Abstract: Support vector data description (SVDD) is widely regarded as an effective technique for
addressing anomaly detection problems. However, its performance can significantly deteriorate when
the training data are affected by outliers or mislabeled observations. This study introduces a universal
truncated loss function framework into the SVDD model to enhance its robustness and employs
the fast alternating direction method of multipliers (ADMM) algorithm to solve various truncated
loss functions. Moreover, the convergence of the fast ADMM algorithm is analyzed theoretically.
Within this framework, we developed the truncated generalized ramp, truncated binary cross entropy,
and truncated linear exponential loss functions for SVDD. We conducted extensive experiments
on synthetic and real-world datasets to validate the effectiveness of these three SVDD models in
handling data with different noise levels, demonstrating their superior robustness and generalization
capabilities compared to other SVDD models.

Keywords: SVDD; truncated loss function; fast ADMM; proximal operators; anomaly detection;
truncated binary cross entropy loss function; truncated linear exponential loss function

1. Introduction

Anomaly detection refers to the identification of data points in a dataset that deviate
from normal behavior. These deviations are known as anomalies or outliers in various
application domains. This mode of detection is extensively used in real-world settings,
including credit card detection, insurance detection, cybersecurity intrusion detection,
error detection in security systems, and military activity monitoring [1,2]. However, the
acquisition of anomaly data in practical applications, such as medical diagnostics, machine
malfunction detection, and circuit quality inspection, is expensive [3,4]. Consequently, there
is significant interest in one-class classification (OCC) problems, where training samples
only include normal data (also known as target data) or normal data with a small number
of anomalies (also referred to as non-target data) [5–7]. In this context, it is important to
define the following terms:

• Normal data: Normal data refers to data points that conform to the characteristics and
behavior patterns of the majority of data points within a dataset. They represent the
normal operating state of a system or process.

• Anomalies: Anomalies are data points that significantly deviate from normal patterns
and usually reflect actual problems or critical events in the system.

• Outliers: Outliers are data points that are significantly different from other data points
in the dataset, which may be due to natural fluctuations, special circumstances, or
noise.

• Noise: Noise refers to irregular, random errors or fluctuations, usually caused by
measurement errors or data entry mistakes, and does not reflect the actual state of the
system.

Entropy 2024, 26, 628. https://doi.org/10.3390/e26080628 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26080628
https://doi.org/10.3390/e26080628
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-9184-9493
https://orcid.org/0000-0001-8912-3418
https://orcid.org/0000-0001-5700-2638
https://orcid.org/0000-0002-8393-3185
https://doi.org/10.3390/e26080628
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26080628?type=check_update&version=1

Entropy 2024, 26, 628 2 of 29

Support vector data description (SVDD) is a method extensively used for one-class
classifications (OCCs) [8]. The core idea of SVDD is to construct a hyper-sphere of minimal
volume that encompasses all (or most) of the target class samples. Data points inside
the hyper-sphere are considered normal, while those outside are considered anomalies.
SVDD can be easily integrated with popular kernel methods or some deep neural network
models [7], making it highly scalable and flexible. Due to these attractive features, SVDD
has garnered significant attention and has been extensively developed. SVDD is regarded
as an effective and excellent technique for anomaly detection problems; however, it remains
sensitive to outliers and noise present in training datasets. In real-world scenarios, various
issues, such as instrument failure, formatting errors, and unrepresentative sampling, result
in datasets with anomalies, which degrade the performance of the SVDD [9,10].

The existing methods for mitigating the impact of noise are typically categorized
as follows:

In order to reduce the impact of outliers on the OCC method, researchers have at-
tempted to remove outliers through data preprocessing methods. Stanley Fong used
methods such as cluster analysis to remove anomalies from the training set to achieve a
robust classifier [11]. Breunig et al. tried to assign an outlier score to each sample in the
dataset by estimating its local density, known as LOF [12]. Zheng et al. used LOF to filter
raw samples and remove outliers [13]. Khan et al. [14] and Andreou and Karathanassi [15]
calculated the interquartile range (IQR) of training samples, which provides a method
for indicating a boundary beyond which samples are marked as outliers and removed.
Clustering (k-means, DBSCAN) or LOF methods can significantly reduce noise points in
data preprocessing, thereby improving the quality and effectiveness of subsequent model
training. For datasets with obvious noise and significant distribution characteristics, pre-
processing methods can be very effective in enhancing model performance. However,
preprocessing methods have several issues: they require additional computational re-
sources and time, especially with large datasets, potentially making the preprocessing
step time-consuming. Moreover, there is a risk of overfitting and inadvertently deleting
useful normal data points, impacting the model’s ability to accurately detect anomalies.
Additionally, these preprocessing methods are sensitive to parameter settings, necessitating
careful selection to achieve satisfactory results.

Zhao et al. proposed the dynamic radius SVDD method that accounts for hyper-sphere
radius information and the existing data distribution [16,17]. This approach achieves a
more flexible decision boundary by assigning different radii to different samples. Moreover,
the framework for the dynamic radius SVDD method is based on the traditional SVDD
framework. However, if the traditional SVDD has not undergone adequate training, the
good performance of these dynamic approaches will be difficult to guarantee.

Density-weighted SVDD, position-weighted SVDD, Stahel–Donoho outlier-weighted
SVDD, global plus local joint-weighted SVDD, and confidence-weighted SVDD are ex-
amples of weighted methods [18–24]. These methods assign smaller weights to sparse
data, which are commonly outliers, thus excluding them from the sphere. These methods
balance the target class data and outliers in the training phase, thus enhancing the clas-
sification performance, especially when the data are contaminated by outliers. However,
when the number of outliers in the dataset increases and they form sparse clusters, the
number of outliers might surpass that of normal samples. In such cases, weighted methods
assign higher weights to the outliers and lower weights to the normal samples, leading to
decreased algorithm performance.

The convex property of the hinge loss function of the SVDD algorithm makes it
sensitive to outliers. To address this issue, Xing et al. proposed a new robust least squares
one-class support vector machine (OCSVM) that employs a bounded, non-convex entropic
loss function, instead of the unbounded convex quadratic loss function used in traditional
least squares OCSVM [25]. The non-convex nature of the ramp loss function makes this
model more robust than the traditional OCSVM [26]. Tian et al. introduced the ramp loss
function to the traditional OCSVM to create the Ramp-OCSVM model [27], and the non-

Entropy 2024, 26, 628 3 of 29

convex nature of this model makes it more robust than the traditional OCSVM. Xing et al.
enhanced the robustness of the OCSVM by introducing a re-scaled hinge loss function [28].
Additionally, Zhong et al. proposed a new robust SVDD method, called pinball loss
SVDD [29], to perform OCC tasks when the data are contaminated by outliers. The pinball
loss function ensures minimal dispersion at the center of the sphere, thus creating a tighter
decision boundary. Recently, Zheng introduced a mixed exponential loss function to the
design of the SVDD model, enhancing its robustness and making its implementation
easier [30].

Extensive research has shown that, as a result of unbounded convex loss functions be-
ing sensitive to anomalies, loss functions with boundedness or bounded influence functions
are more robust to the influence of outliers. To address this issue, researchers introduced
an upper limit to unbounded loss functions, effectively preventing them from increasing
beyond a certain point. The truncated loss function thus makes the SVDD model more
robust. The advantages of truncated loss functions include:

• Robustness to noise: Truncated loss functions can enhance the model’s robustness and
stability by limiting the impact of outliers without removing data points.

• Reduction of error propagation: In anomaly detection tasks, outliers may significantly
contribute to the loss function, leading to error propagation and model instability.
Truncated loss functions can effectively reduce error propagation caused by outliers,
thereby improving overall model performance.

• Generalization ability: Using truncated loss functions can prevent the model from
overfitting to outliers, enhancing the model’s generalization ability. Truncated loss
functions are well-suited for various types of datasets and noise conditions, particu-
larly when noise is not obvious or easily detectable.

However, robust SVDD algorithms still face considerable challenges in the research.
They are designed to address specific types of losses and lack an appropriate framework
for constructing robust loss functions. Thus, researchers are required to learn how to use
different algorithms and modify loss functions before use. Since truncated loss functions are
often non-differentiable, methods such as the difference of convex algorithm (DCA) [31] and
concave–convex procedures (CCCPs) [32,33] are commonly employed to provide solutions.
For some truncated loss functions, the DCA cannot ensure straightforward decompositions
or the direct use of comprehensive convex toolboxes, potentially increasing development
and maintenance costs [34]. At present, no unified framework exists in the literature for the
design of robust loss functions or a unified optimization algorithm. Therefore, even though
this is challenging, providing a new bounded strategy for the SVDD model is crucial, with
the potential for developing more efficient and universally applicable solutions.

In response to the several issues previously outlined, this study proposes a universal
framework for the truncated loss functions of the SVDD model. To address and solve the
non-differentiable, non-convex optimization problem introduced by the truncated loss
function, we employ the fast ADMM algorithm. Our contributions to this field of study are
as follows:

• We define a universal truncated loss framework that smoothly and adaptively binds
loss functions, while preserving their symmetry and sparsity.

• To solve different truncated loss functions, we propose the use of a unified proximal
operator algorithm.

• We introduce a fast ADMM algorithm to handle any truncated loss function within a
unified scheme.

• We implement the proposed robust SVDD model for various datasets with different
noise intensities. The experimental results for real datasets show that the proposed
model exhibits superior resistance to outliers and noise compared to more traditional
methods.

The remainder of this paper is organized as follows:

Entropy 2024, 26, 628 4 of 29

Section 2: We review related support vector data description (SVDD) models, provid-
ing a foundational understanding of the existing methodologies and their limitations.

Section 3: We propose a general framework for truncated loss functions. Within this
framework, we examine the representative loss functions’ proximal operators and present
a universal algorithm for solving these proximal operators.

Section 4: This section introduces the SVDD model that utilizes the truncated loss
function, detailing its structure and theoretical framework.

Section 5: A new algorithm for solving the SVDD model with truncated loss func-
tions is presented. This section also includes an analysis of the algorithm’s convergence
properties, ensuring that the method is both robust and reliable.

Section 6: Numerical experiments and parameter analysis are conducted to validate
the effectiveness of the proposed model. This section provides empirical evidence of the
model’s performance across various datasets and noise scenarios.

Section 7: The conclusion summarizes the findings and contributions of the study, and
discusses potential future research directions.

2. Related Works

SVDD has been widely applied in anomaly detection, and numerous learning algo-
rithms based on SVDD have been proposed. In this section, we provide a brief overview of
these algorithms.

2.1. SVDD

The goal of SVDD is to discover a hyper-sphere that encompasses target samples,
while excluding non-target samples located outside it [8]. The objective function of SVDD
is represented by the following equation:

min
R,µ,ξi

R2 + C∑
i

ξi

s.t ∥φ(xi)− µ∥2 ≤ R2 + ξi, ξi > 0, ∀i
(1)

where µ and R represent the radius and center of the hyper-sphere, C is a regularization
parameter, and ξi is a slack variable. By using Lagrange multipliers and incorporating the
constraints into the objective function, the dual problem of Equation (1) can be expressed as:

max ∑
i

ai(xi · xi)− ∑
i,j

aiaj
(
xi · xj

)
s.t ∑

i
ai = 1, 0 ≤ ai ≤ C, ∀i

(2)

where αi is the Lagrange multiplier, the optimization problem in Equation (2) is a standard
quadratic programming problem, and αi can be obtained using quadratic programming
algorithms. µ and R can be calculated using the following equation:

µ =
n

∑
i=1

αi φ(xi) (3)

R2 = (xs · xs)− 2∑
i

αi(xs · xi) + ∑
i,j

αiαj
(
xi · xj

)
(4)

where xs represents support vectors. The decision function for the test sample z is presented
as follows:

f (z) = sign
(

R2 − ∥z − µ∥2
)
= sign

{
R2 − (z · z) + 2∑

i
ai(z · xi)− ∑

i,j
aiaj
(
xi · xj

)}
(5)

If f (z) ≤ 0, then sample z belongs to the target class; otherwise, z is considered a
non-target class sample.

Entropy 2024, 26, 628 5 of 29

2.2. Robust SVDD Variants

Due to its sensitivity to outliers, the classification performance of SVDD significantly
deteriorates when the data are contaminated. Thus, to enhance the robustness of SVDD,
various improved SVDD methods have been proposed over the past decades.

2.2.1. Weighted SVDDs

One common approach is the use of weighted SVDD methods, where different slack
variables are assigned different weights [18–24]. Although the specific methods for weight
distribution vary, they can generally be represented in a unified form:

min
R,µ,ξi

R2 + C∑
i

wiξi

s.t ∥φ(xi)− µ∥2 ≤ R2 + ξi, ξi > 0, ∀i
(6)

where {wi}n
i=1 represents pre-calculated weights. The density weighting method permits

these weights to be calculated as follows [20]:

wi = 1 −
d
(

xi, xk
i

)
max

{
d
(
x1, xk

1
)
, · · · , d

(
xn, xk

n
)} (7)

where xk
i denotes the k-nearest neighbor value of xi, and d

(
xi, xk

i

)
denotes the Euclidean

distance between xi and xk
i . Due to outliers typically being located in relatively low-density

areas, the distance to their neighboring samples is greater when compared to normal
samples, which results in their smaller weights. The R-SVDD algorithm constructs weights
by introducing a local density to each data point based on truncated distances [19].

ρi = ∑
j

exp

(
−
(dij

dc

)2
)

(8)

where dij denotes the distance between xi and xj, and dc is the truncation distance. The
calculation of the weight function is as follows:

w(xi) =
ρ(xi)

max{ρ(x1), · · · , ρ(xn)}
(9)

Other methods for calculating can refer to [21–24]. The dual problem of Equation (6)
is represented by the following equation:

max ∑
i

αi(xi · xi)− ∑
i,j

αiαj
(

xi · xj
)

s.t ∑
i

αi = 1, 0 ≤ αi ≤ wiC, ∀i
(10)

From this equation, it can be observed that each Lagrange multiplier has an upper
limit, denoted as αi ≤ wiC.

2.2.2. Pinball Loss SVDD

The pinball loss SVDD (Pin-SVDD) modifies the hinge loss SVDD by replacing its loss
function with the pinball loss function to create an optimized problem formulation [29].
This modification enables a more robust handling of outliers by adjusting the sensitivity
toward deviations, depending on their direction relative to the decision boundary.

Entropy 2024, 26, 628 6 of 29

min
R,µ,ξi

R2 + C∑
i

ξi

s.t ∥φ(xi)− µ∥2 ≤ (1 − τ)R2 + ξi,

∥φ(xi)− µ∥2 ≤ 1
τ

ξi, ∀i

(11)

where 0 < τ ≤ 1 is a constant. With the use of the Lagrange multipliers method, the dual
optimization problem in Equation (11) can be expressed as follows:

max ∑
i

αi

(
g1(xi · xi) + g2

n
∑

j=1

(
xi · xj

))
+ h∑

i,j
αiαj

(
xi · xj

)
s.t ∑

i
αi =

1
1 − τ

, 0 ≤ αi ≤ C, ∀i
(12)

where h = − (1−τ)2

τnC+1 , g1 = 1 − τ, and g2 = − 2(1−τ)τc
τnc+1 . Zhong demonstrated that the use of a

pinball to minimize scattering at the center of the sphere enhances the robustness of the
developed model.

2.2.3. SVDD with Mixed Exponential Loss Function

Zheng used a mixed exponential loss function to design a classification model, and
the optimization problem of the method is presented by the following equation [30]:

min
R,µ,ξi

R2 + C∑
i

ρ(ξi)

s.t ∥φ(xi)− µ∥2 ≤ R2 + ξi, ξi > 0, ∀i
(13)

where ρ(ξi) is a mixed exponential function of ξi, expressed as follows:

ρ(ξi) = λ exp(−τ1ξi) + (1 − λ) exp(−τ2ξi) (14)

where τ1 > 0 and τ2 > 0 are two scale parameters, and 1 ≥ λ ≥ 0 is a mixture parameter
used to balance the contributions of the two exponential functions. The mixed exponential
loss function highlights the importance of samples involved in the target class while
reducing the influence of samples that are outliers. This approach significantly enhances
the robustness of the SVDD model. This loss function achieves more accurate and stable
anomaly detection results in various settings by preserving the integrity of the target class
and diminishing the effect of potential anomalies.

3. Truncated Loss Function

SVDD models with unbounded loss functions can achieve satisfactory results when
addressing scenarios lacking noise. However, the continual growth of these loss functions
results in the collapse of the model when it is subjected to noise. Therefore, truncating the
SVDD model’s loss function makes it more robust. The general definition of a truncated
loss function is as follows:

L(u, δ) = ϕ(u)− (ϕ(u)− δ)+ (15)

where δ is a constant, and ϕ(u) is an unbounded loss function, such that, when u ≤ 0,
ϕ(u) = 0. Since ϕ(u) is an abstract function, a general form of the truncated loss function
includes several loss functions. The three specific truncated loss functions we created in
our study are present as follows:

1. Truncated generalized ramp loss function: LϕR(u, δ) = min{0, max(δ, ϕR(u))}, where
ϕR(u) = u

v , u, v > 0.

2. Truncated binary cross entropy loss function: Lϕ f (u, δ) = min
{

0, max
(

δ, ϕ f (u)
)}

,

where ϕ f (u)= log
(
1 + u

θ

)
, u, θ > 0.

Entropy 2024, 26, 628 7 of 29

3. Truncated linear exponential loss function: LϕL(u, δ) = min{0, max(δ, ϕL(u))}, where
ϕL(u) = exp(ayu)− ayu − 1, u, a > 0, and y = ±1.

Assuming the truncation point u = δ′, the mathematical properties of the three
truncated loss functions presented above can be summarized as follows:

1. For samples with u ≤ 0, the loss value is 0; for samples with u > δ′, the loss value is δ.
Thus, the general truncated loss function exhibits sparsity and robustness to outliers.

2. LϕR(u, δ) and LϕM(u, δ) are truncated concave loss functions, which are non-differentiable at
u = 0, δ′. LϕL(u, δ) is a truncated convex loss function, which is non-differentiable at
u = δ′ and differentiable at u= 0.

3. LϕR(u, δ) and Lϕ f (u, δ) exhibit explicit expressions for the proximal operators, while
LϕL(u, δ) does not.

In the next section, we provide explicit expressions for the proximal operators of
LϕR(u, δ) and Lϕ f (u, δ).

3.1. Proximal Operators of Truncated Loss Functions

Definition 1 (Proximal Operator [35]). Assume f : R → R is a proper lower-semi-continuous
loss function. The expression for the proximal operator of f (u) at x ∈ R is defined as follows:

proxλ f (x) = arg min
{

f (u) +
1

2λ
∥u − x∥2

}
(16)

when f (u)is a convex loss function, it presents a single-value proximal operator; when f (u)is a
non-convex loss function, it exhibits a multi-value proximal operator.

Lemma 1 ([36]). When f (u)= log
(
1 + u

θ

)
, let v(x) = arg min

u∈R

{
log
(
1 + u

θ

)
+ 1

2λ∥u − x∥2
}

,

x ∈ R. The expressions for the proximal operators are as follows:

v(x) =
{

v(x) (x − θ)2 − 4(λ − xθ) ≥ 0 and u > 0
0 othersize

(17)

v(x) = min
{

0,
[
(x−θ)+

√
(x−θ)2−4(λ−xθ)

2

]
+

,
[
(x−θ)−

√
(x−θ)2−4(λ−xθ)

2

]
+

}
.

Lemma 2. The explicit expression of theLϕR(u, δ) proximal operator is as follows:

1. When 0 < λ < 2δv2, the explicit expression of the LϕR(u, δ) proximal operator is presented
as follows:

proxλLR(x) =

x x > δv + λ
2v{

x, x − λ
v

}
x = δv + λ

2v

x − λ
v

λ
v < x < δv + λ

2v
0 0 ≤ x ≤ λ

v
x x < 0

(18)

2. When 0 < λ < 2δv2, the explicit expression of the LϕR(u, δ) proximal operator is as follows:

proxλLR(x) =

x x >

√
2λδ

{x, 0} x =
√

2λδ

0 0 ≤ x ≤
√

2λδ
x x < 0

(19)

Entropy 2024, 26, 628 8 of 29

Proof of Lemma 1. Equation (16) exhibits that proxLϕR
is a local minimum of the following

piecewise function:

φ(u) =

φ1(u) = δ + 1
2λ (u − x)2 u > δv

φ2(u) = δ + 1
2λ (1 − x)2 u = δv

φ3(u) = u
v + 1

2λ (u − x)2 0 < u < δv
φ4(u) = x2

2λ u = 0
φ5(u) = 1

2λ (u − x)2 u < 0

The minima of the piecewise functions φ1(u), φ2(u), φ3(u), φ4(u), and φ5(u) are
located at u∗

1 = x, u∗
2 = 1, u∗

3 = x − λ
v , u∗

4 = 0, and u∗
5 = x, with minimum values of

φ1
(
u∗

1
)
= δ, φ2(u∗

2) = δ + 1
2λ (δv − x)2, φ3(u∗

3) =
x
v − λ

2v2 , φ4
(
u∗

4
)
= x2

2λ , and φ5(u∗
5) = 0,

respectively.
Since 0 < u∗

3 = x − λ
v < vδ, it follows that λ

v < x < vδ + λ
v . If φ1

(
u∗

1
)
< φ3(u∗

3), then

x > δv + λ
2v . When δv + λ

2v ≤ λ
v and x is in the interval

(
λ
v , vδ + λ

v

)
, φ1

(
u∗

1
)
< φ3(u∗

3).

When 0 < λ < 2δv2, the following conclusion can be reached by comparing the values
of φ1

(
u∗

1
)
, φ2(u∗

2), φ3(u∗
3), φ4

(
u∗

4
)
, and φ5(u∗

5).

(1.1) Since x > vδ + λ
2v , we achieve min

{
φ2(u∗

2), φ3(u∗
3), φ4

(
u∗

4
)}

> φ1
(
u∗

1
)
, which means

u∗ = u∗
1 = x.

(1.2) Since x = vδ+ λ
2v , we obtain min

{
φ2(u∗

2), φ4
(
u∗

4
)}

> φ1
(
u∗

1
)
= φ3(u∗

3), which means
u∗ = u∗

1 = x or u∗ = u∗
3 = x − λ

v .
(1.3) Since λ

v < x < vδ + λ
2v , we achieve min

{
φ1
(
u∗

1
)
, φ2(u∗

2), φ4
(
u∗

4
)}

> φ3(u∗
3), which

means u∗ = u∗
3 = x − λ

v .
(1.4) Since 0 ≤ x ≤ λ

v , we obtain min
{

φ1
(
u∗

1
)
, φ2(u∗

3), φ3(u∗
3)
}
> φ4

(
u∗

4
)
, which means

u∗ = u∗
4 = 0.

(1.5) Since x < 0, we achieve min
{

φ2(u∗
2), φ4

(
u∗

4
)}

> φ5(u∗
5), which means u∗ = u∗

5 = x.

According to (1.1)–(1.5), Equation (18) can be derived.
When λ ≥ 2δv2, the following conclusion can be reached by comparing the values of

φ1
(
u∗

1
)
, φ2(u∗

2), φ3(u∗
3), φ4

(
u∗

4
)
, and φ5(u∗

5).

(2.1) As x >
√

2λδ, we obtain min
{

φ2(u∗
2), φ3(u∗

3), φ4
(
u∗

4
)}

> φ1
(
u∗

1
)
, which means u∗ =

u∗
1 = x.

(2.2) As x =
√

2λδ, we obtain min
{

φ2(u∗
2), φ3(u∗

3)
}

> φ1
(
u∗

1
)
= φ4

(
u∗

4
)
, which either

means u∗ = u∗
1 = x or u∗ = u∗

4 = 0.
(2.3) As 0 ≤ x <

√
2λδ, we obtain min

{
φ1
(
u∗

1
)
, φ2(u∗

3), φ3(u∗
3)
}
> φ4

(
u∗

4
)
, which means

u∗ = u∗
4 = 0.

(2.4) As x < 0, we obtain min
{

φ1
(
u∗

1
)
, φ2(u∗

2), φ3(u∗
3), φ4

(
u∗

4
)}

> φ5(u∗
5), which means

u∗ = u∗
5 = x.

According to (2.1)–(2.4), Equation (19) can be derived. □

Lemma 3. The expression representing the proximal operator of the truncation function is as
follows:

proxλL(x) =

x x > λ′ and φ1
(
u∗

1
)
< φ3(u∗

3) and φ1
(
u∗

1
)
< φ4

(
u∗

4
)

{x, v(x)} x = λ′ and φ1
(
u∗

1
)
= φ3(u∗

3) < φ4
(
u∗

4
)

{x, 0} x = λ′ and φ1
(
u∗

1
)
= φ4

(
u∗

4
)
< φ3(u∗

3)
v(x) ωdown < x < ωup and φ1

(
u∗

1
)
> φ3(u∗

3) and φ3(u∗
3) < φ4

(
u∗

4
)

0 x ≥ 0 and φ3(u∗
3) > φ4

(
u∗

4
)

and φ1
(
u∗

1
)
> φ4

(
u∗

4
)

x x < 0

(20)

where u∗
1 , u∗

2 , u∗
3 , and u∗

4 represent the minimizers of the piecewise function, and φ1
(
u∗

1
)
, φ2(u∗

2),
φ3(u∗

3), and φ4
(
u∗

4
)
, represent the minimal values of the piecewise function.

Entropy 2024, 26, 628 9 of 29

Proof of Lemma 3. It can be deduced from Equations (15) and (16) that proxλL represents
the local minimum of the following piecewise function:

φ(u) =

φ1(u) = δ + 1
2λ (u − x)2 u > λ′

φ2(u) = δ + 1
2λ (λ

′ − x)2 u = λ′

φ3(u) = ϕ(u) + 1
2λ (u − x)2 0 < u < λ′

φ4(u) = x2

2λ u = 0
φ5(u) = 1

2λ (u − x)2 x < 0

Let v(x) = arg minϕ(u) + 1
2λ (u − x)2; the minimizers of the piecewise functions are

u∗
1 = x, u∗

2 = λ′, u∗
3 = v(x), u∗

4 = 0, and u∗
5 = x, and their minimal values are φ1

(
u∗

1
)
= δ,

φ2(u∗
2) = δ + 1

2λ (λ
′ − x)2, φ3(u∗

3) = φ3(v(x)), φ4
(
u∗

4
)
= x2

2λ , and φ5(u∗
5) = 0, respectively.

From 0 < u∗
3 = v(x) < λ′, it follows that ωdown < x < ωup.

When x ≥ 0, the stage function’s minimal values are φ1
(
u∗

1
)
,φ2(u∗

2),φ3(u∗
3), and

φ4
(
u∗

4
)
; when x < 0, the stage function’s minimal values are φ2(u∗

2), φ4
(
u∗

4
)
, and φ5(u∗

5).
Thus, we can observe that φ2(u∗

2) ≥ φ1
(
u∗

1
)
. If φ1

(
u∗

1
)
≥ φ3(u∗

3), then φ2(u∗
2) ≥ φ1

(
u∗

1
)
≥

φ3(u∗
3); similarly, if φ1

(
u∗

1
)
≥ φ4

(
u∗

4
)
, then φ2(u∗

2) ≥ φ1
(
u∗

1
)
≥ φ4

(
u∗

4
)
. We can determine

the following conclusions by comparing the values of φ1
(
u∗

1
)
, φ2(u∗

2), φ3(u∗
3), φ4

(
u∗

4
)
, and

φ5(u∗
5):

(1.1) When the conditions of x > λ′, φ1
(
u∗

1
)
< φ3(u∗

3), and φ1
(
u∗

1
)
< φ4

(
u∗

4
)

are met, and
it follows that u∗ = u∗

1 = x;
(1.2) When the condition of x = λ′ is met, if φ1

(
u∗

1
)
= φ3(u∗

3) < φ4
(
u∗

4
)

is true, then
u∗ = u∗

1 = x or u∗ = u∗
3 = v(x) can be derived;

(1.3) When the condition of x = λ′ is met, if φ1
(
u∗

1
)
= φ4

(
u∗

4
)
< φ3(u∗

3) is true, then
u∗ = u∗

1 = x or u∗ = u∗
4 = 0 can be derived;

(1.4) When the conditions of ωdown < x < ωup, φ1
(
u∗

1
)
> φ3(u∗

3), and φ3(u∗
3) < φ4

(
u∗

4
)

are met, it follows that u∗ = u∗
3 = v(x);

(1.5) When the conditions of x ≥ 0, φ1
(
u∗

1
)
> φ4

(
u∗

4
)
, and φ4

(
u∗

4
)
< φ3(u∗

3) are met, it
follows that u∗ = u∗

4 = 0;
(1.6) When the condition of x < 0 is met, it follows that u∗ = u∗

5 = x.

Thus, it is possible to successfully derive Equation (20). □

3.2. The Use of the Proximal Operator Algorithm to Solve Truncated Loss Functions

When ϕ(u) in the truncated loss function is a monotonic and non-piecewise function,
and v(x) = arg minϕ(u) + 1

2λ (u − x)2 can be expressed explicitly, the proximal operator of
the truncated loss function can be calculated using Formula (20). In practical applications,
however, it is sometimes impossible to obtain the explicit expression for v(x); for example,
ϕL(u) = exp(ayu)− ayu − 1 does not provide an explicit expression. The calculation of the
proximal operator in such scenarios is discussed below.

For arg minϕ(u) + 1
2λ (u − x)2, if it is smooth and has a second derivative, the problem

is a smooth unconstrained optimization problem. Newton’s method is used to solve for
the minimum of φ(u) in unconstrained optimization problems due to its high convergence
rate. The gradient and Hessian matrix for problem (16) can be expressed as follows:

g =
∂ϕ(u)

∂u
+

1
λ
(u − x) (21)

H =
∂2ϕ(u)

∂u2 +
1
λ

I (22)

The minimizer u∗
3 and the minimal value φ3(u∗

3) can be obtained with Newton’s
method for x.

Entropy 2024, 26, 628 10 of 29

If an explicit expression for v(x) cannot be achieved, the calculation of the proximal
operator follows the same process as Lemma 3. Once the minimizers u∗

3 and φ3(u∗
3) are

obtained, the proximal operator can be calculated. When the conditions of 0 < u∗
3 < λ′,

φ1
(
u∗

1
)
> φ3(u∗

3), and φ3(u∗
3) < φ4

(
u∗

4
)

are met, we can derive u∗ = u∗
3 . Therefore,

Formula (20) can be modified to express the following:

proxλL(x) =

x x > λ′ and φ1
(
u∗

1
)
< φ3(u∗

3) and φ1
(
u∗

1
)
< φ4

(
u∗

4
){

x, u∗
3
}

x = λ′ and φ1
(
u∗

1
)
= φ3(u∗

3) < φ4
(
u∗

4
)

{x, 0} x = λ′ and φ1
(
u∗

1
)
= φ4

(
u∗

4
)
< φ3(u∗

3)
u∗

3 0 < u∗
3 < λ′ and φ1

(
u∗

1
)
> φ3(u∗

3) and φ3(u∗
3) < φ4

(
u∗

4
)

0 x ≥ 0 and φ3(u∗
3) > φ4

(
u∗

4
)

and φ1
(
u∗

1
)
> φ4

(
u∗

4
)

x x < 0

(23)

Based on the analysis presented above, the algorithm for solving the proximal operator
of the truncated loss function is as following Algorithm 1:

Algorithm 1: Algorithm for solving the proximal operator of the truncated loss function

Input : x, δ, λ, ϕ(u)
Output : Proximal operator u∗

1 : Choose an initial point u(0) = x.
2 : While t ≤ MAX do
3 : Calculate g(t) according to Formula (21).
4 : If ∥g(t)∥ < eps, then stop the loop, the approximate solution u∗

3 = u(t+1) is obtained.
5 : Calculate H(t) according to Formula (22).
6 : Calculate d, the Newton iteration direction, according to the Newton iteration

equation H(t)d = −g(t).
7 : Solve for the step size θ using the backtracking Armijo method, and update

u(t) = u(t−1) + θd.
8 : Set t = t + 1.
9 : End
10 : Calculate φ

(
u∗

3
)

according to u∗
3 .

11 : Calculate the proximal operator u∗ according to Formula (23).

4. Robust SVDD Model

Formula (1), for the SVDD formula, can be rewritten as follows:

min
R,µ,ξi

R2 + C∑
i
[ui]+, ui = ∥φ(xi)− µ∥2 − R2 (24)

where [u]+ = max(0, u) represents the hinge loss function. Since the hinge loss function is
sensitive to outliers, it can be replaced with the truncated loss function from Formula (15).
Thus, the objective function for obtaining the robust SVDD model is as follows:

min
R,µ,ξi

R2 + C∑
i

(
ϕ(u)− (δ − ϕ(u))+

)
, ui = ∥φ(xi)− µ∥2 − R2 (25)

As the truncated loss function is non-differentiable, solving the objective function of
the robust SVDD model is a non-convex optimization problem, and it cannot be solved
using standard SVDD model methods.

Theorem 1 (Nonparametric Representation Theorem [37]). Suppose we are designated
a non-empty set χ; a positive definite real-valued kernel K: χ × χ → R ; a training sample
(xi, yi)(i ∈ Nm) ∈ χ ×R; a strictly monotonically increasing real-valued function g on [0,+∞];
an arbitrary cost function c:

(
χ ×R2)m → R∪ {∞} ; and a class of functions:

Entropy 2024, 26, 628 11 of 29

F =

{
f ∈ Rχ

∣∣∣∣∣ f (·) = m

∑
i=1

βiK(zi, ·), βi ∈ R, zi ∈ χ, ∥ f ∥ ≤ ∞

}

In this scenario, ∥ · ∥ represents the norm in RKHS, Hk associated with K(·, ·), i.e., for
any zi ∈ χ.

∥
∞

∑
i=1

βiK(zi, ·)∥
2

=
∞

∑
i=1

∞

∑
j=1

βiβ jK
(
zi, zj

)
(26)

Then, any f ∈ F minimizing the regularized risk function

c((x1, x1, y1, f (x1)), · · · , (xm, ym, f (xm))) + g(∥ f ∥) (27)

admits a representation of f (·) = −∑m
i=1 aiyiK(xi, ·), where ai ∈ R(i ∈ Nm) represents

coefficients of f in RKHS Hk.
A set of vectors a exists in the nonparametric representation theorem, where the center

µ =
n
∑

i=1
aiϕ(xi) is the optimal solution for problem (25). Therefore, Formula (25) can be

transformed into the following:

min
R,ui

R2 + C∑
i

L(ui)

ui = K(xi, xi)− 2
n
∑

j=1
ajK
(
xi, xj

)
+

n
∑

j=1

n
∑

k=1
ajakK

(
xj, xk

)
− R2 (28)

Formula (28) represents the single-class SVDD model. To obtain data that include
negative samples, these samples must be integrated into the SVDD model; then, the center

is µ =
n
∑

i=1
aiyiϕ(xi), and the objective function of the robust SVDD model is as follows:

min
R,µ,ξi

R2 + ∑
i

Cyi L(ui)

ui = yiK(xi, xi)− 2yi
n
∑

j=1
ajyjK

(
xi, xj

)
+ yi

n
∑

j=1

n
∑

k=1
ajyjakykK

(
xj, xk

)
− yiR2 (29)

when ay = a. ∗ y, it follows that µ =
n
∑

i=1
ayi ϕ(xi). Problem (29) is rewritten as the following

matrix form:
min
R,u

R2 + CLϕ(u)

u = Ka − 2Kbay + aT
y KayD − R2D, R2 > 0

(30)

where Ka = diag(K). ∗ y, Kb = [y1 ∗ K(1, ·), y2 ∗ K(2, ·), · · · , yn ∗ K(n, ·)], D = [y1, y2 · · · , yn]
T,

and C =
[
Cy1 , Cy2 · · · , Cyn

]
. This study discusses the use of the SVDD model as a solution

for addressing data with negative samples, and the Lagrangian function for problem (30) is
as follows:

Lβ

(
R2, ay, u, η, β

)
= R2 + CLϕ(u) +

〈
η, Ka − 2Kbay + aT

y KayD − R2D − u
〉

(31)

The KKT conditions for problem (30) are provided below:
Ka − 2Kba∗y + a∗

T
y Ka∗yD − R2∗D − u∗ = 0

0 = 1 − η∗T
D

0 =
(

2Da∗y
TK − 2Kb

T
)

η∗T

0 ∈ ∂CLϕ(u∗)− η∗

(32)

Entropy 2024, 26, 628 12 of 29

where
(

R2∗ , a∗y , u∗
)

represents any KKT point.
The generalized non-smooth optimization problem can be represented by the follow-

ing Formula [38]:
min
R,u

f (s) + cl(q)

q + g(s) = 0
(33)

where f (·) and g(·) are continuously differentiable functions on Rn → R , and l(q) rep-
resents a non-smooth function on Rn → R . Problem (31) is considered as a form of the
aforementioned generalized non-smooth optimization problem, where s =

[
R2, ay

]
, q = u,

f (s) = s1, and g(s) = −Ka + 2Kbs2 − sT
2 Ks2D + s1D, representing the optimization model’s

constraints, are nonlinear equality constraints. In this study, the fast ADMM algorithm
was employed to solve problem (33), and the algorithm will be introduced in a subsequent
chapter.

5. Fast ADMM Algorithm

The previous section presented the optimization mathematical model of the robust
SVDD model. Since the optimization mathematical model includes nonlinear equality
constraints, the fast ADMM method was used to solve Formula (33). The augmented
Lagrangian function of the robust SVDD model is as follows:

Lβ

(
R2, ay, u, η, β

)
= R2 + CLϕ(u) +

〈
η, g
(
ay
)
− R2D − u

〉
+

β

2
∥g
(
ay
)
− R2D − u∥2

(34)

where λ ∈ Rm represents the vector of Lagrange multipliers, and β > 0 represents the
penalty factor, g

(
ay
)
= Ka − 2Kbay + aT

y KayD.

5.1. Fast ADMM Algorithm Framework

Based on the augmented Lagrangian function previously presented, we obtained the
following framework for the fast ADMM algorithm:

uk+1 = arg min
u∈Rm

Lβ

(
R2k

, ak
y, u, ηk

)
(35)

ak+1
y = arg min

ay∈Rm
Lβ

(
R2k

, ay, uk+1, ηk
)
+ ∆φ1

(
ay, ak

y

)
(36)

R2k+1 = arg min
R2∈Rm

Lβ

(
R2, ak+1

y , uk+1, ηk
)
+ ∆φ2

(
R2, R2k

)
(37)

ηk+1 = ηk + β
(

g
(

ak+1
y

)
− R2k+1

D − uk+1
)

(38)

1. Computing uk+1

The solution of uk+1 in Formula (35) is equivalent to the following problem:

uk+1 = arg min
u∈Rm

CLϕ(u) +
β
2 ∥
(

g
(

ak
y

)
− R2k

D + ηk

β

)
− u∥

2

= arg min
u∈Rm

CLϕ(u) +
β
2 ∥zk − u∥2

= prox c
β Lϕ

(
zk
) (39)

where zk = g
(

ak
y

)
− R2k

D + ηk

β . Therefore, the calculation of uk+1 can be transformed into
the computation of the proximal operator, which can be determined using Formula (20) or
Algorithm 1.

Entropy 2024, 26, 628 13 of 29

2. Computing ak+1
y

When solving for variable ak+1
y , if a closed-form solution for this subproblem is not

obtained, an optimization algorithm must be used for the iterative solution, which results
in a slow computational speed. Thus, to solve this problem in a more efficient manner, we
used a linearization technique.

Given the convex differentiable function φ, the Bregman distance between x and
y,x, y ∈ dom(φ) is defined as follows:

∆φ(x, y) = φ(x)− φ(y)− (∇φ(y), x − y) (40)

When φ(x) = µ
2 ∥x∥2 − β

2∥g(x)− R2k
D − uk+1 + ηk

β ∥
2
, the Bregman distance ∆φ(x, y) is

as follows:

∆φ(x, y) = µ
2 ∥x − y∥2 − β

2 ∥g(x)− R2k
D − uk+1 + ηk

β ∥
2
+ β

2 ∥g(y)− R2k
D − uk+1 + ηk

β ∥
2

+
〈

β∇g(y)
(

g(y)− R2k
D − uk+1 + ηk

β

)
, x − y

〉 (41)

Formula (36) is equivalent to the following:

ak+1
y = arg min

ay∈Rm

µ
2 ∥ay − ak

y∥
2
+ β

2 ∥g
(

ak
y

)
− R2k

D − uk+1 + ηk

β ∥
2

+
〈

β∇g
(

ak
y

)(
g
(

ak
y

)
− R2k

D − uk+1 + ηk

β

)
, ay − ak

y

〉 (42)

With the use of Formula (42), we obtain

ak+1
y = ak

y −
β∇g

(
ak

y

)
µ

(
g
(

ak
y

)
− R2k

D − uk+1 +
ηk

β

)
(43)

where µ ≥ β∥∇g
(

ak
y

)
∥

2
.

3. Computing R2k+1

If φ(x) = 1
2∥x∥2, based on Formula (40), we obtain

∆φ2

(
R2, R2k

)
=

1
2
∥R2 − R2k∥ (44)

Formula (37) is equivalent to

R2k+1
= arg min

R2∈Rm
R2 +

β

2
∥g
(

ak+1
y

)
− R2D − uk+1 +

ηk

β
∥

2

+
1
2
∥R2 − R2k∥

2
(45)

Formula (45) represents a convex quadratic programming problem. By solving the
following Equation (46), we also solve Formula (45):

0 = 1 − βDT

(
g
(

ak+1
y

)
− R2D − uk+1 +

ηk

β

)
+ R2 − R2k

(46)

The value of R2k+1
is directly updated using the following formula:

R2k+1
=

(
βDT

(
g
(

ak+1
y

)
− uk+1 + ηk

β

)
− 1 + R2k

)
(1 + βDT D)

(47)

Entropy 2024, 26, 628 14 of 29

4. Computing ηk+1

ηk+1 can be calculated using Formula (38). When ηk+1 = 0, the Lagrange multiplier is
removed.

Base on above analysis, the framework of our method can be summarized in Algorithm 2.

Algorithm 2: Fast ADMM Algorithm

Input : Ka, Kb, D
Output :

(
R2k

, ak
y

)
1 : Take an initial point

(
R20

, a0
y, u0, η0

)
, and kMAX .

2 : While the stop condition is not satisfied and k ≤ kMAX perform the following
3 : Calculate ak

y according to Formula (43).
4 : Calculate R2k

according to Formula (47).
5 : If the proximal operator of ϕ(u) has an explicit expression, use Formula (20) for the
calculation uk

6 : If the proximal operator of ϕ(u) does not have an explicit expression, use
Algorithm 1 for the calculation uk

7 : Calculate ηk according to Formula (38).
8 : Update k = k + 1.
9: End

10: Output the final solution
(

R2k
, ak

y

)
.

5.2. Global Convergence Analysis of the Fast ADMM Algorithm

In this section, we provide a convergence analysis of the fast ADMM algorithm.
Specifically, the convergence of the algorithm is discussed using Lemma 7, and Lemma 7 is
proven. According to Formulas (35)–(38), it can be observed that the optimality conditions
for each update iteration of the fast ADMM algorithm can be written as follows:

0 ∈ ∂CLϕ

(
uk+1

)
− ηk − β

(
g
(

ay
k
)
− R2k

D − uk+1
)

0 = µ
(

ak+1
y − ak

y

)
− β∇g

(
ak

y

)(
g
(

ak
y

)
− R2k

D − uk+1 + ηk

β

)
0 =1 − DTηk − βDT

(
g
(

ay
k+1
)
− R2k+1

D − uk+1
)
+ R2k+1 − R2k

ηk+1 = ηk + β
(

g
(

ay
k+1
)
− R2k+1

D − uk+1
) (48)

where ∇g
(
ay
)
= 2Day

TK − 2Kb
T .

Lemma 4. Assume wk =
(

R2k
, ak

y, uk, ηk
)

is a sequence generated using the fast ADMM
algorithm; then, for any k ≥ 1, we obtain the following:

Lβ

(
R2k+1

, ak+1
y , uk+1, ηk

)
≤ Lβ

(
R2k

, ak+1
y , uk+1, ηk

)
− β

2 ∥R2k+1
D − R2k

D∥
2

− 1
2∥R2k+1 − R2k∥

2
− 1

2∥R2k − R2k−1∥
2 (49)

where λmin
(

DDT) represents the strictly positive minimum eigenvalue of DDT .

Proof of Lemma 4. According to the optimality conditions of the iteration, the following
equation is relevant:

DTηk+1= 1+R2k+1 − R2k

According to the Cauchy–Schwarz inequality, it follows that

λmin
(

DDT)∥ηk+1 − ηk∥2 ≤ ∥DTηk+1 − DTηk∥2
= ∥R2k+1 − R2k −

(
R2k − R2k−1

)
∥

2

≤ ∥R2k+1 − R2k∥
2
+ ∥R2k − R2k−1∥

2

Entropy 2024, 26, 628 15 of 29

Thus,

1
β
∥ηk+1 − ηk∥2 ≤ 1

λmin(DDT)β
∥R2k+1 − R2k∥

2
+

1
λmin(DDT)β

∥R2k − R2k−1∥
2
.

□

Lemma 5. Assume wk =
(

R2k
, ak

y, uk, ηk
)

is a sequence generated using the fast ADMM
algorithm; then, for any k ≥ 1, the following is true:

Lβ

(
R2k+1

, ak+1
y , uk+1, ηk

)
≤ Lβ

(
R2k

, ak+1
y , uk+1, ηk

)
− β

2 ∥R2k+1
D − R2k

D∥
2

− 1
2∥R2k+1 − R2k∥

2
− 1

2∥R2k − R2k−1∥
2 (50)

Proof of Lemma 5. From the definition of the augmented Lagrangian function presented
in Formula (34), it can be argued that

Lβ

(
R2k+1

, ak+1
y , uk+1, ηk

)
− Lβ

(
R2k

, ak+1
y , uk+1, ηk

)
= R2k+1 − R2k

+
〈

ηk,
(

R2k − R2k+1
)

D
〉
+ β

2 ∥g
(

ak+1
y

)
− R2k+1

D − uk+1∥
2
− β

2 ∥g
(

ak+1
y

)
− R2k

D − uk+1∥
2

+ 1
2∥R2k+1 − R2k∥

2
− 1

2∥R2k − R2k−1∥
2

(51)

Formula (48) shows the following:

g
(

ak+1
y

)
− R2k

D − uk+1 =
1
β

(
ηk+1 − ηk

)
+
(

R2k+1
D − R2k

D
)

(52)

Therefore,

β
2 ∥φ

(
ak+1

y

)
− R2k

D − uk+1∥
2
= β

2 ∥
1
β

(
ηk+1 − ηk

)
+
(

R2k+1
D − R2k

D
)
∥

2

= 1
2β∥ηk+1 − ηk∥2

+ β
2 ∥R2k+1

D − R2k
D∥

2
+
〈

ηk+1 − ηk, R2k+1
D − R2k

D
〉 (53)

By substituting Formula (53) into (51), the following is achieved:

Lβ

(
R2k+1

, ak+1
y , uk+1, ηk

)
− Lβ

(
R2k

, ak+1
y , uk+1, ηk

)
= R2k+1 − R2k

+
〈

ηk,
(

R2k − R2k+1
)

D
〉
− β

2 ∥R2k+1
D − R2k

D∥
2
−
〈

ηk+1 − ηk, R2k+1
D − R2k

D
〉

+ 1
2∥R2k+1 − R2k∥

2
− 1

2∥R2k − R2k−1∥
2

= − β
2 ∥R2k+1

D − R2k
D∥

2
+
〈

1 − DTηk+1, R2k+1 − R2k
〉
+ 1

2∥R2k+1 − R2k∥
2
− 1

2∥R2k − R2k−1∥
2

= − β
2 ∥R2k+1

D − R2k
D∥

2
− 1

2∥R2k+1 − R2k∥
2
− 1

2∥R2k − R2k−1∥
2

Thus, the proof is completed. □

Lemma 6. Assume wk =
(

R2k
, ak

y, uk, ηk
)

is a sequence generated using the fast ADMM
algorithm; then, for k ≥ 1, we obtain the following:

Lβ

(
R2k

, ak+1
y , uk+1, ηk

)
≤ Lβ

(
R2k

, ak
y, uk+1, ηk

)
+

β∥∇g(ak
y)∥

2

2 ∥ak
y − ak−1

y ∥2

− µ
2 ∥ak+1

y − ak
y∥

2 − µ
2 ∥ak

y − ak−1
y ∥2

(54)

Proof of Lemma 6. The definition of the augmented Lagrangian function in Formula (34)
shows the following:

Entropy 2024, 26, 628 16 of 29

Lβ

(
R2k

, ak+1
y , uk+1, ηk

)
− Lβ

(
R2k

, ak
y, uk+1, ηk

)
= β

2 ∥g
(

ak
y

)
− R2k

D − uk+1 + ηk

β ∥
2
− µ

2 ∥ak+1
y − ak

y∥
2 − µ

2 ∥ak
y − ak−1

y ∥2 − β
2 ∥g

(
ak−1

y

)
− R2k

D − uk+1 + ηk

β ∥
2

−
〈

β∇g
(

ak−1
y

)(
g
(

ak−1
y

)
− R2k

D − uk+1 + ηk

β

)
, ak

y − ak−1
y

〉
= β

2 ∥g
(

ak
y

)
− g
(

ak−1
y

)
∥

2
− µ

2 ∥ak+1
y − ak

y∥
2 − µ

2 ∥ak
y − ak−1

y ∥2
+ β

〈
g
(

ak−1
y

)
− R2k

D − uk+1 + ηk

β , g
(

ak
y

)
− g
(

ak−1
y

)〉
−
〈

β∇g
(

ak−1
y

)(
g
(

ak−1
y

)
− R2k

D − uk+1 + ηk

β

)
, ak

y − ak−1
y

〉
(55)

According to the first-order condition for convex functions, and since g
(
ay
)

is a convex
function, we obtain the following:

g
(

ak+1
y

)
− g
(

ak
y

)
≤
〈

∂g
(

ak+1
y

)
, ak+1

y − ak
y

〉
(56)

The substitution of Formula (56) yields the following:

Lβ

(
R2k

, ak+1
y , uk+1, ηk

)
− Lβ

(
R2k

, ak
y, uk+1, ηk

)
= β

2 ∥g
(

ak
y

)
− g
(

ak−1
y

)
∥

2
− µ

2 ∥ak+1
y − ak

y∥
2 − µ

2 ∥ak
y − ak−1

y ∥2
+ β

〈
g
(

ak−1
y

)
− R2k

D − uk+1 + ηk

β , g
(

ak
y

)
− g
(

ak−1
y

)〉
−
〈

β∇g
(

ak−1
y

)(
g
(

ak−1
y

)
− R2k

D − uk+1 + ηk

β

)
, ak

y − ak−1
y

〉
≤ β

2 ∥g
(

ak
y

)
− g
(

ak−1
y

)
∥

2
− µ

2 ∥ak+1
y − ak

y∥
2 − µ

2 ∥ak
y − ak−1

y ∥2

≤ β∥∇g(ak
y)∥

2

2 ∥ak
y − ak−1

y ∥2 − µ
2 ∥ak+1

y − ak
y∥

2 − µ
2 ∥ak

y − ak−1
y ∥2

Thus, the proof is complete. □

Lemma 7. Assume wk =
(

R2k
, ak

y, uk, ηk
)

is a sequence generated using the fast ADMM

algorithm; if µ ≥ β∥∇g
(

ak
y

)
∥

2
and 1

λmin(DDT)β
≤ 1

2 , then for any k ≥ 1, we obtain the following:

Lβ

(
R2k+1

, ak+1
y , uk+1, ηk+1

)
≤ Lβ

(
R2k

, ak
y, uk, ηk

)
− µ

2
∥ak+1

y − ak
y∥

2 − β

2
∥R2k+1

D − R2k
D∥

2
(57)

Proof of Lemma 7. The definition of the augmented Lagrangian function in Formula (36)
shows the following:

Lβ

(
R2k+1

, ak+1
y , uk+1, ηk+1

)
= Lβ

(
R2k+1

, ak+1
y , uk+1, ηk

)
+
〈

ηk+1 − ηk, φ
(

ak+1
y

)
− R2k+1

D − uk+1
〉

= Lβ

(
R2k+1

, ak+1
y , uk+1, ηk

)
+ 1

β∥ηk+1 − ηk∥2

Since Lβ

(
R2k

, ak
y, u, ηk

)
is a global minimum with respect to the variable uk+1, then

Lβ

(
R2k

, ak
y, uk+1, ηk

)
≤ Lβ

(
R2k

, ak
y, uk, ηk

)
The combination of Lemmas 5 and 6 produces the following:

Lβ

(
R2k+1

, ak+1
y , uk+1, ηk+1

)
= Lβ

(
R2k+1

, ak+1
y , uk+1, ηk

)
+ 1

β∥ηk+1 − ηk∥2

= Lβ

(
R2k

, ak+1
y , uk+1, ηk

)
− β

2 ∥R2k+1
D − R2k

D∥
2
+ 1

β∥ηk+1 − ηk∥2 − 1
2∥R2k+1 − R2k∥

2
− 1

2∥R2k − R2k−1∥
2

≤ Lβ

(
R2k

, ak
y, uk, ηk

)
− β

2 ∥R2k+1
D − R2k

D∥
2
− 1

2∥R2k+1 − R2k∥
2
− 1

2∥R2k − R2k−1∥
2
+ 1

β∥ηk+1 − ηk∥2

+
β∥∇g(ak

y)∥
2

2 ∥ak
y − ak−1

y ∥2 − µ
2 ∥ak+1

y − ak
y∥

2 − µ
2 ∥ak

y − ak−1
y ∥

Entropy 2024, 26, 628 17 of 29

When µ ≥ β∥∇g
(

ak
y

)
∥

2
and 1

λmin(DDT)β
≤ 1

2 , it follows that

Lβ

(
R2k+1

, ak+1
y , uk+1, ηk+1

)
≤ Lβ

(
R2k

, ak
y, uk, ηk

)
− µ

2
∥ak+1

y − ak
y∥

2 − β

2
∥R2k+1

D − R2k
D∥

2

When the conditions of µ ≥ β∥∇g
(

ak
y

)
∥

2
and 1

λmin(DDT)β
≤ 1

2 are met, according to

Lemma 7, Lβ

(
R2, ay, u, η

)
monotonically decreases, thus causing the fast ADMM algorithm

to converge. □

5.3. Fast ADMM Algorithm Termination Conditions

Based on Formula (35), it can be observed that the uk+1 that minimizes Lβ

(
R2k

, ak
y, u, ηk

)
can be derived as follows:

0 ∈ ∂CLϕ

(
uk+1

)
− β

(
g
(

ak
y

)
− R2k

D − uk+1 + ηk

β

)
= ∂CLϕ

(
uk+1

)
− ηk+1 − β

(
g
(

ak+1
y

)
− g
(

ak
y

))
− β

(
R2k+1

D − R2k
D
) (58)

where
β
(

g
(

ak+1
y

)
− g
(

ak
y

))
+ β

(
R2k+1

D − R2k
D
)
∈ ∂CLϕ

(
uk+1

)
− ηk+1 (59)

Thus, we obtain the following equation:

Sk+1
1 = β

(
g
(

ak+1
y

)
− g
(

ak
y

))
+ β

(
R2k+1

D − R2k
D
)

(60)

Equation (60) represents the residual value of the dual feasibility condition. Hence,
Sk+1

1 represents the dual residual of iteration.

rk+1
1 = Ka − 2Kbak+1

y + ak+1T

y Kak+1
y D − R2k+1

D − uk+1 (61)

rk+1
2 = 1 − ηk+1T

D (62)

rk+1
3 =

(
2Dak+1

y
T

K − 2Kb
T
)

ηk+1T
(63)

Equations (61)–(63) represent the primal residuals of iteration. The KKT conditions of
problem (32) consist of four components, corresponding to the primal and dual residuals.
These two types of residuals gradually converge to zero with the use of the fast ADMM
algorithm.

Both the primal and dual residuals must be sufficiently small, meeting the conditions
presented below, for the termination of the use of the fast ADMM algorithm:

max

∥rk

1∥
max{∥2Kbay+aT

y KayD−R2D∥,∥u∥,∥Ka∥} , ∥Sk
1∥

∥ηkT ∥
, ∥rk

2∥
max

{
1,∥ηkT D∥

} ,

∥rk
3∥

max
{
∥2Dak+1

y
T

K−2Kb
T∥,∥2ηk+1T ∥

}

 ≤ εtol (64)

where εtol > 0. Typically, εtol is selected so that 10−4 ≤ εtol ≤ 10−3; in this study, εtol = 10−3.
This ensures that the algorithm terminates when the solution’s accuracy is within an
acceptable range.

6. Experiment

In this section, we describe extensive experiments conducted on various datasets
to validate the effectiveness and robustness of the three truncated loss function SVDD
algorithms proposed in this study, which are presented below. The experimental datasets

Entropy 2024, 26, 628 18 of 29

consisted of synthetic and several UCI datasets. We also compared hinge loss SVDD [8],
DW-SVDD [20], R-SVDD [19], and GL-SVDD [16] algorithms to validate their performance.

1. ϕR-SVDD: SVDD algorithm with a truncated generalized ramp loss function;
2. ϕ f -SVDD: SVDD algorithm with a truncated binary cross entropy loss function;
3. ϕL-SVDD: SVDD algorithm with a truncated linear exponential loss function.

6.1. Experimental Setup

This subsection introduces the evaluation metrics, kernels, and parameter settings
used in the experiments.

6.1.1. Evaluation Metrics

We used G-mean and F1-score as evaluation metrics to assess the performance of the
different methods described in this study [30,39–41]. They are based on TP, FN, FP, and
TN, where TP denotes the number of target data predicted as target data, FN denotes the
number of target data predicted as outlier data, FP denotes the number of outlier data
predicted as target data, and TN denotes the number of outlier data predicted as outlier
data.

G − mean =
√

Recall × Speci f icity (65)

F1 − score =
2 × Precision × Recall

Precision + Recall
(66)

where Recall = TP/(TP+ FN), Speci f icity = TN/(TN + FP), and Precision = TP/(TP+ FP).
It can be seen from (65) and (66) that G-mean can provide a good balance between recall
and specificity, and F1-score provides a good balance between precision and recall. Hence,
both of them can measure the performance of the proposed method, comprehensively.

6.1.2. Kernels

The Gaussian kernel function has the best mapping ability and is the most practical
method, commonly used to handle the classification problems of nonlinear data, and we
used it when conducting our experiments. The definition of the Gaussian kernel function is
as follows:

K
(
xi, xj

)
= exp

(
−
∥xi − xj∥2

2σ2

)
(67)

6.1.3. Parameter Configuration

To ensure a fair comparison, the parameters for each method were selected using the
grid search method. For all methods, the regularization parameter c was selected from
{0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1, 2, 5, 10}. Arin Chaudhuri [42] has demonstrated that there ex-

ists a σ in the interval
[

min
{√

∥xi − xj∥2, i ̸= j
}

/
√

3, max
{√

∥xi − xj∥2, i ̸= j
}

/
√

3
]

that

maximizes the SVDD optimization objective function. Therefore, the range for the kernel pa-

rameter σ can be set as:
[

min
{√

∥xi − xj∥2, i ̸= j
}

/
√

3 , max
{√

∥xi − xj∥2, i ̸= j
}

/
√

3
]

.

The DW-SVDD and GL-SVDD algorithms locate the k-nearest neighbors in the feature
space, with the parameter k selected from {5, 10, 15, 20}. All of the truncated loss function
SVDD algorithms select the parameter λ from {0.1, 0.2, 0.5, 1}, ϕR-SVDD selects parameter
v from {0.1, 0.3, 0.5, 1, 5}, and ϕ f -SVDD selects parameter θ from {0.1, 0.3, 0.5, 1, 5}. The
parameter a for ϕL-SVDD is selected from {1, 5, 10}.

6.2. Synthetic Datasets with Noise

In this study, we constructed two synthetic datasets: circular and banana-shaped,
to test the robustness of the three proposed truncated loss function support vector data
description (SVDD) algorithms. To verify the robustness of the algorithms in handling
different types of noise, we introduced two types of noise:

Entropy 2024, 26, 628 19 of 29

• Neighboring noise: Noise points are randomly distributed near the normal samples
but do not completely overlap with the normal samples, forming a more discrete
distribution characteristic. This noise simulates the common boundary ambiguity in
practical applications.

• Regional noise: Noise points are randomly distributed within a specified area, forming
sparse clusters. This noise simulates possible local anomalies in practical applications.

The description of the synthetic dataset is given below:

1. Circular Dataset

• Normal samples: This consists of 300 two-dimensional sample points distributed
within a concentric circle, forming a normal distribution pattern.

• Noise samples: This consists of 40 noise points, divided into two types: 20 noise
points randomly distributed near the normal sample points, showing a discrete
distribution characteristic, and another 20 noise points randomly distributed
within a specified area, forming sparse clusters.

• Illustration: Figure 1a shows the circular dataset, where blue points represent
normal samples, and red points represent noise.

Entropy 2024, 26, x FOR PEER REVIEW 23 of 33

(a) (b)

Figure 1. Two synthetic datasets, where blue samples are normal and the samples marked with a

red cross represent noise. (a) Circular dataset. (b) Banana-shaped dataset.

For circular outliers, the classification results of SVDD, DW-SVDD, DBSCAN, R -

SVDD, f -SVDD, and L -SVDD algorithms for this dataset are presented in Figure 2. We

can observe that the SVDD algorithm accurately identifies seven noise points as outliers,

while misclassifying thirty-three noise points as normal values. Therefore, the

performance of SVDD is severely affected by noise. Unlike SVDD, DW-SVDD accurately

identified 22 noise points as outliers, while misclassifying 18 clustered noise points as

normal values. DW-SVDD is based on a weighted idea where outliers are commonly

sparse data; hence, a smaller weight is designated to these sparse data, which are then

excluded from the sphere. The weighted method struggles to exclude clustered noise since

20 clustered noise points are present in the circular outliers. DBSCAN accurately

identified the 20 sparsely distributed noise points but incorrectly classified the 20

clustered noise points as normal values. Therefore, DBSCAN cannot accurately identify

clustered noise. The
R -SVDD,

f -SVDD, and
L -SVDD algorithms successfully

identified all of the noise points, and their classification boundaries encompassed all of

the target samples.

The classification results of the SVDD, DW-SVDD, DBSCAN, R -SVDD, f -SVDD,

and L -SVDD algorithms for the banana-shaped dataset are presented in Figure 3. It can

be observed that SVDD only identifies two noise points, while misclassifying the

remaining noise points as normal values. DW-SVDD accurately differentiated nine noise

points distributed around the banana data, while misclassifying the remaining noise

points as normal values. R -SVDD accurately identified 35 noise points as outliers, while

misclassifying the remaining noise points as normal values, and erroneously classifying

16 target values as outliers. f -SVDD accurately identified 36 noise points as outliers,

while misclassifying the remaining noise points as normal values, and erroneously

classifying 14 target values as outliers. L -SVDD accurately identified 38 noise points as

outliers, while misclassifying the remaining noise points as normal values, and

erroneously classifying 13 target values as outliers.

Figure 1. Two synthetic datasets, where blue samples are normal and the samples marked with a red
cross represent noise. (a) Circular dataset. (b) Banana-shaped dataset.

2. Banana-shaped Dataset

• Normal samples: This consists of 300 two-dimensional sample points distributed
along curved lines, resembling a banana shape.

• Noise samples: This consists of 40 noise points, divided into two types: 10 noise
points randomly distributed near the banana-shaped normal sample points, and
another 30 noise points randomly distributed within a specified area, forming
sparse clusters.

• Illustration: Figure 1b shows the banana-shaped dataset, where blue points
represent normal samples, and red points represent noise samples.

By choosing these noise distributions and quantities, we aimed to simulate different
real-world noise scenarios and test the robustness of the proposed algorithms under varying
noise conditions.

For circular outliers, the classification results of SVDD, DW-SVDD, DBSCAN, ϕR-
SVDD, ϕ f -SVDD, and ϕL-SVDD algorithms for this dataset are presented in Figure 2. We
can observe that the SVDD algorithm accurately identifies seven noise points as outliers,
while misclassifying thirty-three noise points as normal values. Therefore, the performance
of SVDD is severely affected by noise. Unlike SVDD, DW-SVDD accurately identified
22 noise points as outliers, while misclassifying 18 clustered noise points as normal values.
DW-SVDD is based on a weighted idea where outliers are commonly sparse data; hence,

Entropy 2024, 26, 628 20 of 29

a smaller weight is designated to these sparse data, which are then excluded from the
sphere. The weighted method struggles to exclude clustered noise since 20 clustered noise
points are present in the circular outliers. DBSCAN accurately identified the 20 sparsely
distributed noise points but incorrectly classified the 20 clustered noise points as normal
values. Therefore, DBSCAN cannot accurately identify clustered noise. The ϕR-SVDD,
ϕ f -SVDD, and ϕL-SVDD algorithms successfully identified all of the noise points, and their
classification boundaries encompassed all of the target samples.

Entropy 2024, 26, x FOR PEER REVIEW 24 of 33

(a) (b)

(c) (d)

(e) (f)

Figure 2. Classification results of six methods for circular dataset: (a) SVDD, (b) DW-SVDD, (c)

DBSCAN, (d) R -SVDD, (e) f -SVDD, and (f) L -SVDD.

(a) (b)

Figure 2. Classification results of six methods for circular dataset: (a) SVDD, (b) DW-SVDD, (c) DB-
SCAN, (d) ϕR-SVDD, (e) ϕ f -SVDD, and (f) ϕL-SVDD.

The classification results of the SVDD, DW-SVDD, DBSCAN, ϕR-SVDD, ϕ f -SVDD,
and ϕL-SVDD algorithms for the banana-shaped dataset are presented in Figure 3. It can be

Entropy 2024, 26, 628 21 of 29

observed that SVDD only identifies two noise points, while misclassifying the remaining
noise points as normal values. DW-SVDD accurately differentiated nine noise points dis-
tributed around the banana data, while misclassifying the remaining noise points as normal
values. ϕR-SVDD accurately identified 35 noise points as outliers, while misclassifying the
remaining noise points as normal values, and erroneously classifying 16 target values as
outliers. ϕ f -SVDD accurately identified 36 noise points as outliers, while misclassifying the
remaining noise points as normal values, and erroneously classifying 14 target values as
outliers. ϕL-SVDD accurately identified 38 noise points as outliers, while misclassifying the
remaining noise points as normal values, and erroneously classifying 13 target values as
outliers.

Entropy 2024, 26, x FOR PEER REVIEW 24 of 33

(a) (b)

(c) (d)

(e) (f)

Figure 2. Classification results of six methods for circular dataset: (a) SVDD, (b) DW-SVDD, (c)

DBSCAN, (d) R -SVDD, (e) f -SVDD, and (f) L -SVDD.

(a) (b)

Entropy 2024, 26, x FOR PEER REVIEW 25 of 33

(c) (d)

(e) (f)

Figure 3. Classification results of six methods for banana-shaped dataset: (a) SVDD, (b) DW-SVDD,

(c) DBSCAN, (d) R -SVDD, (e) f -SVDD, and (f) L -SVDD.

From the experiments on the two synthetic datasets, it can be seen that the DBSCAN

algorithm is very effective in handling obvious noise, but it cannot accurately identify

noise when the noise is less obvious or close to normal data. DW-SVDD and DBSCAN

methods cannot accurately identify sparse clustered noise, whereas R -SVDD, f -SVDD,

and L -SVDD can effectively identify clustered noise in the dataset. Figures 1 and 2 show

that the classification boundaries of R -SVDD, f -SVDD, and L -SVDD are tighter and

smoother than SVDD and DW-SVDD methods. Therefore, it can be determined that the

three truncated loss function SVDD algorithms proposed in this study are more robust to

noise in both synthetic datasets.

6.3. UCI Datasets with the Presence of Noise

To further validate the effectiveness of the proposed method, we used eight standard

datasets obtained from the UCI machine learning repository to conduct our experiments

[43]. For each standard dataset, one class of samples was used as normal data, and the

remaining classes were used as outlier data. Moreover, to eliminate the impact of data

scale, each feature of every dataset was normalized to 0,1 . Grid parameter optimization

was used to determine the optimal parameters in all of the experiments, and the average

value of ten repetitions of each experiment was the final result. For each dataset, parts of

the target and non-target data were randomly selected for the training set, and the

remaining target and non-target data were selected for the test set.

6.3.1. Training Dataset without Non-Target Data

For each dataset, 70% of the normal data were randomly selected for the training set,

and noise-contaminated data were added to the training set. Noise data were created by

Figure 3. Classification results of six methods for banana-shaped dataset: (a) SVDD, (b) DW-SVDD,
(c) DBSCAN, (d) ϕR-SVDD, (e) ϕ f -SVDD, and (f) ϕL-SVDD.

Entropy 2024, 26, 628 22 of 29

From the experiments on the two synthetic datasets, it can be seen that the DBSCAN
algorithm is very effective in handling obvious noise, but it cannot accurately identify
noise when the noise is less obvious or close to normal data. DW-SVDD and DBSCAN
methods cannot accurately identify sparse clustered noise, whereas ϕR-SVDD, ϕ f -SVDD,
and ϕL-SVDD can effectively identify clustered noise in the dataset. Figures 1 and 2 show
that the classification boundaries of ϕR-SVDD, ϕ f -SVDD, and ϕL-SVDD are tighter and
smoother than SVDD and DW-SVDD methods. Therefore, it can be determined that the
three truncated loss function SVDD algorithms proposed in this study are more robust to
noise in both synthetic datasets.

6.3. UCI Datasets with the Presence of Noise

To further validate the effectiveness of the proposed method, we used eight stan-
dard datasets obtained from the UCI machine learning repository to conduct our experi-
ments [43]. For each standard dataset, one class of samples was used as normal data, and
the remaining classes were used as outlier data. Moreover, to eliminate the impact of data
scale, each feature of every dataset was normalized to [0, 1]. Grid parameter optimization
was used to determine the optimal parameters in all of the experiments, and the average
value of ten repetitions of each experiment was the final result. For each dataset, parts of the
target and non-target data were randomly selected for the training set, and the remaining
target and non-target data were selected for the test set.

6.3.1. Training Dataset without Non-Target Data

For each dataset, 70% of the normal data were randomly selected for the training set,
and noise-contaminated data were added to the training set. Noise data were created by
changing the labels of non-target data from −1 to 1, with added noise data proportions of
10%, 20%, 30%, 40%, and 50% non-target data, and the test set consisted of the remaining
target and non-target data.

Table 1 presents the G-mean averages for different methods across 10 trials, with
the best results presented in bold. In 40 experimental datasets, ϕR-SVDD and ϕ f -SVDD
achieved higher G-means on 35 datasets compared to benchmark methods, while ϕL-SVDD
achieved higher G-means on 34 datasets. As the proportion of noise-contaminated data
increases, i.e., more data are contaminated by noise, the classification accuracy of all models
generally declines. It can be observed that, as the proportion of noise-contaminated data
increases, the ϕR-SVDD, ϕ f -SVDD, and ϕL-SVDD algorithms show less of a decline in
accuracy compared to the other algorithms. Taking the Iris dataset as an example, when
the proportion of noise-contaminated data r increases from 0.1 to 0.5, the G-means of
ϕR-SVDD,ϕ f -SVDD, and ϕL-SVDD decline by 13.02%, 13.02%, and 11.5%, while those of
the DW-SVDD, R-SVDD, and GLE-SVDD decline by 19.55%, 16.6%, and 17.7%, respectively.

Table 2 shows the F1-score averages of different methods over 10 trials. In the 40 ex-
perimental datasets, ϕR-SVDD and ϕ f -SVDD achieved higher F1-scores than the compared
methods in 32 datasets, while ϕL-SVDD had higher F1-scores in 31 datasets. ϕR-SVDD,
ϕ f -SVDD, and ϕL-SVDD demonstrate higher classification accuracy in most test datasets
compared to current noise-resistant SVDD models (i.e., DW-SVDD, R-SVDD, and GL-
SVDD), indicating that the use of a truncated loss function makes SVDD less sensitive to
noise.

Entropy 2024, 26, 628 23 of 29

Table 1. G-mean values for different methods for UCI datasets with noise (not containing non-target
data).

Dataset r SVDD DW-SVDD R-SVDD GL-SVDD ϕR-SVDD ϕf-SVDD ϕL-SVDD

Blood

10% 49.95 49.28 51.25 49.19 52.79 52.79 54.82
20% 46.87 46.43 48.65 46.84 50.21 50.21 51.5
30% 42.34 41.87 42.34 42.34 45.96 45.96 52.41
40% 41.39 41.52 41.39 41.58 45.06 45.06 51.50
50% 40.53 40.56 40.69 40.9 42.6 42.6 50.72

Balance
scale

10% 73.70 73.8 73.91 73.64 74.38 74.38 74.32
20% 68.58 68.67 68.60 68.60 66.62 66.62 67.19
30% 62.66 64.26 62.66 62.71 62.70 62.70 63.75
40% 57.38 58.44 57.38 57.44 58.60 58.60 64.32
50% 53.47 54.72 53.43 53.47 56.51 56.51 61.13

Ecoli

10% 77.5 77.48 80.63 76.28 86.08 86.08 81.95
20% 70.85 67.02 70.26 70.85 73.08 73.08 73.53
30% 67 62.77 67.22 67 70.61 70.61 70.29
40% 64.75 60.37 64.75 64.75 67.57 67.57 68.33
50% 59.94 55.18 59.87 59.94 64.26 64.26 64.42

Haberman

10% 54.37 54.57 53.36 55.49 54.06 54.06 52.09
20% 54.85 55.01 54.87 54.93 55.34 55.34 54.30
30% 53.38 53.58 54.86 53.54 57.13 57.13 56.02
40% 52.54 52.31 52.73 52.45 53.89 53.89 53.93
50% 50.12 49.74 49.95 50.09 51.92 51.92 52.03

Iris

10% 76.8 79.5 76.92 78.18 80.74 80.74 79.52
20% 69.29 68.94 69.39 69.52 71.13 71.13 70.97
30% 65.77 65.52 65.67 65.85 70.46 70.46 69.46
40% 61.67 61.69 61.41 61.96 65.46 65.46 65.84
50% 60.21 59.95 60.32 60.48 67.72 67.72 68.02

Wine

10% 79.76 79.76 79.02 79.76 80.18 80.18 80.74
20% 71.66 73.59 73.02 72.32 75.03 75.03 76.23
30% 68.73 70.11 71.49 69.04 73.12 73.12 72.44
40% 64.3 64.25 64.21 64.01 68.35 68.35 68.96
50% 64.03 63.93 64.06 63.09 68.00 68.00 68.59

Ionosphere

10% 84.22 84.43 85.08 84.22 86.89 86.89 86.81
20% 82.98 83.3 82.89 83.22 84.12 84.12 83.38
30% 81.94 82.2 81.35 81.89 82.42 82.42 82.18
40% 83.55 83.37 80.58 83.33 83.14 83.14 82.86
50% 82.28 82.44 77.87 82.28 81.96 81.96 82.06

Sonar

10% 56.46 56.89 56.16 57.22 58.62 58.62 59.58
20% 53.46 51.48 53.46 53.46 53.50 53.50 53.73
30% 49.15 47.17 49.15 49.15 55.29 55.29 55.28
40% 52.48 50.04 52.48 52.48 57.57 57.57 57.68
50% 45.22 43.31 45.22 45.22 50.10 50.10 50.38

Entropy 2024, 26, 628 24 of 29

Table 2. F1-score values of different methods for UCI datasets with noise (not containing non-target
data).

Dataset r SVDD DW-SVDD R-SVDD GL-SVDD ϕR-SVDD ϕf-SVDD ϕL-SVDD

Blood

10% 72.17 73.13 73.18 73.21 73.05 73.05 72.93
20% 68.98 68.09 69.12 68.85 68.72 68.72 68.19
30% 65.93 66.54 67.33 65.93 68.42 68.42 68.44
40% 64.42 64.95 64.26 64.28 66.25 66.25 65.95
50% 63.38 62.37 63.27 62.64 65.25 65.25 64.06

Balance
scale

10% 58.14 58.28 58.13 58.07 56.67 56.48 57.01
20% 50.57 51.47 50.19 51.49 50.74 50.74 51.14
30% 48.61 48.92 48.63 48.65 49.75 49.75 49.58
40% 48.18 48.82 48.18 48.21 53.02 53.02 53.65
50% 49.07 49.21 49.16 49.21 49.81 49.81 53.48

Ecoli

10% 60.55 60.48 60.51 55.27 72.52 63.25 64.12
20% 47.43 50.81 46.49 50.81 54.71 54.60 56.57
30% 49.30 47.04 43.51 49.30 53.46 53.26 53.27
40% 50.95 49.43 46.08 50.95 53.02 53.02 53.65
50% 50.49 50.58 49.20 50.58 51.93 51.93 52.11

Haberman

10% 57.98 58.28 56.01 62.42 57.63 58.15 57.79
20% 60.97 60.17 59.67 60.29 60.65 60.27 59.76
30% 62.18 61.95 62.36 62.23 64.10 63.72 64.22
40% 63.87 64.41 62.04 64.02 64.62 64.45 63.87
50% 56.66 58.02 57.51 58.25 60.52 60.61 59.11

Iris

10% 66.07 57.62 68.75 56.52 60.02 60.41 62.75
20% 51.17 51.71 53.99 51.79 55.66 55.66 55.79
30% 41.10 41.02 42.15 41.17 49.74 49.74 51.22
40% 40.04 40.13 41.97 40.41 44.94 44.94 45.79
50% 43.39 43.70 44.28 43.99 49.97 49.97 50.34

Wine

10% 60.87 63.87 62.77 53.66 66.26 66.76 67.28
20% 44.97 43.48 41.97 43.94 55.32 50.34 51.50
30% 42.46 43.91 43.33 42.81 48.67 47.52 48.27
40% 42.06 42.45 42.56 41.94 45.60 45.29 49.26
50% 46.64 46.61 46.24 45.98 48.96 48.94 49.59

Ionosphere

10% 80.87 81.09 81.29 80.87 83.08 82.89 83.08
20% 80.40 80.03 80.74 80.31 81.00 80.36 80.28
30% 79.46 79.76 79.98 79.40 81.21 80.60 80.52
40% 81.52 81.93 81.26 81.88 82.00 82.12 82.02
50% 81.85 81.67 81.48 81.67 82.08 81.99 81.97

Sonar

10% 55.23 54.3 55.2 54.6 54.17 54.17 55.14
20% 51.43 52.25 52.25 52.35 53.03 52.73 52.13
30% 48.73 47.78 48.73 48.73 51.52 51.52 51.47
40% 51.16 50.34 51.16 51.16 52.29 52.29 52.30
50% 48.26 49.08 49.08 49.08 51.78 51.78 51.67

6.3.2. Training Datasets with Non-Target Data

For each dataset, the training set was randomly selected to consist of 70% target and
20% non-target data, with added proportions of 10%, 20%, 30%, 40%, and 50% non-target
data as noise data, and the test set included the remaining target and non-target data.

Table 3 presents the G-means from 10 trials for different methods, with the best results
presented in bold. In 40 experimental datasets, ϕR-SVDD and ϕ f -SVDD achieved higher
G-means on 35 datasets compared to the benchmark methods, while ϕL-SVDD achieved a
higher G-mean on 33 datasets. As the data contaminated by noise increase, the ϕR-SVDD,
ϕ f -SVDD, and ϕL-SVDD algorithms exhibit less of a decline in accuracy than the other
algorithms. ϕR-SVDD,ϕ f -SVDD, and ϕL-SVDD present almost no decline in G-means for
datasets such as Blood, Iris, and Haberman.

Entropy 2024, 26, 628 25 of 29

Table 3. G-mean values of different methods on UCI datasets with noise (containing non-target data).

Dataset r SVDD DW-SVDD R-SVDD GL-SVDD ϕR-SVDD ϕf-SVDD ϕL-SVDD

Blood

10% 53.18 51.66 52.05 53.66 52.29 52.29 54.45
20% 50.82 50.91 51.65 51.57 52.02 52.02 53.39
30% 49.72 49.19 51.13 48.78 53.43 53.43 52.13
40% 51.00 49.23 50.16 48.43 51.21 51.21 53.87
50% 48.04 48.72 47.89 46.88 52.87 52.87 52.42

Balance
scale

10% 78.86 80.91 79.7 80.24 81.25 81.25 77.64
20% 73.53 75.25 74.18 73.41 76.07 76.07 73.65
30% 65.78 67.38 66.2 65.51 68.09 68.09 66.48
40% 60.74 62.30 62.10 60.56 67.11 67.11 65.78
50% 56.79 61.48 58.46 60.08 68.24 68.24 64.86

Ecoli

10% 82.1 82.36 83.95 83.08 85.34 85.34 82.1
20% 77.46 77.48 80.02 77.08 82.53 82.53 77.82
30% 69.55 67.74 68.52 70.88 71.96 71.96 71.32
40% 74.09 70.07 71.19 72.08 74.45 74.45 74.35
50% 66.93 63.38 64.87 63.58 68.18 68.18 67.36

Haberman

10% 55.59 55.41 54.81 55.51 56.72 56.72 57.09
20% 58.66 58.88 54.12 58.80 61.99 61.99 59.75
30% 55.13 55.22 54.2 55.47 56.14 56.14 54.65
40% 51.83 52.00 57.63 50.38 56.01 56.01 54.81
50% 55.64 55.70 55.26 55.52 58.27 58.27 57.60

Iris

10% 80.7 81.45 81.22 80.38 79.13 79.13 80.18
20% 79.01 78.31 78.75 77.94 77.37 77.37 78.63
30% 66.77 64.48 63.58 66.63 71.12 71.12 70.78
40% 67.08 60.61 63.16 64.29 70.91 70.91 70.47
50% 62.19 53.74 61.09 59.39 67.59 67.59 67.63

Wine

10% 81.54 84.11 83.77 81.54 84.35 84.35 82.45
20% 79.12 81.44 80.24 79.12 82.87 82.87 80.80
30% 71.03 69.15 70.02 71.03 75.48 75.48 71.95
40% 69.28 67.97 67.75 69.28 72.29 72.29 70.47
50% 64.77 66.80 66.46 64.77 69.04 69.04 66.50

Ionosphere

10% 86.45 86.79 88.66 87.26 89.28 89.28 89.02
20% 84.84 86.01 86.38 86.38 88.49 88.49 88.28
30% 84.25 85.0 85.09 85.18 87.93 87.93 87.87
40% 82.58 83.13 83.37 83.37 86.60 86.60 86.20
50% 77.26 78.56 78.54 78.62 84.29 84.29 83.95

Sonar

10% 57.24 58.34 58.97 58.97 58.66 58.66 58.70
20% 59.23 59.25 60.35 60.35 60.21 60.21 59.79
30% 54.51 54.76 56.03 56.03 56.50 56.50 56.33
40% 55.86 55.86 58.93 58.93 58.56 58.56 60.09
50% 52.21 53.14 53.92 53.92 55.45 55.45 54.71

Table 4 shows the F1-score averages of different methods over 10 trials. In the 40 ex-
perimental datasets, ϕR-SVDD achieved higher F1-scores than the compared methods in
35 datasets, ϕ f -SVDD performed better in 32 datasets, and ϕL-SVDD in 31 datasets. From
Tables 1–4, it is evident that -SVDD, -SVDD, and -SVDD achieve better experimental per-
formance than the other four methods, demonstrating superior noise resistance due to the
use of the truncated loss function.

Entropy 2024, 26, 628 26 of 29

Table 4. F1-score values of different methods for UCI datasets with noise (containing non-target data).

Dataset r SVDD DW-SVDD R-SVDD GL-SVDD ϕR-SVDD ϕf-SVDD ϕL-SVDD

Blood

10% 76.30 76.05 76.38 77.20 77.14 75.81 69.71
20% 65.90 65.46 66.12 66.22 73.71 70.79 65.62
30% 65.56 67.43 65.40 69.15 69.32 66.81 68.44
40% 63.94 65.87 60.48 65.82 70.09 66.07 66.46
50% 65.98 65.10 63.16 68.44 80.57 68.88 69.03

Balance
scale

10% 65.77 68.66 66.89 67.52 69.18 66.75 66.74
20% 63.48 62.23 62.34 61.64 64.09 61.90 63.58
30% 58.62 58.54 56.99 61.23 61.62 61.62 59.06
40% 64.74 63.67 63.67 63.16 66.57 66.14 66.05
50% 68.25 68.78 66.92 68.02 71.23 71.23 69.84

Ecoli

10% 67.58 68.46 68.29 68.51 76.37 68.84 68.58
20% 62.76 63.36 63.03 62.17 70.01 69.01 68.16
30% 58.62 58.54 56.99 60.25 61.39 61.75 61.11
40% 65.01 65.49 63.81 66.17 67.89 67.86 67.67
50% 65.11 65.83 65.92 66.02 66.86 66.17 67.92

Haberman

10% 61.22 61.07 59.24 61.12 58.04 60.43 58.08
20% 66.36 66.28 58.27 66.19 63.82 63.82 59.85
30% 61.84 59.14 59.53 61.53 64.97 65.48 64.48
40% 57.60 58.29 57.46 57.45 63.08 64.17 62.35
50% 62.90 62.45 55.28 63.08 66.34 70.63 63.96

Iris

10% 61.66 62.84 63.26 61.13 61.91 63.78 60.98
20% 55.14 55.39 56.23 53.85 58.24 58.24 59.73
30% 52.68 50.74 53.21 52.68 58.91 53.91 53.75
40% 54.74 51.56 53.88 55.98 57.64 57.64 57.42
50% 54.19 57.43 58.42 58.47 60.52 58.79 58.64

Wine

10% 65.03 70.62 70.33 65.03 70.90 68.82 67.48
20% 64.02 59.12 64.69 59.12 62.37 59.29 59.35
30% 52.68 50.74 52.21 52.68 58.91 53.91 53.75
40% 55.56 53.86 53.82 55.56 58.78 56.90 56.17
50% 58.67 57.47 57.24 57.47 60.52 59.79 58.94

Ionosphere

10% 85.21 85.55 87.22 86.02 87.95 87.95 87.64
20% 85.36 84.20 85.40 85.58 87.48 87.48 87.22
30% 86.43 86.80 86.79 86.91 88.45 88.45 88.38
40% 87.39 87.46 87.19 87.58 88.95 88.8 88.67
50% 87.94 87.63 87.90 87.93 89.24 89.07 88.92

Sonar

10% 58.54 58.75 58.71 58.71 59.05 58.88 59.12
20% 57.46 58.21 58.05 58.05 58.74 58.74 58.18
30% 55.12 52.25 52.66 52.66 60.26 59.52 56.25
40% 62.15 58.30 60.23 60.23 63.52 63.52 62.38
50% 61.35 64.91 60.10 60.10 62.80 62.80 61.94

7. Conclusions

This study aimed to enhance the robustness and effectiveness of the SVDD algo-
rithm. We propose a general framework for the truncated loss function of this algorithm,
which uses bounded loss functions to mitigate the impact of outliers. Due to the non-
differentiability of the truncated loss function, we employed the fast ADMM algorithm
to solve the SVDD model with the truncated loss function, which handles truncated loss
functions within a unified framework. In this context, the truncated generalized ramp,
truncated binary cross entropy, and truncated linear exponential loss functions for the
SVDD algorithm were constructed, and extensive experiments show that these three SVDD
models exhibit more robustness than other SVDD models in most cases. However, this
method still has the following shortcomings. Firstly, introducing the truncated loss function
increases the complexity of model training, as some truncated loss functions cannot directly

Entropy 2024, 26, 628 27 of 29

provide explicit expressions for neighboring point operators, requiring additional com-
putational overhead. These factors may limit the application of the method to large-scale
datasets. To overcome these limitations, future work can consider using a distributed
computing framework to accelerate the training process of the ADMM algorithm. Sec-
ondly, the truncated loss function SVDD introduces new free parameters, which increases
the time required for grid search parameter selection. When the data scale is large, the
computation time for the grid search method may become unacceptable. To address this
drawback, algorithms such as Bayesian optimization can be considered in the future to find
the optimal parameters, further improving model performance and optimization efficiency.
Finally, for extremely noisy data, the truncated loss function may not completely eliminate
its impact, and the effect is limited. In this case, methods combining clustering algorithms
such as DBSCAN can be adopted. First, clustering algorithms like DBSCAN can be used to
preprocess the data and remove noise, and then the proposed method can be used to detect
anomalies.

Author Contributions: H.C.: conceptualization, methodology, software, and writing—original draft
preparation. Y.L.: conceptualization, resources, writing—review and editing, supervision, and
funding acquisition. J.S.: conceptualization, resources, writing—review and editing, and funding
acquisition. W.Z.: conceptualization, methodology, formal analysis, and writing—review and editing.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 62373301 and 62173277; the Natural Science Foundation of Shaanxi Province, grant number
2023-JC-YB-526; the Aeronautical Science Foundation of China, grant number 20220058053002; and
the Shaanxi Province Key Laboratory of Flight Control and Simulation Technology.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: This work is supported by the Shaanxi Province Key Laboratory of Flight Control
and Simulation Technology.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41, 15. [CrossRef]
2. Pimentel, M.A.; Clifton, D.A.; Clifton, L.; Tarassenko, L. A review of novelty detection. Signal Process. 2014, 99, 215–249. [CrossRef]
3. Lei, Y.; Yang, B.; Jiang, X.; Jia, F.; Li, N.; Nandi, A.K. Applications of machine learning to machine fault diagnosis: A review and

roadmap. Mech. Syst. Signal Process. 2020, 138, 106587. [CrossRef]
4. Hasani, R.; Wang, G.; Grosu, R. A machine learning suite for machine components’ health-monitoring. In Proceedings of the 33rd

AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 9472–9477.
5. Khan, S.S.; Madden, M.G. One-class classification: Taxonomy of study and review of techniques. Knowl. Eng. Rev. 2014, 29,

345–374. [CrossRef]
6. Khan, S.S.; Madden, M.G. A survey of recent trends in one class classification. In Proceedings of the 20th Annual Irish Conference

on Artificial Intelligence and Cognitive Science, Dublin, Ireland, 19–21 August 2009; pp. 188–197. [CrossRef]
7. Alam, S.; Sonbhadra, S.K.; Agarwal, S.; Nagabhushan, P. One-class support vector classifiers: A survey. Knowl.-Based Syst. 2020,

196, 105754. [CrossRef]
8. Tax, D.M.J.; Duin, R.P.W. Support vector data description. Mach. Learn. 2004, 54, 45–66. [CrossRef]
9. Zheng, S. A fast iterative algorithm for support vector data description. Int. J. Mach. Learn. Cybern. 2019, 10, 1173–1187. [CrossRef]
10. Turkoz, M.; Kim, S.; Son, Y.; Jeong, M.K.; Elsayed, E.A. Generalized support vector data description for anomaly detection. Pattern

Recognit. 2020, 100, 107119. [CrossRef]
11. Fong, S.; Narasimhan, S. An Unsupervised Bayesian OC-SVM Approach for Early Degradation Detection, Thresholding, and

Fault Prediction in Machinery Monitoring. IEEE Trans. Instrum. Meas. 2022, 71, 3500811. [CrossRef]
12. Breunig, M.M.; Kriegel, H.P.; Ng, R.T.; Sander, J. Lof: Identifying density-based local outliers. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, Dallas, TX, USA, 15–18 May 2000; pp. 93–104.
13. Zheng, L.; Hu, W.; Min, Y. Raw Wind Data Preprocessing: A Data-Mining Approach. IEEE Trans. Sustain. Energy 2015, 6, 11–19.

[CrossRef]

https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1016/j.sigpro.2013.12.026
https://doi.org/10.1016/j.ymssp.2019.106587
https://doi.org/10.1017/S026988891300043X
https://doi.org/10.1007/978-3-642-17080-5_21
https://doi.org/10.1016/j.knosys.2020.105754
https://doi.org/10.1023/B:MACH.0000008084.60811.49
https://doi.org/10.1007/s13042-018-0796-7
https://doi.org/10.1016/j.patcog.2019.107119
https://doi.org/10.1109/TIM.2021.3137858
https://doi.org/10.1109/TSTE.2014.2355837

Entropy 2024, 26, 628 28 of 29

14. Khan, S.S.; Karg, M.E.; Kulic, D.; Hoey, J. X-factor HMMs for detecting falls in the absence of fall-specific training data. In
Proceedings of the Ambient Assisted Living and Daily Activities: 6th International Work-Conference, IWAAL 2014, Belfast, UK,
2–5 December 2014; pp. 1–9.

15. Andreou, C.; Karathanassi, V. Estimation of the Number of Endmembers Using Robust Outlier Detection Method. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2014, 7, 247–256. [CrossRef]

16. Lu, J.; Gao, Y.; Zhang, L. A novel dynamic radius support vector data description based fault diagnosis method for proton
exchange membrane fuel cell systems. Int. J. Hydrogen Energy 2022, 47, 35825–35837. [CrossRef]

17. Zhao, Y.-P.; Xie, Y.-L.; Ye, Z.-F. A new dynamic radius SVDD for fault detection of aircraft engine. Eng. Appl. Artif. Intell. 2021,
100, 104177. [CrossRef]

18. Zhu, F.; Yang, J.; Gao, C.; Xu, S.; Ye, N.; Yin, T. A weighted one-class support vector machine. Neurocomputing 2016, 189, 1–10.
[CrossRef]

19. Chen, G.; Zhang, X.; Wang, Z.J. Robust support vector data description for outlier detection with noise or uncertain data.
Knowl.-Based Syst. 2015, 90, 129–137. [CrossRef]

20. Cha, M.; Kim, J.S.; Baek, J.G. Density weighted support vector data description. Expert Syst. Appl. 2014, 41, 3343–3350. [CrossRef]
21. Sadeghi, R.; Hamidzadeh, J. Automatic support vector data description. Soft Comput. 2018, 22, 147–158. [CrossRef]
22. Hu, W.; Hu, T.; Wei, Y.; Lou, J.; Wang, S. Global Plus Local Jointly Regularized Support Vector Data Description for Novelty

Detection. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 6602–6614. [CrossRef] [PubMed]
23. Zhao, Y.-P.; Huang, G.; Hu, Q.-K.; Li, B. An improved weighted one class support vector machine for turboshaft engine fault

detection. Eng. Appl. Artif. Intell. 2020, 94, 103796. [CrossRef]
24. Wang, K.; Lan, H. Robust support vector data description for novelty detection with contaminated data. Eng. Appl. Artif. Intell.

2020, 91, 103554. [CrossRef]
25. Xing, H.-J.; Li, L.-F. Robust least squares one-class support vector machine. Pattern Recognit. Lett. 2020, 138, 571–578. [CrossRef]
26. Xiao, Y.; Wang, H.; Xu, W. Ramp Loss based robust one-class SVM. Pattern Recognit. Lett. 2017, 85, 15–20. [CrossRef]
27. Tian, Y.; Mirzabagheri, M.; Bamakan, S.M.H. Ramp loss one-class support vector machine; A robust and effective approach to

anomaly detection problems. Neurocomputing 2018, 310, 223–235. [CrossRef]
28. Xing, H.; Ji, M. Robust one-class support vector machine with rescaled hinge loss function. Pattern Recognit. 2018, 84, 152–164.

[CrossRef]
29. Zhong, G.; Xiao, Y.; Liu, B.; Zhao, L.; Kong, X. Pinball loss support vector data description for outlier detection. Appl. Intell. 2022,

52, 16940–16961. [CrossRef]
30. Zheng, Y.; Wang, S.; Chen, B. Robust one-class classification with support vector data description and mixed exponential loss

function. Eng. Appl. Artif. Intell. 2023, 122, 106153. [CrossRef]
31. Le Thi, H.A.; Pham Dinh, T. DC programming and DCA: Thirty years of developments. Math. Program. 2018, 169, 5–68. [CrossRef]
32. Liu, J.; Pang, J.S. Risk-based robust statistical learning by stochastic difference-of convex value-function optimization. Oper. Res.

2023, 71, 397–414. [CrossRef]
33. Yuille, A.L.; Rangarajan, A. The concave-convex procedure. Neural Comput. 2003, 15, 915–936. [CrossRef]
34. Tao, Q.; Wu, G.; Chu, D. Improving sparsity and scalability in regularized nonconvex truncated-loss learning problems. IEEE

Trans. Neural Netw. Learn. Syst. 2017, 29, 2782–2793. [CrossRef]
35. Wang, H.J.; Shao, Y.H.; Xiu, N.H. Proximal operator and optimality conditions for ramp loss SVM. Optim. Lett. 2022, 16, 999–1014.

[CrossRef]
36. Gong, P.; Zhang, C.; Lu, Z. A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization

problems. In Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16–21 June
2013; pp. 696–704.

37. Scholkopf, B.; Herbrich, R.; Smola, A.J. A generalized representer theorem. In Proceedings of the 14th Annual Conference on
Computational Learning Theory, Amsterdam, The Netherlands, 16–19 July 2001; pp. 416–426. [CrossRef]

38. Guan, L.; Qiao, L.; Li, D.; Sun, T.; Ge, K.; Lu, X. An efficient ADMM-based algorithm to nonconvex penalized support vector
machines. In Proceedings of the IEEE International Conference on Data Mining Workshops (ICDMW), Singapore, 17–20 November
2018; pp. 1209–1216.

39. Wu, M.; Ye, J. A small sphere and large margin approach for novelty detection using training data with outliers. IEEE Trans.
Pattern Anal. Mach. Intell. 2009, 31, 2088–2092. [CrossRef] [PubMed]

40. Xing, H.; Liu, Y.; He, Z. Robust sparse coding for one-class classification based on correntropy and logarithmic penalty function.
Pattern Recognit. 2021, 111, 107685. [CrossRef]

41. Zheng, Y.; Wang, S.; Chen, B. Multikernel correntropy based robust least squares one-class support vector machine. Neurocomput-
ing 2023, 545, 126324. [CrossRef]

https://doi.org/10.1109/JSTARS.2013.2260135
https://doi.org/10.1016/j.ijhydene.2022.08.145
https://doi.org/10.1016/j.engappai.2021.104177
https://doi.org/10.1016/j.neucom.2015.10.097
https://doi.org/10.1016/j.knosys.2015.09.025
https://doi.org/10.1016/j.eswa.2013.11.025
https://doi.org/10.1007/s00500-016-2317-5
https://doi.org/10.1109/TNNLS.2021.3129321
https://www.ncbi.nlm.nih.gov/pubmed/34851836
https://doi.org/10.1016/j.engappai.2020.103796
https://doi.org/10.1016/j.engappai.2020.103554
https://doi.org/10.1016/j.patrec.2020.09.005
https://doi.org/10.1016/j.patrec.2016.11.016
https://doi.org/10.1016/j.neucom.2018.05.027
https://doi.org/10.1016/j.patcog.2018.07.015
https://doi.org/10.1007/s10489-022-03237-5
https://doi.org/10.1016/j.engappai.2023.106153
https://doi.org/10.1007/s10107-018-1235-y
https://doi.org/10.1287/opre.2021.2248
https://doi.org/10.1162/08997660360581958
https://doi.org/10.1109/TNNLS.2017.2705429
https://doi.org/10.1007/s11590-021-01756-7
https://doi.org/10.1007/3-540-44581-1_27
https://doi.org/10.1109/TPAMI.2009.24
https://www.ncbi.nlm.nih.gov/pubmed/19762934
https://doi.org/10.1016/j.patcog.2020.107685
https://doi.org/10.1016/j.neucom.2023.126324

Entropy 2024, 26, 628 29 of 29

42. Chaudhuri, A.; Sadek, C.; Kakde, D.; Wang, H.; Hu, W.; Jiang, H.; Kong, S.; Liao, Y.; Peredriy, S. The trace kernel bandwidth
criterion for support vector data description. Pattern Recognit. 2021, 111, 107662. [CrossRef]

43. Dua, D.; Graff, C. UCI Machine Learning Repository. 2008. University of California, Irvine, School of Information and Computer
Sciences. Available online: https://archive.ics.uci.edu/ml (accessed on 20 July 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.patcog.2020.107662
https://archive.ics.uci.edu/ml

	Introduction
	Related Works
	SVDD
	Robust SVDD Variants
	Weighted SVDDs
	Pinball Loss SVDD
	SVDD with Mixed Exponential Loss Function

	Truncated Loss Function
	Proximal Operators of Truncated Loss Functions
	The Use of the Proximal Operator Algorithm to Solve Truncated Loss Functions

	Robust SVDD Model
	Fast ADMM Algorithm
	Fast ADMM Algorithm Framework
	Global Convergence Analysis of the Fast ADMM Algorithm
	Fast ADMM Algorithm Termination Conditions

	Experiment
	Experimental Setup
	Evaluation Metrics
	Kernels
	Parameter Configuration

	Synthetic Datasets with Noise
	UCI Datasets with the Presence of Noise
	Training Dataset without Non-Target Data
	Training Datasets with Non-Target Data

	Conclusions
	References

