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ABSTRACT 
 
This research explores the essential aspects of reporting fit indices in Structural Equation Modeling 
(SEM), focusing on their significance, methodologies for evaluation, and implications for model 
validity. The aim is to provide a comprehensive understanding of how fit indices contribute to the 
rigor and reliability of SEM studies. Methodologically, the study reviews prominent fit indices such 
as Comparative Fit Index (CFI), Tucker-Lewis Index (TLI), Root Mean Square Error of 
Approximation (RMSEA), Standardized Root Mean Residual (SRMR), and Chi-Square Test of 
Model Fit (χ²). Each index is defined, and specific threshold values are discussed to guide 
researchers in interpreting their findings effectively. Originality in this study lies in synthesizing 
current literature to emphasize the importance of transparent reporting practices in SEM, enhancing 
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methodological clarity and promoting replicable research outcomes. Contributions include a 
structured approach to understanding fit indices’ roles in model assessment and validation, aiding 
researchers in advancing theoretical frameworks with robust empirical support. 
 

 
Keywords: Structural equation modeling; fit indices; model evaluation; reliability; validity; HTMT. 
 
JEL Classification: C52, C38, C87. 
 

1. INTRODUCTION 
 
Structural Equation Modeling (SEM) is a 
comprehensive statistical method that integrates 
factor analysis and multiple regression to 
examine complex relationships among observed 
and latent variables, aiding in the testing of 
theoretical models involving multiple dependent 
relationships across fields like psychology, 
sociology, and marketing [1,2,3]. Fit indices in 
SEM are essential as they provide quantitative 
measures to assess model adequacy, guiding 
the refinement of models to better capture 
theoretical constructs [4,5]. Confirmatory Factor 
Analysis (CFA) tests whether observed variables 
represent hypothesized latent constructs, 
requiring a predefined number and nature of 
factors [6]. CFA is used to validate measurement 
instruments and assess construct validity, with fit 
indices evaluating model-data fit to guide 
necessary modifications. CFA is a key 
component of the broader family of methods 
known as structural equation modeling (SEM) 
and is crucial for validating measurement models 
in path or structural analyses [7,8]. When 
conducting SEM, researchers typically begin by 
evaluating the measurement model to ensure 
that the measured variables accurately represent 
the intended constructs or factors before 
proceeding to assess the structural model. There 
has been a positive trend in the use of CFA, with 
most applications focusing on scale development 
and construct validation (Brown & Russell, 2002). 
Mediation analysis explores whether the effect of 
an independent variable on a dependent variable 
is mediated by another variable, used extensively 
in psychological and social research to 
understand causal pathways [9,10]. In SEM-
based mediation, fit indices are crucial for 
evaluating overall model fit and validating 
mediation effects. Path analysis and latent 
growth modeling (LGM) are related techniques; 
path analysis examines direct and indirect 
relationships among observed variables, while 
LGM estimates growth trajectories over time for 
latent constructs [11]. Both rely on fit indices to 
ensure model adequacy and accurate 
representation of developmental processes. Fit 

indices are vital across these techniques as they 
validate hypothesized models, enable model 
comparison, identify misspecifications, and 
enhance measurement reliability and validity, 
thus ensuring models accurately reflect 
theoretical constructs and relationships 
[12,13,14].  
 
Many researchers advocate for the use of a 
range of fit indices when assessing model fit in 
structural equation modeling (SEM). Marsh, 
Balla, and Hau [15] emphasize the importance of 
considering multiple indices to gain a 
comprehensive understanding of model fit. 
Similarly, Jaccard and Wan [16] recommend 
using indices from different classes to address 
the limitations inherent in any single index. This 
strategy ensures a more robust evaluation of the 
model. Hu and Bentler [4] suggest combining 
multiple fit indices, including RMSEA, SRMR, 
CFI, and TLI, to make more informed decisions 
about model fit. Kline [2] recommends using a 
variety of fit indices and emphasizes the need for 
a nuanced approach in interpreting these indices. 
Byrne [17] advises researchers to report multiple 
fit indices to provide a comprehensive evaluation 
of model fit, as different indices can offer different 
insights into the model’s performance [18]. 
 
Commonly used and reported various fit 
indices: There are numerous excellent practice 
guidelines available for both SEM and CFA 
[19,20], (Byrne, 2001) [21,7,22]. An issue of 
particular importance across these guidelines is 
what should be reported in SEM/CFA studies. 
Reporting standards emphasize the need to 
include details on model specification, data 
preparation, estimation methods, fit indices, and 
model modification processes (Schumacker & 
Lomax, 2010; Bentler, 2007) [4,5]. Additionally, 
for researchers aiming to contribute original 
insights to the field, it’s crucial to provide 
comprehensive and transparent reporting to 
facilitate replication and validation of findings. 
This includes detailing the theoretical rationale 
for the model, the selection and justification of 
indicators, and the steps taken to ensure the 
robustness of the findings [23,24,25]. This 
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thoroughness helps to build a solid foundation for 
advancing knowledge and promoting further 
research in SEM and CFA. The state of reporting 
results from SEM analyses has indeed been 
critiqued for its variability and occasional 
inadequacy in providing comprehensive details. 
Empirical findings support this assertion, 
highlighting issues such as inconsistent reporting 
practices and insufficient documentation of key 
methodological details. For instance, Boomsma 
[20] discussed the need for clearer reporting 
standards to enhance transparency and 
reproducibility in SEM studies. MacCallum and 
Austin [8] examined the variability in reporting fit 
indices and model fit assessment criteria, 
emphasizing the importance of standardizing 
these practices. McDonald and Ho [26] pointed 
out deficiencies in reporting measurement model 
specifications and estimation procedures, which 
can affect the reliability and validity of study 
findings. Steiger [27] highlighted challenges 
related to the reporting of model modification 
indices and the implications for model refinement 
and interpretation (MacCallum & Austin [8] 
McDonald and Ho [26]. Existing reviews of SEM 
studies often focus on methodological aspects 
and model fit criteria rather than specifically 
addressing reporting practices in the CFA 
literature. This gap in the literature suggests a 
need for more comprehensive examinations of 
how CFA studies report their methods and 
findings. For example, Byrne (2001) discussed 
the importance of transparent reporting in CFA 
studies to enhance the credibility and replicability 
of research findings. Kline [22] emphasized the 
need for detailed documentation of measurement 
model specifications and fit indices in CFA 
reports. Thompson [21] highlighted challenges in 
assessing construct validity and the importance 
of clearly articulating measurement and structural 
model details. These citations emphasize the call 
for empirical investigations or systematic reviews 
that explicitly examine and critique the state of 
reporting practices in the CFA literature. Such 
studies could provide valuable insights into 
current practices, identify areas needing 
improvement, and offer recommendations for 
enhancing the quality of reporting in CFA 
research. Furthermore, reporting guidelines in 
SEM/CFA are not universally standardized; 
however, there is substantial consensus among 
scholars who have examined this issue 
[28,29,19,8,26,30,21]. Scholars emphasize the 
importance of consistent reporting practices to 
ensure transparency and reproducibility. Key 
aspects often highlighted include the thorough 
documentation of model specifications, details of 

estimation procedures, justification for model fit 
indices, handling of missing data, and sensitivity 
analyses to assess model robustness 
[25,31,2,32]. These guidelines aim to improve 
the quality and rigor of SEM/CFA research, 
facilitating clearer interpretation and comparison 
of findings across studies [33,34]. 
 
In structural equation modeling (SEM), 
confirmatory factor analysis (CFA), and 
mediation analysis, a variety of fit indices are 
employed to evaluate model fit. These include 
the Chi-Square Test (χ²), which assesses the 
discrepancy between observed and expected 
covariance matrices, and the Chi-Square to 
Degrees of Freedom Ratio (χ²/df), which adjusts 
for model complexity [3]. The Goodness-of-Fit 
Index (GFI) and the Adjusted Goodness-of-Fit 
Index (AGFI) measure the fit between the 
observed and model-implied covariance 
matrices, with AGFI adjusting for degrees of 
freedom [2]. Comparative Fit Index (CFI) and 
Tucker-Lewis Index (TLI), also known as the 
Non-Normed Fit Index (NNFI), compare the fit of 
the target model to an independent baseline 
model, with higher values indicating better fit [4]. 
The Normed Fit Index (NFI) also compares the 
target model to a null model, while the Root 
Mean Square Error of Approximation (RMSEA) 
and the Standardized Root Mean Square 
Residual (SRMR) measure model fit per degree 
of freedom and standardized differences 
between observed and predicted correlations, 
respectively [1]. Additionally, the Akaike 
Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) are used for model 
comparison, with lower values indicating better 
fit, and the Parsimony Goodness-of-Fit Index 
(PGFI) and Parsimony Normed Fit Index (PNFI) 
adjust other indices for model complexity (Marsh, 
Hau, & Wen, 2004). Collectively, these fit indices 
provide a comprehensive assessment of model 
adequacy, guiding researchers in validating, 
comparing, and refining models to ensure 
accurate representation of theoretical constructs 
and relationships [6,35]. 
 

2.  IPROMINENT FIT INDICES FOR 
REPORTING  

 

In the domain of Structural Equation Modeling 
(SEM), fit indices serve as critical metrics for 
assessing the alignment between theoretical 
models and empirical data. These indices 
provide quantitative measures that help 
researchers evaluate the adequacy of their 
models in capturing the relationships among 
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latent constructs and observed variables. 
Understanding these fit indices is essential for 
ensuring the reliability, validity, and 
generalizability of SEM findings. This introduction 
sets the stage for exploring how these indices, 
such as Comparative Fit Index (CFI), Tucker-
Lewis Index (TLI), Root Mean Square Error of 
Approximation (RMSEA), Standardized Root 
Mean Residual (SRMR), and Chi-Square Test of 
Model Fit (χ²), contribute to the rigorous 
evaluation and reporting of SEM models. The 
following are the most prominent fit indices while 
reporting the SEM and CFA models:  
 

2.1 Absolute Fit Indices 
 
Absolute fit indices provide a baseline 
assessment of how well the hypothesized model 
fits the observed data. They are essential for 
initial model evaluation and can guide 
researchers in determining whether the model 
adequately represents the data before 
considering more complex evaluations such as 
incremental or comparative fit indices. These 
indices, particularly the chi-square test and its 
derivatives, serve as fundamental measures in 
SEM, providing a direct test of the fit between the 
theoretical model and the observed data. While 
no single fit index can provide a complete picture 
of model fit, collectively they offer valuable 
insights into the adequacy of the specified model. 
 
2.1.1 Chi-square test (χ²) 
 
When reporting Structural Equation Modeling 
(SEM), Confirmatory Factor Analysis (CFA), or 
mediation models, the first fit index typically 
reported is the Chi-Square Test (χ²). This index 
assesses the overall fit of the model by 
comparing the observed covariance matrix with 
the model-implied covariance matrix. It provides 
a fundamental indication of whether the model 
adequately fits the data. Chi-Square test is a 
statistical test that evaluates the discrepancy 
between the observed data and the model-
implied covariance matrices. It is reported along 
with degrees of freedom (df) and the associated 
p-value. In AMOS it is also known as the Chi-
Square Minimum (CMIN). A non-significant chi-
square (p > 0.05) indicates a good fit, but it can 
be sensitive to sample size. 
 
Chi-Square Test (χ²): χ² (102) = 154.50, p = 0.25 
 
Rationale for Reporting Chi-Square Test First: 
The chi-square test is the most fundamental 
measure of model fit and provides a direct test of 

the model’s overall goodness-of-fit. Many other fit 
indices are derived from or adjusted based on 
the chi-square statistic, making it a logical 
starting point for model evaluation. Traditionally, 
the chi-square test has been the first reported fit 
index in SEM, CFA, and mediation analysis, 
setting the context for additional fit indices. 
 
2.1.2 The chi-square to degrees of freedom 

ratio (χ²/df)  
 
This is a normalized version of the chi-square 
statistic used in structural equation modeling 
(SEM) and confirmatory factor analysis (CFA). It 
adjusts the chi-square statistic for the complexity 
of the model by dividing it by the degrees of 
freedom, providing a more interpretable measure 
of model fit [36,37,2]. 
 

χ²/df = (Chi-Square) / (Degrees of Freedom) 
 
It indicates how well the model fits the data 
relative to the number of estimated parameters. 
A lower χ²/df ratio suggests a better fit. 
Generally, a χ²/df ratio less than 2 is considered 
indicative of a good fit. A ratio less than 3 is often 
considered acceptable [4,2] Schumacker, R. E., 
& Lomax, R. G. [3]. However, in a seminal work 
by Hu and Bentler [4] suggest that values less 
than 5 indicate a reasonable fit, though this can 
be somewhat flexible depending on the 
complexity of the model and sample size. Bentler 
[38], discusses that χ²/df values around 2 to 5 
may indicate an acceptable fit, with lower values 
preferred for better fit. 
 
Advantages: By dividing chi-square by degrees 
of freedom, χ²/df accounts for the complexity of 
the model, making it more robust and less 
sensitive to sample size compared to the raw chi-
square statistic. χ²/df provides a straightforward 
interpretation where lower values indicate better 
fit, allowing for easier comparison across 
different models or datasets [39]. 
 
Limitations: Like the chi-square statistic, χ²/df 
can still be sensitive to sample size, potentially 
leading to significant results in large samples 
even when the model fit is reasonably good. 
Extremely complex models or those with small 
degrees of freedom may artificially inflate the 
χ²/df ratio, potentially leading to misinterpretation 
of model fit. 
 
Note: These references provide general 
guidelines rather than strict rules, as 
interpretations can vary based on factors such as 



 
 
 
 

Sathyanarayana and Mohanasundaram; Asian J. Econ. Busin. Acc., vol. 24, no. 7, pp. 561-577, 2024; Article no.AJEBA.119817 

 
 

 
565 

 

sample size, model complexity, and research 
context. Researchers often consider multiple fit 
indices alongside χ²/df, such as Comparative Fit 
Index (CFI), Tucker-Lewis Index (TLI), and Root 
Mean Square Error of Approximation (RMSEA), 
for a comprehensive assessment of model fit. 
 
2.1.3 Goodness-of-fit index (GFI) 
 
The GFI compares the fit of the hypothesized 
model to the fit of a baseline model, often the 
independence model where variables are 
assumed to be unrelated. It quantifies the 
proportion of variance and covariance in the 
observed data that is explained by the 
hypothesized model. The GFI ranges from 0 to 1, 
with higher values indicating better fit. The 
formula for the GFI is: 
 

𝐺𝐹𝐼 = 1 −
𝑡𝑟(𝑆 − 𝛴(𝜃̂))2

𝑡𝑟(𝑆2)
 

 
Where:  
 
S is the sample covariance matrix  

𝛴(𝜃̂) is the model-implied covariance matrix. 

 
tr denotes the trace of a matrix, which is the sum 
of the diagonal elements [40, 41].  
 
Interpretation: A GFI value close to 1 suggests 
that the model fits the data well, indicating a 
good fit. Conversely, values closer to 0 indicate 
poor fit, suggesting that the model does not 
adequately represent the observed data. Hu and 
Bentler [4] suggested that for the GFI, values 
above 0.90 are generally considered indicative of 
good fit (Byrne, 1994). However, this threshold 
can vary depending on the complexity of the 
model and the specific research context. Bentler 
and Bonett [42] proposed that GFI values greater 
than 0.85 can be considered acceptable, though 
this guideline has been updated over time with 
stricter criteria. 
 
2.1.4 Adjusted goodness-of-fit index (AGFI) 
 
The Adjusted Goodness-of-Fit Index (AGFI) is a 
modification of the Goodness-of-Fit Index (GFI) 
in structural equation modeling (SEM). It adjusts 
for the complexity of the model by penalizing 
models with more parameters, aiming to provide 
a more conservative measure of model fit.  AGFI 
adjusts the GFI by considering the degrees of 
freedom in the model, penalizing for model 
complexity. Like GFI, AGFI ranges from 0 to 1, 

with higher values indicating better fit. The 
formula for the AGFI is: [40,43]. 
 

𝐴𝐺𝐹𝐼 = 1 −

(𝑝 x (𝑝 + 1)
2

− 𝑑𝑓

(𝑝 x (𝑝 + 1)
2

 x (1 − 𝐺𝐹𝐼)
 

 

Where: 
 

p is the number of observed variables. 
df is the degrees of freedom of the model. 
GFI is the Goodness-of-Fit Index. 
 

Interpretation: A high AGFI value (close to 1) 
indicates that the model explains a large 
proportion of the variance and covariance in the 
observed data, adjusted for its complexity. Lower 
AGFI values suggest poorer fit, indicating that 
the model may not adequately represent the 
data. Hu and Bentler (1999) suggested that AGFI 
values above 0.90 are typically considered 
indicative of good fit. This guideline reflects the 
adjustment made by AGFI for model complexity, 
providing a more conservative assessment 
compared to GFI alone. 
 

2.1.5 Root mean square error of 
approximation (RMSEA) 

 

The Root Mean Square Error of Approximation 
(RMSEA) is a widely used absolute fit index in 
structural equation modeling (SEM) that 
measures the discrepancy between the 
hypothesized model and the observed data per 
degree of freedom. RMSEA is crucial in SEM 
because it considers both model complexity and 
data fit, providing a balanced assessment of 
model adequacy. RMSEA assesses how well the 
model fits the data, considering the complexity of 
the model and the sample size [44]. It quantifies 
the amount of error in the model’s predictions per 
degree of freedom, considering the lack of fit 
relative to the number of parameters estimated. 
Unlike simpler indices like chi-square, RMSEA 
adjusts for the number of parameters in the 
model, making it particularly useful for evaluating 
complex models with many variables and 
relationships. The formula to compute RMSEA is 
[45,46,47]:  
 

𝑅𝑀𝑆𝐸𝐴 =
√

𝑥2 

𝑑𝑓
− 1

𝑁 − 1
 

 

Where: 
 

𝑥2 is the chi − square statistic of the model. 
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𝑑𝑓 are the degrees of freedom of the model.  
N is the sample size.  
 
Interpretation: Lower RMSEA values indicate 
better fit, with values typically less than 0.05 
considered indicative of good fit. Values up to 
0.08 are often considered reasonable in some 
contexts [46,48,49]. However, Steiger [45], 
proposed that RMSEA values below 0.05 
indicate a close fit, with values up to 0.08 
acceptable and values greater than 0.10 
indicating a poor fit. RMSEA values greater than 
0.10 generally suggest poor fit. 
 
Significance Testing: In addition to the point 
estimate of RMSEA, significance testing can be 
conducted to assess whether the RMSEA value 
significantly deviates from an ideal fit (close to 0). 
This is typically done by examining the 90% or 
95% confidence interval around the RMSEA 
estimate. A non-significant p-value (e.g., p > 
0.05) suggests that the model fits the data 
adequately within the specified range. 
 
At the bottom line, RMSEA can be sensitive to 
sample size, with smaller samples potentially 
leading to higher RMSEA values [50]. Highly 
complex models with many parameters may yield 
lower RMSEA values even when the fit is not 
optimal. Conversely, simpler models may show 
higher RMSEA values due to the lack of 
parameter flexibility [5]. Models with fewer 
degrees of freedom tend to produce lower 
RMSEA values. Therefore, it is essential to 
consider the model’s complexity and degrees of 
freedom when interpreting RMSEA [51]. 
 
2.1.6 Standardized root mean square residual 

(SRMR) 
 
SRMR assesses the discrepancy between the 
observed covariance matrix and the model-
predicted covariance matrix. It provides a 
standardized measure of the average absolute 
standardized residual, representing the average 
discrepancy per degree of freedom in the model. 
 
Interpretation: Lower SRMR values indicate 
better fit, with guidelines typically suggesting 
values less than 0.08 as indicative of good fit. 
This threshold indicates that the model 
adequately reproduces the observed covariance 
structure [4]. SRMR is important in SEM and 
CFA as it directly measures the model’s ability to 
reproduce the observed data covariance 
structure. Unlike incremental fit indices (e.g., CFI, 
TLI) that compare the fit of the hypothesized 

model to a baseline model, SRMR focuses on 
the absolute fit of the model to the observed data 
without considering model complexity. 
 

𝑆𝑅𝑀𝑅 =  𝛴𝑖𝑗

√
(

𝛴̂𝑖𝑗 − 𝛴𝑖𝑗

𝑠. 𝑒(𝛴̂𝑖𝑗)
)

𝑝(𝑝 + 1)/2
 

 

Where 
 

 𝑠. 𝑒(𝛴̂𝑖𝑗) is the estimated standard error of 𝛴̂𝑖𝑗 
 

2.1.7 Root mean square residual (RMR) 
 

Root Mean Square Residual (RMR) is a 
statistical measure used in structural equation 
modeling (SEM) to quantify the discrepancy 
between the observed covariance matrix and the 
model-predicted covariance matrix. RMR 
calculates the square root of the average 
squared residuals between the observed (Σ) and 

predicted (Σ)̂  covariance matrices [25,17]. 
Mathematically, it is expressed as: 
 

𝑆𝑅𝑀𝑅 =  √
𝛴𝑖𝑗(𝛴̂𝑖𝑗 − 𝛴𝑖𝑗)

2

𝑝(𝑝 + 1)/2
 

 

Where: 
 

 𝛴̂𝑖𝑗 is the predicted covariance between i and j  

𝛴𝑖𝑗 is the observed covariance between i and j 

P is the number of observed variables   
 

Interpretation: RMR provides a direct measure 
of the average discrepancy per covariance 
element between the model-predicted and 
observed covariance matrices. Lower values of 
RMR indicate better fit, suggesting that the 
model adequately reproduces the covariance 
structure observed in the data.  
 

Difference: 
 

Scale: RMR provides a raw measure of the 
average residual, while SRMR standardizes the 
residuals by their standard errors. 
 
Interpretation: Lower values of both RMR and 
SRMR indicate better fit, with SRMR being more 
commonly used due to its standardized nature. 
 

2.2 Incremental Fit Indices 
 

Incremental fit indices in structural equation 
modeling (SEM) assess how much better the 
hypothesized model fits the data compared to a 
baseline model, typically the null model or a 



 
 
 
 

Sathyanarayana and Mohanasundaram; Asian J. Econ. Busin. Acc., vol. 24, no. 7, pp. 561-577, 2024; Article no.AJEBA.119817 

 
 

 
567 

 

more restricted model. These indices provide 
additional insights beyond absolute fit indices like 
chi-square and RMSEA, focusing on the 
improvement in fit achieved by the model of 
interest.  
 
2.2.1 Comparative fit index (CFI) 
 
The Comparative Fit Index (CFI) is an 
incremental fit index used in structural equation 
modeling (SEM) to compare the fit of the 
hypothesized model to a baseline model, 
typically the null model or a more restricted 
model. CFI compares how much better the 
hypothesized model fits the data compared to a 
baseline model, adjusting for sample size and 
model complexity. CFI values range from 0 to 1, 
with values closer to 1 indicating better fit. The 
formula to compute CFI is [38,4]: 
 

𝐶𝐹𝐼 = 1 −  
𝑥𝑚𝑜𝑑𝑒𝑙

2 − 𝑑𝑓𝑚𝑜𝑑𝑒𝑙

𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
2 − 𝑑𝑓𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

 

 
χ2model is the chi-square statistic for the user-
specified model. 
df model is the degrees of freedom for the user-
specified model. 
χ2baseline is the chi-square statistic for the 
baseline (null) model. 
df baseline is the degrees of freedom for the 
baseline (null) model. 
 
Interpretation: Bentler [38] originally proposed 
that CFI values above 0.90 or even 0.95 are 
indicative of good fit. This guideline suggests that 
the hypothesized model provides a significantly 
better fit to the data compared to the baseline 
model. However, thresholds can vary based on 
factors such as model complexity and research 
context. Some researchers have suggested 
slightly different thresholds for CFI. Marsh et al. 
[5] proposed that CFI values above 0.95 indicate 
excellent fit, reflecting a more stringent criterion 
for model adequacy. Hu and Bentler [4] 
discussed that CFI values above 0.90 can be 
considered acceptable, especially in models with 
more complexity or smaller sample sizes. 
 
Importance: CFI is important in SEM because it 
provides a robust measure of incremental fit 
improvement over baseline models. It helps 
researchers evaluate whether the hypothesized 
relationships between variables explain the data 
adequately, considering both model fit and 
parsimony. According to Fan, Thompson, and 
Wang [52], CFI is less affected by sample size 
compared to other fit indices. This attribute 

makes it a reliable choice in various research 
scenarios, as its values remain relatively stable 
even with changes in sample size. However, 
there are concerns about the potential bias in 
CFI. Raykov [53,54] points out that CFI may be 
biased due to its reliance on non-centrality 
parameters. This bias arises because the CFI 
evaluates the fit of a model relative to a null 
model, which assumes no relationship among 
variables. The measure of non-centrality, which 
reflects the discrepancy between the 
hypothesized model and the null model, can 
introduce bias into the CFI, leading to 
overestimation or underestimation of the model 
fit [55]. 
 
2.2.2 Tucker-lewis index (TLI) 
 
The Tucker-Lewis Index (TLI), also known as the 
Non-Normed Fit Index (NNFI), is an incremental 
fit index used in structural equation modeling 
(SEM) to compare the fit of a hypothesized 
model to a baseline model. TLI assesses the 
relative fit of the hypothesized model by 
comparing it with a more restricted baseline 
model, typically the null model. TLI values range 
from 0 to 1, with values closer to 1 indicating 
better fit. TLI is important in SEM because it 
provides a complementary perspective to other fit 
indices like CFI and RMSEA, focusing on 
incremental fit improvement. It helps researchers 
assess whether the hypothesized relationships 
among variables explain the observed data 
patterns adequately. The formula to compute TLI 
is [56,38]: 
 

𝑇𝐿𝐼 =  

𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
2

𝑑𝑓𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
−

𝑥𝑚𝑜𝑑𝑒𝑙
2

𝑑𝑓𝑚𝑜𝑑𝑒𝑙

(
𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

2

𝑑𝑓𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
) − 1

 

 
χ2model is the chi-square statistic for the user-
specified model. 
df model is the degrees of freedom for the user-
specified model. 
χ2baseline is the chi-square statistic for the 
baseline (null) model. 
df baseline is the degrees of freedom for the 
baseline (null) model. 
 
Interpretation: Hu and Bentler [4] recommended 
TLI values above 0.90 as indicative of good fit. 
This guideline suggests that the hypothesized 
model provides a significantly better fit to the 
data compared to the baseline model. TLI values 
closer to 1 indicate that the model is a good 
representation of the observed data patterns. 
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Some researchers have suggested slightly 
different thresholds for TLI. Marsh et al., [5] 
proposed that TLI values above 0.95 indicate 
excellent fit, reflecting a stricter criterion for 
model adequacy. Hu and Bentler [4] discussed 
that TLI values above 0.90 can be considered 
acceptable, especially in models with moderate 
complexity or smaller sample sizes. 
 

2.2.3 Incremental fit index (IFI) 
 

The Incremental Fit Index (IFI) is an incremental 
fit index used in structural equation modeling 
(SEM) to quantify the improvement in fit achieved 
by the hypothesized model compared to a null or 
more restricted model. IFI compares how much 
better the hypothesized model fits the data 
compared to a null or more restricted model, 
while adjusting for model complexity. IFI values 
range from 0 to 1, with values closer to 1 
indicating better fit. Bentler [38] introduced IFI as 
a measure to enhance the assessment of 
incremental fit improvement, aiming to provide a 
more detailed evaluation of model adequacy 
beyond absolute fit indices such as chi-square 
and RMSEA. Higher IFI values indicate that the 
hypothesized model significantly improves the fit 
compared to the baseline model. The formula to 
compute IFI is [25,42]. 
 

𝐼𝐹𝐼 =  
𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

2 − 𝑥𝑚𝑜𝑑𝑒𝑙
2

𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
2 − 𝑑𝑓𝑚𝑜𝑑𝑒𝑙

2  

 

χ2model is the chi-square statistic for the user-
specified model. 
df model is the degrees of freedom for the user-
specified model. 
χ2baseline is the chi-square statistic for the 
baseline (null) model. 
 

Interpretation: IFI values closer to 1 suggest 
that the hypothesized model explains a 
substantial proportion of the variance and 
covariance in the observed data, adjusted for its 
complexity. Lower IFI values indicate less 
improvement in fit compared to the baseline 
model. IFI is important in SEM because it helps 
researchers evaluate whether the hypothesized 
relationships among variables contribute 
significantly to explaining the observed data 
patterns. It complements other fit indices such as 
CFI and TLI, providing a comprehensive 
assessment of model fit. 
 

2.2.4 Normed fit index (NFI) 
 

The Normed Fit Index (NFI) is an incremental fit 
index used in structural equation modeling (SEM) 
to compare the fit of a target model to a baseline 

model, typically the null model.  NFI compares 
the relative improvement in fit of the 
hypothesized model over a null model, 
considering model complexity and sample size. 
NFI values range from 0 to 1, with values closer 
to 1 indicating better fit. The formula to compute 
NFI [42]: 
 

𝑁𝐹𝐼 =
𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

2 − 𝑥𝑚𝑜𝑑𝑒𝑙
2

𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
2  

 
χ2model is the chi-square statistic for the user-
specified model. 
χ2baseline is the chi-square statistic for the 
baseline (null) model. 
 
Interpretation: The original guideline for NFI 
values was proposed by Bentler and Bonett [42], 
who suggested that NFI values above 0.90 
indicate good fit. This criterion implies that the 
hypothesized model provides a substantial 
improvement in fit compared to the null model. 
NFI is important in SEM because it focuses on 
the improvement in fit achieved by the 
hypothesized model, offering insights into 
whether the model adequately explains the 
observed data patterns. It complements other fit 
indices like CFI, TLI, and RMSEA, providing a 
comprehensive assessment of model adequacy. 
According to Ullman [36], small sample sizes 
frequently lead to an underestimation of model 
fit. Moreover, while the TLI can overestimate fit 
when the number of parameters in the model 
increases, the NNFI (Non-Normed Fit Index) 
effectively mitigates this problem, providing a 
more accurate assessment. 
 
2.2.5 The normed fit index (NFI)  
 
The Normed Fit Index (NFI) has been a useful 
incremental fit index in structural equation 
modeling (SEM), but its usage and interpretation 
have evolved over time.  Initially, Bentler and 
Bonett suggested that NFI values above 0.90 
indicate good fit. This guideline was influential in 
establishing a benchmark for evaluating model 
adequacy. In their work on fit indices in SEM, Hu 
and Bentler suggested that NFI values above 
0.95 may be considered indicative of excellent fit, 
reflecting a stricter criterion than the original 
recommendation by Bentler and Bonett. Marsh et 
al., [5] discussed that NFI values above 0.90 are 
generally acceptable, aligning with the earlier 
guideline by Bentler and Bonett. They 
emphasized that while higher values are 
desirable, the interpretation should consider the 
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complexity of the model and the sample size. 
The formula for NFI is [42,38]. 
 

𝑁𝐹𝐼 =  
𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

2 − 𝑥𝑚𝑜𝑑𝑒𝑙
2

𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
2 − 𝑥𝑚𝑜𝑑𝑒𝑙

2  

 
χ2model is the chi-square statistic for the user-
specified model. 
χ2baseline is the chi-square statistic for the 
baseline (independence) model. 
 
2.2.6 Relative fit index (RFI) 
 
The Relative Fit Index (RFI) is an incremental fit 
index used in structural equation modeling (SEM) 
that, like NFI, compares the fit of a target model 
to a baseline model, adjusting for degrees of 
freedom. RFI measures the relative improvement 
in fit of the hypothesized model compared to a 
null or baseline model, considering the degrees 
of freedom used. It provides a measure of how 
well the hypothesized model fits the data relative 
to a more restricted model. Formula to compute 
RFI is [42,38]. 
 

𝑅𝐹𝐼 =  
𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

2 − 𝑥𝑚𝑜𝑑𝑒𝑙
2

𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
2  

 
χ2model is the chi-square statistic for the user-
specified model. 
χ2baseline is the chi-square statistic for the 
baseline (null) model. 
 
Interpretation: As an incremental fit index, RFI 
values range from 0 to 1, with values closer to 1 
indicating better fit. The specific threshold values 
for RFI may vary depending on the study and the 
complexity of the model. Guidelines for RFI are 
less standardized compared to other fit indices 
like CFI or RMSEA. Unfortunately, specific 
threshold values for RFI are not as                       
extensively documented in the literature 
compared to other fit indices like NFI or CFI. 
Researchers often interpret RFI values in 
conjunction with other fit indices to assess model 
adequacy. Bentler and Bonett [42] initially 
discussed RFI in the context of structural 
equation models, emphasizing its role in 
comparing fit between the hypothesized model 
and the null model, but did not provide specific 
threshold values for RFI. Due to the lack of 
standardized threshold values, researchers may 
use their judgment based on the specific                 
context of their study, including model 
complexity, sample size, and theoretical 
considerations. 

2.3 Parsimony Fit Indices 
 
Parsimony Fit Indices refer to a category of fit 
indices used in structural equation modeling 
(SEM) that specifically assess the balance 
between model fit and model complexity. These 
indices aim to reward models that explain the 
data well while using fewer parameters, thereby 
promoting parsimony. The rationale behind 
parsimony fit indices is to avoid overfitting, where 
a model may fit the sample data well but 
generalize poorly to new data or populations due 
to excessive complexity. The following are the 
reasons for using Parsimony Fit Indices: 
 
Promoting generalizability: One of the primary 
goals in SEM is to develop models that not only 
fit the observed data well but also generalize to 
new data or populations. Parsimony fit indices, 
such as the Parsimonious Normed Fit Index 
(PNFI) or Parsimonious Comparative Fit Index 
(PCFI), encourage the selection of models that 
achieve good fit while using fewer parameters. 
This approach reduces the risk of overfitting, 
where a model may excessively tailor itself to 
noise or idiosyncrasies in the sample data, 
leading to poor performance with new data. 
 
Enhancing model interpretability: Simpler 
models are often easier to interpret and 
communicate, making the relationships between 
variables clearer and more actionable. By 
penalizing overly complex models, parsimony fit 
indices help researchers prioritize theoretical 
clarity and practical relevance in their SEM 
analyses. This ensures that the model’s structure 
and parameters are more meaningful and 
reflective of underlying theoretical constructs. 
 
Optimizing model selection: SEM typically 
involves comparing multiple competing models to 
determine which one best represents the 
relationships in the data. Parsimony fit indices 
provide a quantitative measure to guide this 
selection process, aiding researchers in choosing 
models that strike an appropriate balance 
between explanatory power and simplicity. This 
selection process is crucial for advancing 
scientific understanding and theory building in 
various fields that utilize SEM. 
 
Statistical rigor: Incorporating parsimony fit 
indices adds a layer of statistical rigor to SEM 
analyses by formalizing the trade-off between 
model fit and complexity. This helps in avoiding 
the pitfalls of overly complex models that may 
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lead to inflated fit indices but lack practical utility 
or generalizability. 
 
2.3.1 The parsimony goodness-of-fit index 

(PGFI) 
 
The Parsimony Goodness-of-Fit Index (PGFI) is 
a fit index used in structural equation modeling 
(SEM) to adjust the Goodness-of-Fit Index (GFI) 
for the complexity of the model.  PGFI adjusts 
the traditional GFI by penalizing the model for its 
complexity, typically by incorporating a correction 
factor that accounts for the number of estimated 
parameters. This adjustment aims to promote 
parsimony, rewarding models that achieve good 
fit while using fewer parameters. Formula to 
compute PGFI is [40]. 
 

𝑃𝐺𝐹𝐼 =  
𝑥𝑚𝑜𝑑𝑒𝑙

2

𝑑𝑓𝑚𝑜𝑑𝑒𝑙

 

 
χ2model is the chi-square statistic for the user-
specified model. 
df model is the degrees of freedom for the user-
specified model. 
 
Interpretation: PGFI values range from 0 to 1, 
like GFI and other fit indices, with values closer 
to 1 indicating better fit. The interpretation of 
PGFI involves comparing its value against 
established threshold criteria to assess model 
adequacy. Specific threshold values for PGFI 
may vary in the literature. However, guidelines 
generally suggest that higher PGFI values 
indicate better model fit while considering model 
complexity. As with other fit indices, thresholds 
are context-dependent and can vary based on 
the specific research area, sample size, and 
complexity of the model. 
 
2.3.2 The parsimony normed fit index (PNFI) 
 
The Parsimony Normed Fit Index (PNFI) is a fit 
index used in structural equation modeling (SEM) 
to adjust the Normed Fit Index (NFI) for the 
complexity of the model.  PNFI adjusts the 
traditional NFI by penalizing the model for its 
complexity, typically by incorporating a correction 
factor that accounts for the number of estimated 
parameters. This adjustment aims to                        
promote parsimony, rewarding models that 
achieve good fit while using fewer parameters. 
Essentially, PNFI provides a more                         
balanced assessment of model fit by considering 
both the goodness of fit and the                           
model’s simplicity. Formula to compute PNFI is 
[42,38]. 

𝑃𝑁𝐹𝐼 =
𝑁𝐹𝐼 x 𝑑𝑓𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑑𝑓𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

 

 
NFI is the Normed Fit Index. 
df baseline is the degrees of freedom for the 
baseline (null) model. 
 df model is the degrees of freedom for the user-
specified model. 
 
Interpretation: Like NFI, PNFI values range 
from 0 to 1, with values closer to 1 indicating 
better fit. Higher PNFI values suggest that the 
model fits the data well while maintaining 
simplicity, thereby enhancing its generalizability 
and interpretability. 
 
2.3.3 The akaike information criterion (AIC) 
 
The Akaike Information Criterion (AIC), along 
with the Bayesian Information Criterion (BIC), 
Browne-Cudeck Criterion (BCC), and Consistent 
Akaike Information Criterion (CAIC), is 
recognized as a measure of model fit based on 
information theory. These indices are particularly 
relevant when maximum likelihood estimation is 
utilized [57]. These indices serve the primary 
purpose of comparing different models to 
determine which one offers the best fit. The 
models yielding the lowest values for these 
criteria are considered the most optimal. It is 
important to note that the absolute value of the 
AIC, BIC, BCC, or CAIC is not inherently 
meaningful; instead, the focus should be on the 
relative values between models. Specifically, the 
model with the lower AIC value is preferred. 
Although values closer to zero are generally 
considered ideal, it is the comparison between 
models that provides meaningful insights 
[57,58,59,60]. 
 
The Akaike Information Criterion (AIC) is a 
statistical measure used to compare the relative 
quality of different models based on their fit to the 
data. AIC balances the goodness of fit of a model 
with its complexity, penalizing models that are 
more complex. The principle behind AIC is to 
select a model that adequately explains the data 
with the fewest parameters, thereby promoting 
parsimony and generalizability [58]. AIC is 
calculated using the formula: 
 

𝐴𝐼𝐶 =  −2. ln(ℒ) + 2. 𝑘 
 

ℒ  is the maximized value of the likelihood 
function of the model. 
k is the number of estimated parameters in the 
model. 
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Interpretation: Lower Values Better Fit: AIC 
values are relative, meaning lower values 
indicate a better fit of the model to the data. 
Models with lower AIC scores are considered to 
be more parsimonious and better fitting to the 
observed data. AIC is widely used in model 
selection across various fields, including 
statistics, econometrics, and machine learning. It 
allows researchers to compare multiple models 
and determine which one strikes the best 
balance between goodness of fit and model 
complexity. 
 

3. CONFIRMATORY FACTOR ANALYSIS 
  
In addition, in Confirmatory Factor Analysis 
(CFA), assessing reliability [61,62], convergent 
validity [61,63], and discriminant validity [61,2] is 
crucial to ensure the measurement model’s 
adequacy [64]. 
 
Reliability: Reliability refers to the consistency of 
a measure. A reliable measurement produces 
the same results under consistent conditions. In 
the context of psychological and educational 
testing, reliability ensures that the instrument 
measures a construct consistently across 
different occasions, items, and raters. High 
reliability indicates that the measurement tool 
yields stable and consistent results over 
repeated applications [65]. 
 
Composite Reliability (CR): Composite 
Reliability (CR), also known as construct 
reliability, is a measure used to assess the 
internal consistency of a set of latent construct 
indicators in structural equation modeling (SEM). 
Unlike Cronbach’s alpha, which assumes equal 
weight for all items, CR takes into account the 
varying loadings of the items, providing a more 
accurate estimation of the reliability of the 
construct. Composite Reliability is crucial for 
evaluating the reliability of a measurement model 
because it provides insight into the degree to 
which the indicators reflect the latent construct. 
High CR values indicate that the indicators 
consistently represent the underlying construct, 
enhancing the validity of the measurement model 
[61,62,66]. 
 

𝐶𝑅 =  
(𝛴𝜆𝑖)

2

(𝛴𝜆𝑖)
2 + 𝛴𝜃𝑖

 

 
Where, 
 
λi are the factor loadings and 𝜃𝑖 are the error 
variances. 

Threshold Values: The threshold values for 
Composite Reliability are generally similar to 
those for Cronbach’s alpha: 
 
CR ≥ 0.70: Indicates adequate reliability 
CR ≥ 0.80: Indicates good reliability 
CR ≥ 0.90: Indicates excellent reliability 
 
Values below 0.70 suggest that the construct 
indicators may not be consistently measuring the 
same underlying concept, thus questioning the 
reliability of the construct [65]. 
 
Cronbach’s Alpha: Cronbach’s alpha (α) is a 
widely used measure of internal consistency, 
indicating how closely related a set of items are 
as a group. It is essential for determining the 
reliability of a multi-item scale. Cronbach’s alpha 
values range from 0 to 1, with higher values 
indicating greater internal consistency [67]. A 
high Cronbach’s alpha suggests that the items 
measure the same underlying construct, making 
the scale reliable. Cronbach’s alpha is crucial 
because it helps validate the consistency of the 
items in a test or survey, ensuring that they 
collectively measure the intended construct. This 
is particularly important in research and 
assessment contexts where the accuracy and 
dependability of measurement tools directly 
impact the validity of conclusions drawn [68]. 
 

𝛼 =
𝑁

𝑁 − 1
(1 − 

∑ 𝜎𝑖
2𝑁

𝑖=1

𝜎𝑡
2 ) 

 

Where:  
 

𝑁is the number of items. 

𝜎𝑖
2  is the variance of the ith item. 

𝜎𝑡
2  is the variance of the total score formed by 

summing all the items. 
 

Threshold values for cronbach’s alpha: The 
acceptable level of Cronbach’s alpha depends on 
the context and purpose of the measurement. 
General guidelines for interpreting Cronbach’s 
alpha values are as follows: 
 

α ≥ 0.9: Excellent 
0.8 ≤ α < 0.9: Good 
0.7 ≤ α < 0.8: Acceptable 
0.6 ≤ α < 0.7: Questionable 
0.5 ≤ α < 0.6: Poor 
α < 0.5: Unacceptable 
 

Note: These thresholds serve as benchmarks for 
evaluating the reliability of a scale. However, the 
interpretation of Cronbach’s alpha should also 
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consider the specific research context, including 
the nature of the construct being measured and 
the intended use of the instrument [69]. 
 

Average variance extracted (AVE): Average 
Variance Extracted (AVE) is a measure used in 
structural equation modeling (SEM) to assess the 
amount of variance that is captured by a latent 
construct in relation to the amount of variance 
due to measurement error. It is an indicator of 
convergent validity, which ensures that the items 
of a construct are truly representative of the 
intended latent variable [61]. AVE is crucial 
because it helps researchers determine whether 
the indicators of a construct are adequately 
capturing the underlying factor they are intended 
to measure. High AVE values indicate that the 
construct explains a substantial portion of the 
variance in its indicators, thus demonstrating 
good convergent validity. AVE also aids in 
assessing discriminant validity, which ensures 
that constructs are distinct and not excessively 
correlated with each other. The formula for 
calculating AVE is: 
 

𝐴𝑉𝐸 =  
𝛴𝑖=1

𝑁 𝜆𝑖
2

𝑁
 

 

Where:  
 

λi represents the standardized factor loading of 
each indicator on the latent construct. 
𝑁 is the number of indicators. 
 

Threshold Values for AVE: The commonly 
accepted threshold for AVE is 0.50. This means 
that at least 50% of the variance in the indicators 
should be accounted for by the latent construct. 
Values below this threshold suggest that the 
construct may not be adequately measured by its 
indicators (Hair et al., 2010). 
 

3.1 Discriminant Validity 
 

3.1.1 Fornell-larcker criterion 
 

The Fornell-Larcker criterion is a method used to 
assess discriminant validity in structural equation 
modeling (SEM). It evaluates whether the 
constructs in a model are distinct from each other 
by comparing the square root of the Average 
Variance Extracted (AVE) for each construct with 
the correlations between constructs [61]. The 
criterion is important because it helps 
researchers ensure that the constructs they are 
studying are distinct and not highly correlated 
with each other. This is crucial for avoiding 
multicollinearity issues and for accurately 

interpreting the relationships between constructs 
in a model. If the Fornell-Larcker criterion is met, 
it provides confidence that the measurement 
model is valid and that the constructs are 
adequately differentiated [63]. 
 

3.1.2 How It Works? 
 

The Fornell-Larcker criterion is applied as 
follows: 
 

Step1: Calculate AVE: Compute the Average 
Variance Extracted (AVE) for each construct. 
AVE measures the amount of variance explained 
by the construct’s indicators relative to 
measurement error. 
 

Step 2: Calculate Correlations: Calculate the 
correlations between all pairs of constructs in the 
model. 
 

Step3: Compare AVE and Correlations: Compare 
the square root of the AVE (for each construct) 

( √𝐴𝑉𝐸𝑖 ) with the correlations between that 

construct and all other constructs. According to 
the criterion, the square root of the AVE for a 
construct should be greater than the correlations 
between that construct and any other construct in 
the model to confirm discriminant validity. 
 

3.1.3 Heterotrait-monotrait ratio (HTMT) 
 

The Heterotrait-Monotrait Ratio (HTMT) is a 
measure used to assess discriminant validity in 
structural equation modeling (SEM). It compares 
the correlations between constructs (heterotrait 
correlations) to the average correlations within 
constructs (monotrait correlations). It is defined 
as the average of the heterotrait correlations 
divided by the average of the monotrait 
correlations. HTMT is important because it 
provides a direct and quantitative assessment of 
discriminant validity by comparing how much 
more constructs correlate with themselves 
(monotrait correlations) compared to how much 
they correlate with other constructs (heterotrait 
correlations). This helps researchers ensure that 
the measures used in their models are distinct 
and do not overlap substantially with each other. 
How It Works?  
 

Step1: Calculate Correlations: Compute the 
correlations between all pairs of constructs in the 
model. 
Step2: Calculate HTMT: For each pair of 
constructs 𝑖 and 𝑗 
 

𝐻𝑇𝑀𝑇𝑖𝑗 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 ℎ𝑒𝑡𝑒𝑟𝑜𝑡𝑟𝑎𝑖𝑡 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑗

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑚𝑜𝑛𝑜𝑡𝑟𝑎𝑖𝑡 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑗
 



 
 
 
 

Sathyanarayana and Mohanasundaram; Asian J. Econ. Busin. Acc., vol. 24, no. 7, pp. 561-577, 2024; Article no.AJEBA.119817 

 
 

 
573 

 

Table 1. The key criteria used in confirmatory factor analysis (CFA) 
 

Criterion Definition Threshold Value Citations 

Cronbach’s Alpha Measure of internal consistency 
reliability of a scale. 

≥ 0.70 Cronbach [67], Nunnally 
& Bernstein [65] 

Factor Loadings Strength and direction of the 
relationship between each item and its 
construct. 

≥ 0.50 Hair et al. [63], Byrne [17] 

Average Variance 
Extracted (AVE) 

Amount of variance explained by the 
construct’s indicators relative to 
measurement error. 

≥ 0.50 Fornell & Larcker [65], 
Hair et al. [63] 

Composite 
Reliability (CR) 

Measure of internal consistency 
reliability considering factor loadings. 

≥ 0.70 Fornell & Larcker [65], 
Hair et al. [63] 

Discriminant 
Validity 

Ensures that constructs are distinct 
from each other. 

HTMT ≤ 1.00 Fornell & Larcker [65], 
Henseler et al., (2015) 

Note: In confirmatory factor analysis (CFA), loadings of 0.70 or higher are often desired (Kline, R. B. (2016)) to ensure that the 
latent constructs are well-represented by the observed variables. This is particularly important in developing and validating 

measurement instruments 
 

Table 2. The key indices for reporting purposes 
 

Fit Index Definition Threshold Values Citations 

χ² Measures overall fit; sensitive to 
sample size. 

Non-significant (p > 0.05) Bollen, K. A. [25] 

χ²/df Chi-square divided by degrees of 
freedom. 

< 2: Good fit<br>2-3: Acceptable 
fit<br>> 3: Poor fit 

Kline, R. B. [2]  

CFI Compares fit to a null model; 
adjusts for sample size. 

> 0.90: Acceptable fit<br>> 0.95: 
Good fit 

Bentler, P. M. [38] 

TLI Compares fit to a null model; 
penalizes complexity. 

> 0.90: Acceptable fit<br>> 0.95: 
Good fit 

Hu, L. T., & Bentler, P. 
M. [4].  

RMSEA Measures fit per degree of 
freedom; penalizes complexity. 

< 0.05: Good fit<br>0.05-0.08: 
Acceptable fit<br>> 0.10: Poor fit 

Browne, M. W., & 
Cudeck, R. [70].  

SRMR Measures average standardized 
residuals. 

< 0.08: Good fit Hu, L. T., & Bentler, P. 
M. [4].  

RMR Measures average residuals. Lower values indicate better fit 
(specific thresholds not widely 
cited) 

Byrne, B. M. [17].  

GFI Compares model to a null model; 
adjusts for sample size. 

> 0.90: Good fit Jöreskog, K. G., & 
Sörbom, D. (1989).  

AGFI Adjusts GFI for model complexity. > 0.90: Good fit Jöreskog, K. G., & 
Sörbom, D. (1989).  

PGFI Adjusts GFI for model parsimony. No specific threshold (used 
comparatively) 

Mulaik, S. A., et al., 
[71].  

NFI Compares fit to a null model. > 0.90: Good fit Bentler, P. M., & 
Bonett, D. G. [42].  

PNFI Adjusts NFI for model parsimony. No specific threshold (used 
comparatively) 

Mulaik, S. A., et al., 
[71].  

IFI Adjusts for sample size and model 
complexity. 

> 0.90: Good fit Bollen, K. A. [25].  

RFI Adjusts NFI for degrees of 
freedom. 

> 0.90: Good fit Bollen, K. A. (1986).  

AIC Compares relative quality of 
models; penalizes complexity. 

Lower values indicate better fit 
(no absolute threshold) 

Akaike, H. [58].  

BIC Similar to AIC but with a larger 
penalty for complexity. 

Lower values indicate better fit 
(no absolute threshold) 

Schwarz, G. [59].  

 
Step 3: Interpretation: A HTMT value close to or 
less than 1 indicates that the constructs are 
sufficiently distinct (good discriminant validity). 
Values significantly greater than 1 suggest 

potential issues with discriminant validity, 
indicating that the constructs may not be 
adequately differentiated (Henseler, J., Ringle, C. 
M., & Sarstedt, M. (2015). 
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The following is the comprehensive table 
summarizing the key criteria used in 
Confirmatory Factor Analysis (CFA), including 
Cronbach’s alpha, factor loadings, Average 
Variance Extracted (AVE), Composite Reliability 
(CR), and discriminant validity. Each criterion is 
defined along with its threshold value and 
relevant citations for further reading. 
 

4. DISCUSSION AND CONCLUSION 
 
Proper reporting of Structural Equation Modeling 
(SEM) and Confirmatory Factor Analysis (CFA) 
findings is crucial for transparency, 
reproducibility, and the validity of research 
conclusions. This section discusses the 
importance of reporting fit indices and criteria, 
outlines key aspects to consider, and 
emphasizes the significance of clear and 
thorough reporting practices. Reporting fit indices 
such as Comparative Fit Index (CFI), Tucker-
Lewis Index (TLI), and Root Mean Square Error 
of Approximation (RMSEA) provides readers with 
an objective assessment of how well the 
hypothesized models fit the data. This 
transparency allows others to evaluate the 
robustness of the findings and the validity of the 
underlying theoretical constructs. Criteria like 
Average Variance Extracted (AVE), Composite 
Reliability (CR), and discriminant validity 
measures (e.g., Fornell-Larcker criterion, 
Heterotrait-Monotrait Ratio) are essential for 
assessing the quality of measurement models. 
Reporting these measures ensures that the 
constructs under investigation are adequately 
defined, reliable, and distinct from each other. 
Proper citation of methodological references and 
established thresholds (e.g., guidelines for AVE, 
CR, discriminant validity) enhances the credibility 
of the research. It demonstrates adherence to 
best practices and allows for comparisons with 
other studies in the field. Clearly state the values 
of fit indices (CFI, TLI, RMSEA) obtained from 
the analysis. Interpret these values in relation to 
accepted thresholds [4,70] to assess model fit. 
Provide AVE and CR values for each construct to 
demonstrate convergent validity and reliability. 
Discuss these values in relation to established 
benchmarks [61,63] to evaluate the adequacy of 
the measurement models. Describe how 
discriminant validity was assessed (e.g., Fornell-
Larcker criterion, HTMT ratio) and report the 
findings. Highlight measures taken to ensure that 
constructs are distinct and not highly correlated 
with each other. Include citations to 
methodological references and seminal works 
that justify the chosen criteria and interpretations. 

This supports the methodological rigor of the 
study and provides a basis for readers to further 
explore the theoretical framework. 
 

Therefore, the meticulous reporting of fit indices 
and criteria in SEM and CFA studies serves as a 
cornerstone for ensuring methodological rigor, 
credibility, and the advancement of theoretical 
knowledge. By adhering to best practices in 
reporting, researchers not only bolster the validity 
of their findings but also foster a conducive 
environment for scholarly discourse and the 
cumulative growth of knowledge in the field of 
structural equation modeling and confirmatory 
factor analysis. By emphasizing these points, 
researchers can effectively communicate the 
significance of their findings and contribute 
meaningfully to the ongoing dialogue within their 
academic communities [72-74]. 
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