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Abstract: Establishing a scientifically effective systemic financial risk early warning model is of
great significance for prudently mitigating systemic financial risks and enhancing the efficiency of
financial supervision. Based on the measurement of systemic financial risk and the network sentiment
index of 47 financial institutions, this study adopted the “decomposition–reconstruction–integration”
approach, utilizing techniques such as extreme-point symmetric empirical mode decomposition
(ESMD), empirical mode decomposition (EMD), variational mode decomposition (VMD), hierarchical
clustering, fast independent component analysis (FastICA), attention mechanism, bidirectional long
short-term memory neural network (BiLSTM), support vector regression (SVR), and their combination,
to construct a systemic financial risk prediction model. The empirical results demonstrate that
decomposing and reconstructing relevant indicators before predicting systemic financial risks can
enhance prediction accuracy. Among the proposed models, the ESMD-HFastICA-BiLSTM-Attention
model exhibits superior performance in systemic financial risk early warning.

Keywords: systemic financial risk; extreme-point symmetric empirical mode decomposition; fast
independent component analysis; attention mechanism; deep learning

1. Introduction

With the continuous advancement of financial integration and the increasingly appar-
ent global financial risks, the stability and sustainable development of financial markets
are facing unprecedented challenges. The profound lessons learned from the 2008 financial
crisis have led regulatory authorities to recognize the importance of systemic financial risks
for financial stability. Countries worldwide are urgently seeking ways to strengthen macro-
prudential regulatory frameworks and address various vulnerabilities to ensure national
financial security. As the world’s second-largest economy, China’s financial market stability
directly impacts global economic dynamics and financial system stability [1]. Currently,
the Chinese government is facing the dual challenges of addressing the complex economic
and financial environment and various unforeseen events, including the Sino–U.S. trade
tensions and the COVID-19 pandemic. In such a context, effectively conducting comprehen-
sive and accurate early warnings of China’s systemic financial risk has become an urgent
and critical issue to address. Therefore, we aimed to accurately and comprehensively
measure China’s systemic financial risk by exploring and proposing effective early warning
methods to address various risk challenges that may arise now and in the future. By
conducting a comprehensive assessment and early warning of systemic risk in China’s
financial system, it can better protect the interests of investors, maintain the stability of
global financial markets, and promote sustainable economic development.

Preventing and resolving financial risk has always been a perennial theme in financial
work. In the early stages, any situation that threatened the stability of the financial system
or undermined public confidence in the financial system was classified as systemic financial
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risk [2]. However, after the 2008 financial crisis, the academic community defined systemic
financial risk as a form of risk contagion and conducted extensive discussions.

Currently, there are two main categories of measurement methods for systemic fi-
nancial risk. One is the comprehensive index method based on the risk measurement
indicator system [3], using the financial stress index as the mainstream method [4]. The
other focuses on reflecting the interconnectivity between financial institutions, with metrics
mainly including the systemic risk index and marginal expected shortfall [5]. Adrian and
Brunnermeier [6] proposed the conditional value at risk (CoVaR) and conditional expected
shortfall (MES) to measure the contribution of individual institutions to the overall risk of
the financial system. Acharya et al. [7] introduced the marginal expected shortfall (MES)
based on expected loss theory to measure the contribution of individual financial institu-
tions to risk. Subsequently, some scholars combined the DCC-GARCH and Copula models,
further extending the CoVaR-related indicators [8–11]. Other researchers considered the
impact of leverage and further improved MES, adopting the risk index SRISK, which
measures risk in the capital gap [12]. In addition, some scholars explored the contagion of
systemic financial risk from a network perspective [13].

A system for providing financial risk warnings is a prerequisite for preventing and
controlling systemic financial risks. Currently, in the academic community, models for
systemic financial risk warning can be broadly categorized into three types. The first type
is early warning models that use binary indicators (1 and 0) to define crisis and non-crisis
situations. These models construct regression equations to select warning indicators and
assess the likelihood of a crisis outbreak. Common models in this category include the STV
cross-sectional regression model, KLR model, etc. Due to drawbacks such as information
loss and subjectivity, scholars have sought improvements using the second type of tradi-
tional statistical methods. Mainstream methods include autoregressive integrated moving
average (ARIMA), generalized autoregressive conditional heteroskedasticity (GARCH),
etc. [14,15]. However, these models still face challenges when dealing with nonlinear and
non-stationary time series. The third type involves artificial intelligence models. Numerous
studies suggest that machine learning and artificial neural networks (ANNs) can effectively
enhance the predictive accuracy of traditional statistical methods [16,17]. Subsequently,
recurrent neural networks (RNNs) became an important approach in time-series problem
research due to their advantages in capturing sequential information [18]. However, RNNs
are prone to issues like vanishing or exploding gradients. To address this, scholars intro-
duced gate mechanisms in RNN to control information flow, creating models such as long
short-term memory (LSTM) and gated recurrent unit (GRU). These models significantly
improve the accuracy of financial time-series warnings [19,20]. At the same time, Shen
et al. [21] reported the advantages of convolutional neural networks in stock price pre-
diction. Moreover, scholars have extended these models to bidirectional long short-term
memory (BiLSTM) and demonstrated their superiority in forecasting [22–24].

Extensive practice has shown that individual artificial intelligence prediction models
come with both advantages and disadvantages, making it challenging to achieve optimal
predictive performance using a single model. Therefore, most scholars are currently
focusing on using ensemble methods to improve the forecasting accuracy of time series.
The main approaches can be broadly classified into two categories. The first category
involves combining various single models to form a new model. Attention mechanism,
which can compute attention probability distributions to extract crucial information and
optimize predictive models, is widely used in this context. For example, Ouyang et al. [5]
found that attention mechanism significantly improves the predictive accuracy in systemic
financial risk warning research. Lu et al. [25] combined convolutional neural network
(CNN) and BiLSTM, embedding attention mechanism for stock price prediction, achieving
favorable forecasting results.
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The second category involves data preprocessing based on the “decomposition–
reconstruction–integration” concept. This approach decomposes and reconstructs data into
different subsequences, using deep learning models to predict each subsequence separately,
finally integrating these parts for an overall analysis [26,27]. Representative decomposition
techniques include wavelet decomposition (WD) and empirical mode decomposition (EMD)
and its variants, with EMD and its variants being more suitable for the decomposition of
nonlinear data [28,29].

Most studies indicate that stock market fluctuations are driven by collective be-
havior, with investor sentiment playing a particularly significant role in stock market
changes [30,31]. This influence not only involves the correlation between investor senti-
ment and the stock market [32], but also the crucial role of investor sentiment in financial
forecasting [33,34]. For example, Gao et al. [35] revealed the significant role of investor sen-
timent in predicting stock market volatility. As a crucial component of the financial market,
stock market volatility can trigger financial risk, and some scholars have demonstrated
that investor sentiment has a nonlinear effect in financial risk prediction [36]. Therefore,
further exploring the role of investor sentiment in the prediction of systemic financial risk
is of significant importance.

By reviewing the above literature, it is evident that individual risk measurement
indicators can only assess a certain aspect of systemic financial risk. Moreover, investor
sentiment plays a driving role in systemic financial risk, yet few studies have considered
investor sentiment as a predictive factor for systemic financial risk. Additionally, obtaining
optimal predictive results with a single predictive model is challenging. The widely applied
“decomposition–reconstruction–integration” forecasting approach has shown significant
improvements in predictive performance. However, there is room for improvement in the
methods of “decomposition–reconstruction” [37], and further optimization is needed for
deep learning predictive models. Therefore, this paper proposes a systemic financial risk
prediction method based on the ESMD-HFastICA-BiLSTM-Attention model. Firstly, four
systemic financial risk indicators, CoVaR, ∆CoVaR, MES, and SRISK, are constructed. These
indicators are decomposed using extreme-point symmetric empirical mode decomposition
(ESMD). Next, a combination of hierarchical clustering and fast independent component
analysis (HFastICA) is employed to reconstruct the decomposed data into new subse-
quences. Finally, investor sentiment measures, such as the network sentiment index and the
new subsequences, are used as inputs. The systemic financial risk is predicted through a
combination of bidirectional long short-term memory (BiLSTM) and attention mechanism.

This paper’s innovations lie in three aspects. First, the use of the empirical symmet-
ric mode decomposition method effectively overcomes the mode mixing phenomenon
encountered in EMD. It does so without the need for additional steps like adding noise,
denoising, or smoothing methods, enabling a direct decomposition of the data. Second,
the application of hierarchical clustering and fast independent component analysis for
data reconstruction results in mutually independent subsequences. This approach avoids
subjective reconstruction of subsequences and reduces prediction errors caused by inter-
subsequence correlations. Third, the consideration of the network sentiment index is a
crucial indicator in forecasting. Additionally, an attention mechanism is incorporated on
top of the BiLSTM model, enhancing the focus on important information in the prediction
process and improving prediction accuracy.

The remaining structure of this paper is as follows: the second part covers the method-
ology, the third part deals with indicator calculation and analysis, and the empirical analysis
and research conclusion are presented in the fourth and fifth parts, respectively.



Symmetry 2024, 16, 480 4 of 21

2. Methods
2.1. Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity

We adopted the DCC-GARCH model to calculate the dynamic correlation coefficient
between two financial variables. The specific model is as follows:

Ht = DtRtDt

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2

Dt = diag(
√

h11,t,
√

h22,t, . . . ,
√

hmm,t)

Qt = (1− η −ω)Q + ωQt−1 + ηδi,t−1δj,t−1

, (1)

where Rt represents the matrix of conditional correlation coefficients, Ht represents the
matrix of conditional covariance

√
h11,t, Dt represents the diagonal matrix of conditional

standard deviations, and the conditional variance h11,t is fitted by a univariate GARCH or

TGARCH model. Qt =

[
qii,t qij,t
qji,t qjj,t

]
is the covariance matrix, Q is the matrix of uncondi-

tional variances of residuals, η is the standardized residual coefficients of lag n, ω is the
coefficients of conditional variances at lag order, all of which are negative and simultane-
ously satisfy the condition η + ω < 1. δt represents the disturbance term, and j follows a
specific distribution.

2.2. Extreme-Point Symmetric Empirical Mode Decomposition

Wang and Li [38] proposed the extreme-point symmetric empirical mode decompo-
sition (ESMD), which addresses the issue of mode mixing in traditional empirical mode
decomposition by interpolating the midpoints of line segments connecting local maxima
and minima. The ESMD process involves three steps:

Step 1: Identify all local extrema points Ei(1 ≤ i ≤ n) of the systemic financial risk X
(including maxima and minima), connect all adjacent points Ei, and label the midpoints of
the line segments as Fi(1 ≤ i ≤ n− 1). Then, supplement a left boundary midpoint and
a right boundary midpoint by linear interpolation. Utilize n+1 midpoints to construct p
interpolation curves L1, L2, . . . , Lp(p ≥ 1), and concurrently calculate the average curve
L∗ = L1+L2+...+LP

p .
Step 2: Repeat Step 1 for X− L∗. If the iteration reaches the maximum preset value K

or satisfies |L∗|≤ ε (where ε is the preset error, σ0 is the standard deviation of data X, and
ε = 0.0001σ0 is typically chosen), obtain the first mode IMF1 = m1. Repeat the above steps
for X − m1 to successively obtain m2, m3, . . .. Stop when the number of extreme points
contained in the residual function R = X−m1 −m2 − . . .−mc reaches the preset value.

Step 3: Sequentially change the value of K within a pre-defined integer interval
[Kmin, Kmax]. Determine K = K0 based on the minimum variance ratio σ/σ0 (where σ and
σ0 represent the standard deviations of X − R and X, respectively). Repeat Steps 1 and 2 to
obtain the final decomposition result.

2.3. Hierarchical Clustering and Fast Independent Component Analysis

Hierarchical clustering creates a hierarchical tree-like clustering structure by calcu-
lating the similarity between different clusters. It is generally divided into agglomerative
(bottom–up) and divisive (top–down) approaches. This paper chose the agglomerative
hierarchical clustering algorithm. Initially, it assumes each sample is a separate cluster. It
then calculates the Manhattan distance between each pair of clusters:

d =
∣∣∣x1

1 − x2
1

∣∣∣+∣∣∣x1
2 − x2

2

∣∣∣+ . . .+
∣∣∣x1

n − x2
n

∣∣∣. (2)

Subsequently, employing the single linkage method, the two sets with the minimum
distance are identified, and they are merged into a new set. This process is repeated
iteratively until only one set remains. Hierarchical clustering categorizes different intrinsic



Symmetry 2024, 16, 480 5 of 21

modes into n classes, forming n random observed signals X. Independent component
analysis treats these n random signals as a linear combination of p(p ≤ n) mutually
independent signals s, satisfying:

X = AS, (3)

Here X is the known observed signal matrix, S is the unknown independent source
vector, and A is the unknown mixing matrix. Then, a separation matrix W is constructed,
transforming Equation (3) into Y = WX = WAS. Thus, the problem becomes the solution
for the separation matrix W. Following the research by Hyvärinen and Oja [39], this paper
chose the FastICA method, which maximizes non-Gaussian criteria according to WTX
solving the separation matrix W. It constructs the optimization problem of maximizing
negative entropy as follows:

fg(WTX) = (E[g(WTX)]− E[g(m)])
2

(4)

where g is a nonlinear function satisfying g(y) = tanh(by), y is a subvector in signal Y,
b = 1, fg(WTX) is negative entropy, E[·] represents the mean function, and m is a Gaussian
random variable after centering and whitening. According to the Kuhn–Tucker conditions,
with the constraint E[(WTX)

2
] = ||W||2 = 1, given g′(·) as the derivative of g(·), W0 as the

optimized value of W, and γ as a constant, the final optimal value is expressed as:{
E[Xg′(WTX)]− γW = 0

γ = E[WT
0 Xg′(WT

0 X)]
. (5)

2.4. Bidirectional Long Short-Term Memory

The BiLSTM constructed in this paper consists of two independent LSTMs, namely the
forward LSTM and the backward LSTM. Simultaneously considering information from past
and future sequences, the final learning result is obtained by combining the forward input
sequence and the reverse input sequence with certain weights. The specific model structure
is illustrated in Figure 1. To be specific, if xt−1, xt and xt+1 are input variables, after going

through the forward LSTM, we obtain hidden vectors
→
h t−1,

→
h t and

→
h t+1. At the same time,

the same input sequences undergo the backward LSTM, yielding hidden vectors
←
h t−1,

←
h t and

←
h t+1. Further, concatenating the forward hidden vectors with the backward hidden vectors
results in the output of the BiLSTM, represented by ht−1, ht and ht+1.
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The LSTM cell unit depicted in Figure 1 is primarily composed of a forget gate, an
input gate, and an output gate. The forget gate regulates the extent of information to be
discarded, while the input and output gates are responsible for receiving and outputting
parameters. The specific operational principles are outlined below.

The formula for the forget gate is ft = σ(W f · (ht−1, xt) + b f ), where ht−1 denotes the
output at time t−1, xt is the input to the current layer at time t, W f is the weights of various
variables, and b f is the bias term. The activation function σ determines the retention or
omission of information. In this context, the sigmoid function is chosen, with the form
σ(x) = (1 + e−x)

−1, where ft ranges between 0 and 1.
The formula for the input gate is Ct = ftCt−1 + itC̃t, where it = σ(Wi · (ht−1, xt) + bi)

and ranges between 0 and 1, and Ct represents the updated cell state value. Ct−1 is the
cell state value at time t − 1, C̃t = tanh(Wc · (ht−1, xt) + bc) represents the information
extracted from the input at time t, and tanh is the hyperbolic tangent activation function.
Other types of activation functions can be used as well. And the formula for the output
gate is ot = σ(Wo · (ht−1, xt) + bo), where ot is the output.

Therefore, LSTM can accomplish internal processing of a neuron through three control
gates, forming a memory of long-term past data.

2.5. Attention Mechanism

The attention mechanism can simulate the resource allocation mechanism formed by
human attention, allocating probabilistic weights to input elements to reduce the inter-
ference of irrelevant information and enhance the significance of key information. If xt
represents the input to the BiLSTM, ht is the output of each hidden layer after learning, at
is the attention allocation value to the input of the BiLSTM hidden layer in the attention
mechanism, and y is the output value of the BiLSTM with the attention mechanism. The
calculation formula is:

y =
n

∑
t=1

atht (6)

Here, at =
exp(et)

n
∑

i=1
ei

and et = vttan h(wtht + bt) represents the energy value determined

by the hidden layer state vector ht at time t in the BiLSTM. And vt and wt are the weight
coefficient matrices at time t, and bt is the bias. The activation function is tan h.

2.6. Prediction Framework and Evaluation Metrics

We combined extreme-point symmetric empirical mode decomposition (ESMD), hier-
archical clustering and fast independent component analysis (HFastICA), bidirectional long
short-term memory (BiLSTM), and attention mechanism, taking into account the crucial
indicator of network public opinion. It constructs a novel “decomposition–clustering-
ensemble” model for systematic risk prediction. Figure 2 illustrates the structure of the
prediction model.

Symmetry 2024, 16, x FOR PEER REVIEW 7 of 22 
 

 

2.6. Prediction Framework and Evaluation Metrics 
We combined extreme-point symmetric empirical mode decomposition (ESMD), hi-

erarchical clustering and fast independent component analysis (HFastICA), bidirectional 
long short-term memory (BiLSTM), and attention mechanism, taking into account the cru-
cial indicator of network public opinion. It constructs a novel “decomposition–clustering-
ensemble” model for systematic risk prediction. Figure 2 illustrates the structure of the 
prediction model. 

 
Figure 2. The framework of the prediction model. 

Therefore, the forecasting process of this paper is divided into four steps: 
Step 1: Input the forecast indicators of systemic financial risk ( )x t  , and use the 

ESMD to decompose the observed data into m intrinsic mode functions (IMFs), with 

1
( ) ( )

m

i
i

x t IMF t
=

=  (the residual sequence is defined as the last mode in this paper). 

Step 2: Classify the obtained m mode functions using hierarchical clustering and sum 
the mode functions of the same category to obtain a new reconstructed sequence, with 

1
( ) ( )

n

i
i

x t CIMF t
=

= . 

Step 3: Perform FastICA on the reconstructed sequence obtained in Step 2 to obtain 

mutually independent reconstructed sequences, with 
1 1

( ) ( ) ( )
n n

i i i
i i

x t SIMF t a IC t
= =

= =  , 

where ia  is the sum of columns of the mixing matrix and ( )iIC t  is the estimated signal. 
Step 4: Multiply the network public opinion index and the reconstructed sequences 

from Step 3 by weights as new inputs. Through BiLSTM and attention mechanism, obtain 
the predicted values of each reconstructed sequence. Integrate all predicted values to ob-
tain the forecast values of systemic financial risk indicators and calculate the evaluation 
metrics (the specific calculation methods are detailed in Table 1). 

  

Figure 2. The framework of the prediction model.



Symmetry 2024, 16, 480 7 of 21

Therefore, the forecasting process of this paper is divided into four steps:
Step 1: Input the forecast indicators of systemic financial risk x(t), and use the

ESMD to decompose the observed data into m intrinsic mode functions (IMFs), with

x(t) =
m
∑

i=1
IMFi(t) (the residual sequence is defined as the last mode in this paper).

Step 2: Classify the obtained m mode functions using hierarchical clustering and sum
the mode functions of the same category to obtain a new reconstructed sequence, with

x(t) =
n
∑

i=1
CIMFi(t).

Step 3: Perform FastICA on the reconstructed sequence obtained in Step 2 to obtain

mutually independent reconstructed sequences, with x(t) =
n
∑

i=1
SIMFi(t) =

n
∑

i=1
ai ICi(t),

where ai is the sum of columns of the mixing matrix and ICi(t) is the estimated signal.
Step 4: Multiply the network public opinion index and the reconstructed sequences

from Step 3 by weights as new inputs. Through BiLSTM and attention mechanism, obtain
the predicted values of each reconstructed sequence. Integrate all predicted values to obtain
the forecast values of systemic financial risk indicators and calculate the evaluation metrics
(the specific calculation methods are detailed in Table 1).

Table 1. Calculation of evaluation metrics.

Evaluation Metrics Formula

mean absolute error (MAE) 1
N

N
∑

t=1
|x̂t − xt|

root mean square error (RMSE)
√

1
N

N
∑

t=1
(x̂t − xt)

2

coefficient of determination (R2) 1−
N
∑

t=1
(xt − x̂t)

2/
N
∑

t=1
(xt − xt)

2

directional prediction statistic (Dstat) 1
N

N
∑

i=1
r(t)× 100%, r(t) =

{
1, (xt+1 − xt)(

⌢
x t+1 −

⌢
x t) ≥ 0

0, (xt+1 − xt)(
⌢
x t+1 −

⌢
x t) ≤ 0

Note: N is the number of data points, xt represents the actual values, x̂t represents the predicted values, and xt is
the mean value.

3. Indicator Calculation and Analysis
3.1. Calculation of Systemic Financial Risk Indicators

To ensure the universality and representativeness of the research results, we selected
all financial institutions listed on the A-share market before 2014 as our research sample.
We excluded institutions with missing data and considered the availability of text data
from the East Money Stock Bar. Eventually, we identified 47 financial institutions, all of
which have a market share exceeding 70% and thus play a dominant role in the financial
market. We calculated their daily logarithmic return, and the market index was measured
using the daily logarithmic returns of the CSI 300 index. The sample period extended from
2 January 2015 to 30 June 2022, and all data were sourced from CSMAR.

We measured China’s systemic financial risk from various perspectives using con-
ditional value at risk (CoVaR), conditional value at risk difference (∆CoVaR), marginal
expected shortfall (MES), and the capital shortfall risk index (SRISK). CoVaR emphasizes
the risk spillover of individual financial institutions to others or the entire market. ∆CoVaR
reflects the difference between CoVaR when a single institution is in an extreme state and
when the system is normal. MES reflects the marginal contribution of individual financial
institutions to systemic risk during a significant market return decline. SRISK reflects
systemic risk from the expected capital shortfall perspective.

(1) CoVaR Calculation: CoVaR is defined as Pr(Xs ≤ CoVaRs/i
q

∣∣∣Xi = VaRi
q) = q by

Adrian and Brunnermeier [6], representing the risk value level of the financial system at
confidence level q when financial institution i experiences a crisis, where Xs represents the
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financial system’s return. We chose q = 0.05 and used the CSI 300 index logarithmic return
to represent the financial system’s return. Equation (1) was used to calculate the dynamic
CoVaR value for individual financial institution i.

(2) ∆CoVaR Calculation: setting q = 0.05 and q = 0.5 as extreme and normal states,
respectively, we calculated the CoVaR value for individual financial institutions in different
states. ∆CoVaR was calculated by computing ∆CoVaRs|i

t,0.05 = CoVaRs|i
t,0.05 − CoVaRs|i

t,0.5.
(3) MES Calculation: Acharya et al. [7] defined MES as MESi,t = E(ri,t|rs,t < q) , where

rs,t is the CSI 300 index logarithmic return and ri,t is the logarithmic return of individual
financial institutions. We set q = 0.05 and calculated the dynamic MES using Equation (1).

(4) SRISK Calculation: Based on the MES calculation results, setting k = 0.08, we
computed SRISKi,t = kDi,t − (1− k)(1− LRMESi,t) ∗ Ei,t, where the long-term marginal
expected loss LRMESi,t = 1−exp(−18×MESi,t), where Di,t and Ei,t represent the book
value of debt and equity, sourced from CSMAR.

Based on the calculation of systemic financial risk values for individual financial
institutions, we computed the weighted average of CoVaR, ∆CoVaR, MES, and SRISK for
47 institutions using market capitalization as weights. These values represent the overall
systemic financial risk for China, serving as the basis for subsequent research in this paper.
Due to the small scale of these four systemic financial risk indicators, we multiplied all
indicators by 1000 for subsequent research. Figure 3 shows the time series of systemic
financial risk, indicating similar trends in the four indicators. In the second half of 2015, the
abnormal fluctuations in the A-share market significantly impacted the Chinese economy,
leading to a drastic fluctuation in systemic financial risk. The sustained high level of
risk exacerbated the transmission and diffusion of risks, causing substantial harm to both
financial markets and the real economy. This warrants close attention from regulatory
authorities and proactive preventive measures. The second significant fluctuation occurred
in 2018, driven by the ongoing trade tensions between the U.S. and China, financial reforms
domestically, and the release of certain risks into the market, inducing panic. However, due
to the proactive response from relevant Chinese authorities, the systemic risk gradually
declined to a relatively stable state after the initial rise. The third major fluctuation emerged
after 2020, coinciding with the outbreak of the COVID-19 pandemic in China. This event
had a significant impact on the Chinese and global economies. Nevertheless, the Chinese
government promptly implemented effective epidemic control measures and introduced
a series of policies to stabilize the market. This allowed businesses to resume operations
quickly, leading to a gradual recovery of the economy after a brief shock.
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3.2. Calculation of Network Public Opinion Index

Drawing on the research methodology of Ouyang Zisheng et al. [36], this paper
utilized python to crawl comment data for 47 listed companies on East Money’s website
from 5 January 2015 to 30 June 2022. The collected data included post titles, click-through
rates, reply counts, usernames, posting times, and post content. As stock market forums
serve as open platforms for information exchange, containing both emotional expressions
of investors facing market changes and a certain amount of irrelevant information, the
obtained data underwent thorough cleaning. This process involved removing advertising
posts from the scraped information and eliminating duplicate sentences and words.

Following data cleaning, the text data underwent segmentation, a common method for
Chinese text segmentation that combines rule-based and statistical approaches. Leveraging
python’s Jieba, Dalian University of Technology, Sogou lexicons, as well as specialized
sentiment lexicons for the stock market and stock forums, we achieved text segmentation
and feature extraction. Additionally, sentiment analysis categorized network sentiment
into optimistic, neutral, and pessimistic sentiments. Each comment was analyzed, and the
quantities of positive, neutral, and negative vocabulary were calculated. Positive sentiment
words were assigned a value of 1, negative sentiment words −1, and neutral sentiment
words 0. The sum of these three sentiment categories for each day resulted in the daily
network public opinion index (NP), acting as a proxy indicator for investor sentiment, with
its trend depicted in Figure 4. Clearly, after 2016, the fluctuation range of the network
public opinion index is relatively small, except for occasional times when the variation
range is basically within the [−50, 50] interval. However, during the period from 2015 to
2016, the network public opinion index showed extreme volatility. The reason for this is
that in 2015, the “stock market crash” caused the Chinese stock market to experience drastic
fluctuations of collapse, rebound, and subsequent adjustments, leading to repeated changes
in investor sentiment between optimism and panic. Combined with the herd effect and
emotion-driven behavior of investors, this resulted in exceptionally violent fluctuations in
the network public opinion index during this period.
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3.3. Data Description and Interrelationship Analysis

Figures 3 and 4 depict the temporal characteristics of China’s systemic financial risk
and network public opinion index. To further understand the distributional properties
of the data, Table 2 provides descriptive statistics for both datasets, including the sample
size (Number), minimum value (Min), maximum value (Max), mean (Mean), and standard
deviation (St). The standard deviation of the network public opinion index is 16.1111,
indicating a large variability within the sample period, with a mean of −2.4110, suggesting
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a prevailing negative sentiment among investors in the Chinese financial system during
the sample period. We observe that MES exhibits the greatest fluctuation among the four
systemic financial risk indicators, while ∆CoVaR has the smallest standard deviation. The
minimum value of SRISK is negative, indicating that the debt of the financial system
exceeded its assets during those periods. The distinct statistical characteristics of the four
systemic financial risk indicators illustrate their varied perspectives on China’s systemic
financial risk.

Table 2. Descriptive statistics.

Number Min Max Mean St

NP 1822 −147.5925 97.0208 −2.4110 16.1111
CoVaR 1822 1.6425 32.4396 8.0391 5.1847

∆CoVaR 1822 1.6389 32.4002 8.0249 5.1774
MES 1822 8.7679 76.2122 23.3972 12.3060

SRISK 1822 −4.9172 50.2667 16.4566 10.4247

The interrelationship between network public opinion and systemic financial risk
manifests in two aspects. On the one hand, investors, as the mediators influencing sys-
temic financial risk through network public opinion, can gather and interpret information
from online sentiment, understand various investors’ expectations for the financial market,
engage in information exchange, and share insights. However, such sentiment-laden infor-
mation can lead investors to make irrational judgments, causing market overfluctuations,
investment bubbles, and triggering systemic financial risk. On the other hand, in the era of
digital information, the rapid and diverse dissemination of public sentiment information
may result in varying qualities of information. Due to limited investor attention, this
can lead to the transmission of false or erroneous information, creating an asymmetry of
information in the market. Consequently, in situations of rapid market changes, investors
might make inaccurate decisions, causing significant market fluctuations and exacerbating
systemic financial risk. Therefore, the network public opinion index can serve as a crucial
indicator for predicting systemic financial risk.

We employed the generalized forecast error variance decomposition method proposed
by Diebold and Yilmaz [40] to construct the spillover matrices between the network public
opinion index and systemic financial risk. The interrelationship between the network
public opinion index and systemic financial risk was examined, and the rationality of
using the network public opinion index as a predictor for systemic financial risk was
tested. Table 3 presents the spillover matrices calculated through vector autoregression
and variance decomposition, where “To” indicates spillovers, and “From” indicates inward
spillovers. Overall, the information spillover of the network public opinion index was
as high as 232.39%, while the inward spillover was only 0.08%. This suggests that the
impact of network public opinion on the four categories of systemic financial risk is
far greater than the impact of systemic risk on network public opinion index. Among
them, CoVaR, ∆CoVaR, and SRISK, the three types of systemic financial risk, receive
information spillovers mainly from the network public opinion index, accounting for
76.48%, 76.49%, and 51.75%, respectively. The information spillover of the network public
opinion index to MES is 27.68%, ranking second in the spillover into MES. Nevertheless,
this still indicates the significant role of network public opinion in predicting systemic
risk. There are asymmetric information spillovers and spillovers among the four types of
systemic financial risk, indicating that these indicators have certain correlations but also
differences. Therefore, different dimensions of the systemic financial risk indicators should
be considered in predictions.
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Table 3. The information spillover matrix.

NP CoVaR ∆CoVaR MES SRISK From

NP 99.92 0.01 0.01 0.02 0.05 0.08
CoVaR 76.48 2.12 2.11 3.45 15.84 97.88

∆CoVaR 76.49 2.12 2.11 3.45 15.83 97.89
MES 27.68 2.01 2.00 12.01 56.29 87.99

SRISK 51.75 0.02 0.02 0.18 48.03 51.97
To 232.39 4.16 4.15 7.10 88.01 67.16

4. Results
4.1. Decomposition, Clustering, and Reconstruction

Before conducting the prediction of systemic financial risk, this paper preprocessed
the systemic financial risk data through decomposition, clustering and reconstruction to
fully exploit the data information. To reconstruct the data, the relevant steps of ESMD were
applied to decompose CoVaR, ∆CoVaR, MES, and SRISK. Figures 5–8 depict the decompo-
sition results for the four types of systemic financial risk. CoVaR, ∆CoVaR, MES, and SRISK
were decomposed into 9, 9, 7, and 9 intrinsic mode functions (IMFs), respectively. Among
these, the frequency of each mode from IMF1 to IMF9 (IMF7) gradually decreased, with
IMF1 having the highest frequency and the smallest amplitude, which can be considered
as representing random factors. IMF2 to IMF6 (MES is IMF2 to IMF4) exhibited normal
frequencies and amplitudes. IMF7 to IMF8 (MES is IMF5 to IMF6) represent low-frequency
data, reflecting the long-term changes in systemic financial risk. The last mode (i.e., resid-
ual) was smooth and changed slowly, reflecting the overall trend of the systemic financial
risk. It reached its highest point in 2015, experienced a significant decline thereafter, rose
again after 2018, and then gradually decreased with slight fluctuations in 2022.
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If the decomposed data are directly used for prediction, this not only increases the
prediction time but may also lead to inaccuracies in the prediction of individual modes due
to the correlation between modes. Therefore, before applying deep learning for prediction,
this study reconstructed the decomposed systemic financial risk data from ESMD. Both
hierarchical clustering and FastICA were employed for data reconstruction, referred to as
HFastICA. Hierarchical clustering offers flexibility and does not require specification of
the number of clusters, while FastICA further extracts mutually independent information
sequences to capture the basic structure of the prediction data. Table 4 presents the hierar-
chical clustering results for CoVaR, ∆CoVaR, MES, and SRISK, categorizing the modes into
different clusters. These results were computed using Equations (2), (4) and (5). The modal
functions within the same cluster of each systemic financial risk type were summed to
obtain the new sub-series CIMF, resulting in three reconstructed sub-series (CIMF1, CIMF2,
and CIMF3).

Table 4. Inherent modal categories of systemic financial risk.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9

CoVaR 1 1 1 1 1 2 1 1 3
∆CoVaR 1 1 1 1 1 2 1 1 3

MES 1 1 1 2 1 1 3 — —
SRISK 1 1 1 1 2 1 1 1 3

Next, the FastICA method was used to extract the independent signals from the
CIMF subseries. By solving the optimization problem of maximizing negative entropy, the
estimated values of the mixing matrix were obtained. Figure 9 shows the three independent
components (IC) extracted for various systemic financial risk indicators. The change
trends of the independent components of CoVaR and ∆CoVaR are similar, but they differ
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significantly from those of MES and SRISK. Among them, the change trend of IC1 for
CoVaR, ∆CoVaR, and MES was close to the original sequence, while the absolute value
of the correlation coefficient between IC1 and the corresponding original sequence for
SRISK was similar in trend. They were 0.6943, 0.6942, 0.8583, and 0.6981, respectively.
Therefore, IC1 can be regarded as a reflection of systemic financial risk on itself, indicating
that historical data has an important role in the fluctuation of systemic financial risk.
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Compared to IC2, IC3 has a trend similar to the corresponding original sequence, but it
is relatively smooth, with significant changes during important financial shocks. Therefore,
IC2 can be interpreted as the impact of other factors on the variation of systemic financial
risk, while IC3 can be interpreted as the impact of financial shocks on systemic financial
risk. During the “stock market crash” in 2015, the China–US trade friction in 2018, and the
COVID-19 pandemic in 2020, IC3 showed varying degrees of changes.

The signals extracted by FastICA need to exhibit independence and non-Gaussian
characteristics. This study assessed the independence and non-Gaussian nature of each
independent signal using correlation coefficients and normality tests. The results in Table 5
indicate that all ICs do not follow a normal distribution and are statistically significant at
the 1% level. Moreover, the correlation coefficients are close to 0, demonstrating that the
ICs possess independence and are non-Gaussian.



Symmetry 2024, 16, 480 15 of 21

Table 5. Independent component test.

S-W Test J-B Test A-D Test K-S Test Correlation

CoVaR
IC1 0.9029 *** 1245.5000 *** 50.6260 *** 0.1394 *** 1.0000
IC2 0.9487 *** 553.0500 *** 21.3150 *** 0.0631 *** 2.3661× 10−9

IC3 0.9231 *** 457.6500 *** 34.5910 *** 0.1082 *** −4.2929× 10−9

∆CoVaR
IC1 0.9029 *** 1245.5000 *** 50.6260 *** 0.1394 *** 1.0000
IC2 0.9487 *** 553.0500 *** 21.3150 *** 0.0631 *** 2.3661× 10−9

IC3 0.9231 *** 457.6500 *** 34.5910 *** 0.1082 *** −4.2929× 10−9

MES
IC1 0.8822 *** 1758.1000 *** 47.5650 *** 0.1116 *** 1.0000
IC2 0.7832 *** 2780.3000 *** 115.0800 *** 0.1610 *** 1.8701× 10−9

IC3 0.9157 *** 768.02000 *** 43.2650 *** 0.1108 *** −2.8217× 10−9

SRISK
IC1 0.9625 *** 382.9900 *** 16.5530 *** 0.0779 *** 1.0000
IC2 0.9572 *** 102.4700 *** 26.2550 *** 0.1068 *** −1.6429× 10−9

IC3 0.9707 *** 222.9600 *** 18.4760 *** 0.1084 *** 1.4161× 10−9

Note: *** represents significance at the 0.01 levels.

As the original data satisfies x(t) =
n
∑

i=1
SIMFi(t) =

n
∑

i=1
ai ICi(t) after FastICA analysis,

Table 6 provides the corresponding weights and the calculated SIMFs. Finally, the SIMFs
are used as input for the prediction of systematic financial risk.

Table 6. Calculation of systematic financial risk SIMF.

Indicator Component Calculation

CoVaR
SIMF1 153.6004× IC1
SIMF2 −39.7747× IC2
SIMF3 154.1919× IC3

∆CoVaR
SIMF1 153.3749× IC1
SIMF2 −39.8344× IC2
SIMF3 153.9553× IC3

MES
SIMF1 450.7472× IC1
SIMF2 −269.2967× IC2
SIMF3 8.4929× IC3

SRISK
SIMF1 −310.5547× IC1
SIMF2 310.7411× IC2
SIMF3 69.9420× IC3

4.2. Prediction Results of Systematic Financial Risk

Before using deep learning or machine learning for prediction, it is a common practice
to normalize the data. This helps eliminate the interference of feature dimensions on the
prediction results and improves the model’s generalization ability. Specifically, data nor-
malization refers to transforming the input and prediction data into a uniform distribution
within a specific range, typically [0, 1] or [−1, 1]. For this study, the final prediction data
obtained from decomposition and reconstruction are independent components of systemic
financial risk (SIMF), and the input data are the network public opinion index. We normal-
ized each SIMF and the network public opinion index, using the Min–Max normalization
function in python to transform them to [−1, 1]. Additionally, we split the data into training
and testing sets in a 7:3 ratio. Through the grid search method, the following parameter
configuration was finally determined: The BiLSTM layer was set with 25 neuron nodes, the
number of iterations was set to 100, batch size was set to 16, the output neuron count was
1, and the activation function was chosen as “tanh”. In the attention layer, the activation
function was “softmax”.
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Since the stock market operates 5 days a week, a forward-looking 5-step prediction
was selected. SIMF and the network public opinion index were used as outputs. After
passing through the BiLSTM-Attention network, the results were integrated to obtain the
predicted values of systemic financial risk. Figure 10 shows the changes in the predicted
values and real values of CoVaR, ∆CoVaR, MES, and SRISK from January to June 2022.
Among them, the deviation of SRISK is larger than the other three indicators, but overall,
the ESMD-HFastICA-BiLSTM-Attention model can predict the changing trend of systemic
financial risk well.
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The prediction of this paper consists of two parts: data preprocessing and deep
learning prediction. In the data preprocessing stage, ESMD decomposition and HFastICA
reconstruction were employed. In the deep learning prediction part, BiLSTM and the
attention mechanism were selected. Therefore, the effectiveness of the ESMD-HFastICA-
BiLSTM-Attention prediction model was explained from these two aspects. First, in the
data preprocessing stage the effectiveness was examined from the perspectives of whether
the data was reconstructed and different decomposition methods. Table 7 presents the
prediction results for the original data, data decomposed only using ESMD, and data
decomposed using ESMD and then reconstructed using HFastICA. The black bold values
indicate the optimal learning outcomes and the same applies to Tables 8 and 9 below. The
learning results for both decomposition and decomposition–reconstruction are superior
to the prediction for original data, indicating the crucial role of data preprocessing in
predicting systematic financial risk.



Symmetry 2024, 16, 480 17 of 21

Table 7. Predictive results of whether to reconstruct.

CoVaR ∆CoVaR MES SRISK

Original data

MAE 0.4008 0.4845 1.2883 1.5421
RMSE 0.7044 0.7315 1.8745 2.0597

R2 0.9290 0.9231 0.9291 0.9249
Dstat 0.5321 0.5431 0.6018 0.5890

Decomposition

MAE 0.1118 0.2993 0.6946 1.0232
RMSE 0.1732 0.4855 1.0997 1.3854

R2 0.9957 0.9652 0.9756 0.9660
Dstat 0.9193 0.6220 0.7083 0.6697

Decomposition–
reconstruction

MAE 0.1158 0.3097 0.4600 0.8615
RMSE 0.1598 0.4565 0.7203 1.2064

R2 0.9980 0.9701 0.9235 0.9742
Dstat 0.8495 0.6716 0.5376 0.6991

Table 8. Predictive results of different decomposition methods.

CoVaR ∆CoVaR MES SRISK

ESMD

MAE 0.1158 0.3097 0.4600 0.8615
RMSE 0.1598 0.4565 0.7203 1.2064

R2 0.9980 0.9701 0.9235 0.9742
Dstat 0.8495 0.6716 0.5376 0.6991

EMD

MAE 0.2032 0.4071 0.4978 1.1468
RMSE 0.3082 0.7127 0.7498 1.7716

R2 0.9914 0.9251 0.9171 0.9429
Dstat 0.6110 0.5413 0.5431 0.5688

VMD

MAE 0.3531 0.3254 0.7262 1.3132
RMSE 0.4820 0.4466 0.9160 2.0237

R2 0.9729 0.9532 0.9890 0.9275
Dstat 0.8413 0.5324 0.5066 0.5596

Next, the performance of the prediction method in this article is examined from
different decomposition methods. Table 8 presents the prediction results for three different
decomposition methods: ESMD, EMD, and variational mode decomposition (VMD). VMD
solves the modal functions by solving the variational problem and allows for setting the
number of decompositions. Since the reconstructed subsequence in this article is three, the
VMD decomposition result is set to three, and the specific learning results are listed in the
table. Except for the abnormal RMSE indicator for ∆CoVaR and the R2 indicator for MES,
the remaining results consistently demonstrate that the performance of the ESMD method
in predicting systematic financial risk is superior to the other two decomposition methods.

In terms of deep learning predictions, we selected the long short-term memory neural
network (LSTM), recurrent neural network (RNN), support vector regression (SVR), deci-
sion tree regression (DTR), and ARIMA model to evaluate the predictive performance of
BiLSTM and the attention mechanism. In Table 9, we found that the traditional econometric
ARIMA model performed the worst in predicting systemic financial risk, especially with
all R2 values showing negative values. Furthermore, through a comparison of the learning
outcomes of the BiLSTM, LSTM, RNN, SVR, DTR, and ARIMA models, it was observed
that deep learning generally outperformed machine learning and the econometric models
in predicting financial time series. Among them, the BiLSTM neural network demonstrated
the best predictive performance due to the incorporation of forward and backward gating
units. Additionally, comparing BiLSTM-AT with BiLSTM and LSTM-AT with LSTM, re-
spectively, highlighted the predictive advantage of the attention mechanism in systemic
financial risk prediction.
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Table 9. Predictive results of different deep learning.

CoVaR ∆CoVaR MES SRISK

BiLSTM-At

MAE 0.1158 0.3097 0.4600 0.8615
RMSE 0.1598 0.4565 0.7203 1.2064

R2 0.9980 0.9701 0.9235 0.9742
Dstat 0.8495 0.6716 0.5376 0.6991

LSTM-At

MAE 0.1989 0.4556 0.8166 1.0249
RMSE 0.2743 0.7259 1.8745 1.4373

R2 0.9941 0.9243 0.9291 0.9710
Dstat 0.8110 0.5450 0.6018 0.9248

BiLSTM

MAE 0.1684 0.4897 0.8352 1.1547
RMSE 0.2347 0.7479 1.7936 1.7875

R2 0.9957 0.9196 0.9351 0.9434
Dstat 0.8642 0.5376 0.6018 0.6037

LSTM

MAE 0.2859 0.5287 1.0370 1.4303
RMSE 0.4244 0.7637 1.8318 1.9960

R2 0.9858 0.9140 0.9323 0.9295
Dstat 0.7670 0.5376 0.5872 0.5817

RNN

MAE 0.5566 0.5090 2.2303 1.5552
RMSE 0.7902 0.7453 2.6943 2.1243

R2 0.9106 0.9202 0.8536 0.9201
Dstat 0.5431 0.5560 0.5835 0.5835

SVR

MAE 0.4569 0.5675 1.9087 3.1589
RMSE 0.5418 0.7002 2.4215 3.9167

R2 0.9769 0.9604 0.9296 0.7284
Dstat 0.7670 0.5596 0.6000 0.5927

DTR

MAE 0.6826 0.6923 1.8887 2.7922
RMSE 1.1110 1.1231 3.4902 3.9670

R2 0.8232 0.8187 0.7543 0.7214
Dstat 0.5083 0.5064 0.4752 0.5266

ARIMA

MAE 8.0404 8.0262 23.4007 16.5595
RMSE 9.5663 9.5505 26.4317 19.4818

R2 −2.4056 −2.4038 −3.6171 −2.4934
Dstat 0.5110 0.5110 0.5247 0.4802

Through the above analysis, it was found that the proposed systematic financial
risk prediction method ESMD-HFastICA-BiLSTM-Attention can significantly improve
prediction accuracy. The examination of data preprocessing and deep learning models
revealed that the ESMD, HFastICA, BiLSTM, and attention mechanism all demonstrated
good predictive performance. Moreover, the comparison of predictions for four types of
systematic financial risk also proved the robustness of the model proposed in this paper.

5. Conclusions and Discussion

We proposed a novel ensemble model for predicting systemic financial risk. Firstly, we
selected financial institutions as the research sample, measured multidimensional systemic
financial risk indicators in China, and employed text mining techniques to construct a
Chinese financial network public opinion index as a driving factor for predicting systemic
financial risk. Subsequently, we used the ESMD method to decompose the systemic
financial risk into different sub-series, and after decomposition, we reconstructed the sub-
series through hierarchical clustering and FastICA methods. Finally, using the network
public opinion index as input, we employed a BiLSTM-Attention ensemble model to predict
different sub-series and integrate them. By evaluating the learning results, we verified
the superiority of our proposed model in financial time series prediction. Our research
conclusions are as follows:
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Firstly, there is an interrelationship between the network public opinion index and
systemic financial risk, and this interrelationship exhibits asymmetry. Specifically, the
influence of the network public opinion index on systemic financial risk is much greater
than the influence of systemic financial risk on the network public opinion index, indicating
that the network public opinion index can serve as a driving factor for predicting systemic
financial risk.

Secondly, combining data decomposition–reconstruction with deep learning methods
can improve the prediction accuracy of systemic financial risk. Compared to empirical
mode decomposition and variational mode decomposition, ESMD can overcome disadvan-
tages such as mode mixing and parameter selection, making it more effective in exploring
nonlinear data. Additionally, reconstructing the decomposed sub-series not only enhances
prediction accuracy but also shortens the prediction time, providing a new research ap-
proach for financial time series prediction.

Thirdly, the ensemble model is more effective in predicting systemic financial risk
compared to single machine learning models and traditional statistical models. Traditional
statistical models fail to capture the nonlinear relationships of systemic financial risk,
while single machine learning models such as support vector regression and decision tree
regression, as well as single neural network models, have limitations in handling complex
financial sequences. By combining bidirectional long short-term memory neural networks
with attention mechanism, our predictive model gains discriminative capabilities, thus
improving prediction accuracy.

Although our study has achieved certain results, there are still two main limitations.
Firstly, there are limitations in the scope of the research. We selected Chinese financial insti-
tutions as the research sample, without considering different economies, various financial
markets, different types of financial risks, or multidimensional influencing factors other
than the network public opinion index, which may affect the research results. Secondly,
there are limitations in the research methods. We constructed deep learning models for
predicting systemic financial risk from a point prediction perspective based on historical
time series, but the evaluation perspective can be further expanded. Therefore, as a research
extension, we plan to select different economies and markets as research samples to predict
various financial risks such as systemic financial risks, imported financial risks, and credit
risks. We also intend to include interval prediction, model sensitivity analysis, model
effectiveness evaluation, and statistical demonstration of the significance of predictive
models to improve the research on financial risk prediction.
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