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Abstract: A stable output voltage of a boost converter is vital for the appropriate functioning of con-
nected devices and loads in a DC microgrid. Variations in load demands and source uncertainties can
damage equipment and disrupt operations. In this study, a modified twin-delayed deep deterministic
policy gradient (TD3) algorithm is proposed to regulate the output voltage of a boost converter in a
DC microgrid. TD3 optimizes PI controller gains, which ensure system stability by employing a non-
negative, fully connected layer. To achieve optimal gains, multi-deep reinforcement learning agents
are trained. The agents utilize the error signal to obtain the desired output voltage. Furthermore, a
new reward function used in the TD3 algorithm is introduced. The proposed controller is tested under
load variations and input voltage uncertainties. Simulation and experimental results demonstrate
that TD3 outperforms PSO, GA, and the conventional PI. TD3 exhibits less steady-state error, reduced
overshoots, fast response times, fast recovery times, and a small voltage deviation. These findings
confirm TD3’s superiority and its potential application in DC microgrid voltage control. It can be
used by engineers and researchers to design DC microgrids.

Keywords: boost converter; DC microgrid; PI controller; twin-delayed deep deterministic policy gradient

1. Introduction

Recently, the integration of distributed generation (DG), comprising renewable energy
and energy storage, has emerged as a key strategy to tackle environmental pollution and
decrease the dependence on fossil energy sources for traditional power plants [1]. This
integration, particularly when DGs are incorporated into power distribution systems,
provides several advantages [2], such as improved voltage and power quality and reduced
power loss [3]. The aggregation of DGs, energy storage, and loads forms a microgrid, an
evolving concept in modern power systems [4]. The microgrid has two forms: AC and
DC. Unlike the AC microgrid, the DC microgrid provides a number of advantages, such as
high efficiency [5], ease of control [6], versatility [7], and reliability [8,9]. Furthermore, in a
DC microgrid, there are no issues with reactive power flow, quality, or frequency [10]. DC
microgrids have been extensively used in many applications [11], such as solar arrays, ship
electrical systems, aerospace, electric vehicles, data centers, energy storage systems, and
telecommunications [12].

However, in DC microgrids, the fluctuating output voltage from DC sources, such as
a photovoltaic solar panel, poses a challenge, demanding regulation through converters
due to intermittent solar conditions [13,14]. Yet, dealing with converters will lead to
complex problems because of nonlinear time variants as well as nonminimum phase
characteristics [15]. In addition, the presence of load uncertainty can lead to instability in
the system [16] and become more challenging to resolve [17]. To tackle these problems,
several industries are currently implementing a proportional integral (PI) controller because
of its straightforward configuration, reliability, simplicity of application, good performance,
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and active investigation into fine-tuning PI controllers [18]. Over the years, the parameters
of PID controllers have been adjusted based on knowledge, trial–error approaches, and
traditional tuning techniques such as Cohen–Coon and Ziegler–Nichols [19]. However,
the weaknesses of these methods may lead to poor performance of the boost converter’s
output under certain conditions, such as during wide-range operation [20].

Prior studies investigated different control techniques for boost converters. In a
previous study [21], a fuzzy logic-tuned PI controller was proposed as a method for
controlling the converter. The simulation results of this method showed that it had better
robustness to mitigate disturbances compared to a traditional fuzzy logic controller (FLC).
However, FLC’s reliance on expertise in constructing membership functions limits its
adaptability [22]. In another study [23], Li et al. developed a cascade method for boost
converter control that is effective in handling dynamic disturbances. Despite its efficacy,
this method’s complexity limits its use in industrial applications. Therefore, there is a need
to improve PI and PID controllers, which are widely used in the industry, by tuning their
parameters with metaheuristic-based techniques such as firefly algorithm (FA) [24], particle
swarm optimization (PSO) [25], ant colony optimization (ACO) [26], and genetic algorithm
(GA) [27]. However, these techniques are mainly proposed for nonlinear problems.

In the last few years, reinforcement learning (RL) methods have been applied in
microgrid systems for a good solution [28,29]. A comprehensive review of research and
practice in deep RL is presented in [30]. Fu et al. proposed an improved RL method for
optimal secondary control of voltage, and the results confirm the efficacy and superiority
of the proposed method [31]. Moreover, an RL agent design aimed at maximizing rewards
ensured network voltage stability [32]. However, conventional RL agents faced restrictions
due to low-dimensional action space discretization. To overcome this problem, the authors
in [33] proposed a deep RL (DRL) approach to address the impact of constant load power
under various voltage references. The results revealed that the presented strategy provides
a better system dynamic response. However, this technique has the drawback of having a
constant gradient signal [34]. To address continuous control problems, the introduction
of the deep deterministic policy gradient (DDPG) algorithm has eliminated state–action
discretization [35]. However, DDPG updates Q-values with a deep Q-network, which can
lead to overestimation of Q-values and result in suboptimal policies.

To address the weaknesses of DDPG, the twin-delayed deep deterministic policy
gradient (TD3) updates delayed actors, double critics, and actors. TD3 has been used in
many applications. For instance, it improved training through proportional and differential
controllers for unmanned aerial vehicle tracking, demonstrating remarkable multilevel
success [36]. Furthermore, TD3 enhanced grid-integrated photovoltaics (PV) output by
improving regulator performance utilizing an RL agent and verified it through numerical
simulations [37]. The authors of [38] presented an RL twin-actor TD3 (TATD3) algorithm
by combining twin-actor networks in the current TD3. The proposed method was used to
control challenging batch processes due to complicated nonlinear dynamics and unstable
operational environments. The results indicated the superiority of the TATD3 controller
compared to existing RL algorithms.

This paper proposes a modified TD3 method for optimizing the parameters of the
PI controller for boost converters in DC microgrids. Moreover, a new reward function
employed in the method is presented. The contributions of this study are summarized as
follows:

• A novel reward formula that combines the absolute error between the output voltage
and the controller’s action is proposed. The reward formula is crucial for effective
performance assessment under input voltage uncertainties and load variations.

• The TD3 algorithm is presented using the newly devised reward function to fine-tune
the parameters of a PI controller. This optimization approach significantly improves
the voltage regulation of boost converters in DC microgrids.
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• Simulation and hardware experiments are conducted under various scenarios, includ-
ing fluctuations in the input voltage and load variation. They are treated equally to
assess the controller’s robustness and efficiency.

The subsequent sections are arranged as follows: In Section 2, a DC-DC boost converter
system configuration in a DC microgrid is discussed. A control design strategy using
the TD3 algorithm is explained in Section 3. In Section 4, numerical simulation results
are presented, while experimental verifications are presented in Section 5. Finally, the
conclusions of this work are summarized in Section 6.

2. The DC-DC Boost Converter

The equivalent circuit of a DC-DC boost converter is presented in Figure 1. The
converter mathematical model is obtained by utilizing Kirchhoff’s current and voltage
laws [39]. The boost converter consists of a transistor for switching, which allows it to
work in two conditions: open and closed switches [40]. At the closed condition presented
in Figure 2, the inductor L conserves power through Vin. In this state, the current cannot
flow into the capacitor and resistor. Under this condition, the converter is expressed using
Equations (1) and (2) [39].

Vin − L
diL
dt

= 0 (1)

C
dVc

dt
= −Vc

R
(2)
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In Equations (1) and (2), the inductor current iL and capacitor voltage Vc are assumed
to be x1 and x2, respectively. The modeling of the converter in the state-space for the closed
switch condition is expressed as follows:[ .

x1.
x2

]
=

[
0 0
0 − 1

RC

][
x1
x2

]
+

[ 1
L
0

]
Vin that is

.
x = A1x + B1u (3)

In the open switch mode depicted in Figure 3, the inductor L releases power. The
converter formula is formulated using Equations (4) and (5) [39].

Vin − L
diL
dt

− Vc = 0 (4)
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iL = C
dVc

dt
+

Vc

R
(5)
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Likewise, by utilizing Equations (4) and (5), the state-space model of the converter in
an open switch condition is defined as follows:[ .

x1.
x2

]
=

[
0 − 1

L
1
C − 1

RC

][
x1
x2

]
+

[ 1
L
0

]
Vin that is

.
x = A2x + B2u (6)

Since the circuit operates in two conditions, the average model is applied [41].

A = A1dc + A2(1 − dc) (7)

B = B1d + B2(1 − dc) (8)
.
x = Ax + Bu (9)

To obtain the average model of Equations (3) and (6), Equations (7)–(9) are used. The
DC-DC boost converter average model in state-space form is defined in Equation (10) [42].[ .

x1.
x2

]
=

[
0 − (1−dc)

L
(1−dc)

C − δ
C

][
x1
x2

]
+

[ 1
L
0

]
Vin, δ =

1
R

(10)

where dc represents the duty cycle and δ is the inverse of resistance.

3. A Twin-Delayed Deep Deterministic Policy Gradient (TD3)

RL is a machine learning technique that rewards wanted behaviors and punishes
unwanted ones. This technique is a value-based algorithm that is learned through Q-value
estimation. DDPG is an RL technique that combines DQN and DPQ. It includes two
components: the actor and the critic. The actor is a function that takes the current state as
an input and generates a continuously varying action.

In contrast, the critic is defined as a Q-value network that collects the state, acts as an
input, and produces the Q. Figure 4 presents a general network of actors and critics. The
actor decides which action must be performed, while the critic gives information to the actor
to know how great the action is and how it must be tuned. The actor learning is built using
a policy gradient approach. The critics assess the action created by the actor by calculating
the value function and employing the temporal difference method to update its parameters.
In contrast, the actor is updated using the DPG algorithm through α = µ

(
s
∣∣θµ

)
+ N, where

N is defined as a random noise function. For updating the parameters of actor θµ and critic
θQ, exponential smoothing is utilized and formulated as [43].

θµ′ = τθµ + (1 − τ)θµ′ (actor) (11)

θQ′ = τθQ + (1 − τ)θQ′ (critic) (12)
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where θµ is the parameter update of the actor, θQ defines the parameter update of the critic,
and τ is the smoothing factor. The Bellman equation and the estimation of action value are
obtained by employing the critic network [37].

Q′(s, a) = E
[
r(s, a) + γQ′(s′, a′

)]
(13)

with a discount factor γ ≪ 1, the TD error utilizes y = r + γQ′(s′, a′) and minimizes the
loss function (LF) for updating the critic’s parameters as defined in Equation (14) [44].

LF =
1
M

M

∑
i=1

(yi − Q(si, ai))
2 (14)
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The policy gradient expressed in Equation (15) is employed to maximize the expected
discounted reward [35].

∇θµ
J ≈ 1

M

M

∑
i=1

[
∇aQ(s, a)|s=si ,a=µ(si |θµ)

∇θµ
µ
(
s
∣∣θµ

)∣∣
si

]
(15)

The TD3 algorithm is an improvement of the DDPG method and is a model-free, online,
off-policy RL technique. The computation of TD3 is like the DDPG algorithm. The TD3
algorithm is modified especially to control the output voltage of a DC-DC boost converter
in a DC microgrid. This adaptability shows the algorithm’s versatility in solving accurate
control tasks within complex systems like DC-DC boost converters in a DC microgrid. The
value function overestimation influences Q-learning performance. If this overestimation
continues during training, the policy update will be negatively influenced. To address this
drawback, the double Q-learning and double DQN approaches have been used. These
approaches use two networks for separating Q-values and updating the actor’s selection.
The double Q-learning calculates the next state number, forming double Q-value networks
as defined in Equations (16) and (17) [36].

y1 = r + γQθ′1(s
′, µ′(s′|θµ′)) (16)

y2 = r + γQθ′2(s
′, µ′(s′|θµ′)) (17)

The TD error is expressed as follows:

y = r + γmin
i=1,2Q′

i(s
′, a′) (18)

where i is the critic index. To prevent overfitting, a smoothed Q-value is necessary. To
achieve this, the implementation of clipped normal distribution noise is used, and the result
of the updated target is as follows [43]:

y = r + γQθ(s′, µ′(s′|θµ′) + ε) (19)
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ε ∼ clip(N(0, σ),−c, c) (20)

3.1. Constructing an Environment for the Training Agent

The TD3 agent is trained to optimize PI parameters in a DC microgrid environment.
The agent collects data on the environment’s state at each time step to select appropriate
actions. To construct the environment for training, the observation formula in Equation
(21) is first constructed, where e is the difference between the output voltage of the boost
converter and the voltage reference. This signal is then connected to the RL agent block.
Next, a negative reward function is determined for the RL agent, which provides feedback
on the system’s convergence. The reward function plays a critical role in guiding the agent
to take actions that optimize the values.

Ob =

[∫
e dt
e

]
(21)

On the other hand, the agent’s output is the control signal formula for the DC micro-
grid, and its value is determined by a policy that maximizes the reward. In this paper, a
new reward function is proposed. The formulation of it is expressed in Equation (22).

RF = −|e| − 0.01|u| (22)

where u is the control action of the RL agent. The negative sign in this equation produces
the maximum reward and minimum error. An environment interface object is also cre-
ated, and the observation and action dimensions of the environment are extracted. This
reward function can determine the PI parameters optimally. Furthermore, as the agent
continually updates its parameters, the reward function can generate fast convergence,
high performance, and minimal computation.

3.2. Constructing the TD3 Agent

After obtaining the observation signal, TD3 determines the next step by using an actor
representation. The first step in building this actor is to construct a deep neural network
(DNN) that takes the action output and observation inputs. The PI controller is modeled as
a neural network (NN) using a combination of one fully connected layer with error-integral
observations and error as defined in Equation (23).

u =
[∫

e dt e
]
∗
[
Ki Kp

]T (23)

where Kp and Ki define the absolute values of the neural network weights. Two critic cost
function descriptions are used by the TD3 agent to estimate the long-term reward provided
by actions and observations. A DNN with two inputs—observation and action—and one
output is built to generate the critics.

Adjusting the parameters of TD3 includes some factors and methods to optimize
its performance in reinforcement learning tasks. The controller sample time is the first
parameter adjusted in the proposed method. The effect of this parameter in TD3 influences
several aspects, like how often the agent interacts with the environment. A smaller sample
time indicates that the agent gains more frequent updates on the environment, potentially
leading to quicker learning. However, too many updates can create noise. The second
parameter adjusted in the proposed method is the size of the mini batch. This parameter
affects the stability of learning. A larger mini-batch size usually presents a more precise
estimation. This can lead to more stable updates. The experience buffer length is another
parameter that must be adjusted. A longer experience buffer stores a more extensive
range of past experiences, which may lead to greater robustness. The next parameter
is the targeting policy smoothing model. This parameter can influence the stability and
performance of the learning process. The target smooth factor is also to be adjusted. Higher
values of this parameter result in introducing more noise into the target actions, whereas
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lower values lead to less smoothing. The last parameter is the discount factor. A larger
discount factor confirms the importance of long-term rewards. A smaller discount factor
selects immediate rewards. Based on the impacts of the parameters of the proposed method,
we have adjusted the suitable value for the parameters presented in Table 1 so that the
desired output voltage of the converter can be achieved. The detailed architecture of the
proposed TD3-based controller for controlling the DC-DC boost converter is presented
in Figure 5.

Table 1. Parameters of TD3 agent.

Parameter Type Symbol Number

Sample time of controller Ts 0.01 s
Size of mini batch Z 128

Experience buffer length LE 106

Target policy smoothing model σt 0.1
Target Smooth Factor τt 0.005

Discount Factor γ 0.99
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The critic network presented in Figure 5 consists of nine layers. Then, a concatenation
layer is created to connect all inputs, accompanied by a fully connected layer for each input.
As an activation function to optimize the result, this paper employs a rectified linear unit
(ReLU) between each layer. For updating the actor and critic network parameters, the
Adam optimizer is used. Finally, the agent is created utilizing the critic representation,
specific actor representation, and agent options.

3.3. Training and Validating the Agent

The training created in this study is run for 1000 episodes, where every episode is
100-time steps. Then, after the agent receives an average accumulative reward bigger than
−355 over 100 successive episodes, the training is stopped. The agent in this condition could
regulate the boost converter output. Then, the learned agent is validated by simulation.
The PI gains of the controller are the absolute weights of actor representation. The learnable
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parameters from the actor are extracted to obtain the weights, and the controller gains are
obtained. The proposed TD3 method demonstrates the capability to optimize the gains of
a PI controller, which is important for accurate voltage control. Utilizing a non-negative,
fully connected layer is a remarkable innovation that guarantees the prevention of negative
gain parameters, which improves the controller’s stability and efficiency.

4. Simulation Results

In this paper, the parameters of the DC-DC boost converter are presented in Table 2,
while Table 3 presents the gains of the PI controller tuned using TD3, PSO, GA, and the
conventional PI. The initial simulation uses a voltage reference Vre f , 24 V and an input
frequency of 100 kHz. The proposed TD3-tuned PI controller is compared with a PSO-tuned
PI, a GA-tuned PI, and the conventional PI. For the best performance, the parameters of
PSO and GA utilized in this work are shown in Table 4, while for the conventional PI,
the Ziegler–Nichols tuning is used. MATLAB R2022a is used to develop the codes of the
proposed controller, and the simulation is run on a personal computer with an 11th Gen
intel®Core ™ i7-11700T @1.4GHz and 32 GB of RAM. Several system tests are employed
to assess the superiority of the TD3, including voltage reference changes, input voltage
variation, and load resistance variation. Additionally, the integral time absolute error (ITAE)
is applied to confirm the quality of the proposed method. ITAE is the total calculation
of the areas under and over the set point signal and the output voltage of the converter
multiplied by time.

Table 2. The DC-DC boost converter and PI parameters.

Parameters Symbol Value Units

Input DC Voltage Vin 12 V
Inductor L 100 µH
Capacitor C 47 µF

Resistor Load R 5 kΩ

Table 3. The PI parameters of several techniques.

Parameters TD3 PSO GA Conventional PI

KP 10.083 13.483 15.365 11.192
KI 1038.414 788.421 604.9213 412.988

Table 4. The parameters of GA and PSO.

Methods Parameters Value

PSO

Size of Swarm 40
Self-recognition coefficient c1 2

Social coefficient c2 2
Weight

[
w1 w2

] [
0.8 0.3

]
Max Velocity 100

GA

Size of population 50
Probability of mutation 0.04
Probability of crossover 0.75

Scale for mutations 0.1

4.1. Signal Response of the Converter for Increasing and Decreasing the Voltage Reference

The proposed controller plays an important role in the system, which is the boost
converter system. The controller continuously monitors the output voltage of the converter
and compares it to the voltage reference Vre f . The controller will calculate the error, which
is the difference between the voltage reference Vre f and the output voltage of the converter.
The main task of the controller is to minimize this error as much as possible by generating
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a control signal for the switching of the converter so that the desired output voltage of
the converter can be achieved. The voltage reference signal is the first system test used in
this study. This test is used in the DC microgrid to meet the voltage shift on the load side.
The simulation time is set to 1.2 s. At the start of the simulation, the voltage reference is
24 V. Figure 6 shows the signal of four converter output voltages, which are TD3, PSO,
GA, and the conventional PI. The output response of TD3 is better than other methods in
terms of transient response and overshoot. The TD3 in the initial response has the smallest
overshoot, which is 26.3491 V, while the settling time of TD3 is 0.0851 s, which is a faster
response than other methods. Then, at t = 0.4 s, the voltage reference is increased to
30 V. There is no overshoot for all methods, and the settling time of TD3 is smaller, 0.03 s,
compared to others. In another condition, at t = 0.8 s, the voltage reference is reduced
to 28 V. The response shows that there is no undershoot for all signals, and the smallest
settling time is TD3. In this work, the ITAE is applied to check the performance quality of
the methods, and the smallest ITAE is TD3, 0.1290. Furthermore, the computational cost of
TD3 is smaller, 125 s, than PSO, 213.73 s, and GA, 565.498 s.
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The results indicate that the TD3 produces a minimum steady-state error, a slight
overshoot, a rapid transient response, and stable conditions in steady-state response.
Additionally, the proposed method can be used in the DC microgrid system, even with
changes in the voltage reference to meet the shift voltage on the load side. The detailed
performances of all methods are shown in Table 5. The inductor current iL and the output
power for voltage reference variations are depicted in Figures 7 and 8, respectively. In the
starting condition, the inductor current iL for TD3 is smaller than in the others. Additionally,
when the voltage reference is 24 V, the inductor current is 9.6 mA, while for voltage
references of 30 V and 28 V, the inductor current is 15.17 mA and 13.049 mA, respectively.
The output power of the converter using TD3 consumes the smallest power, which is 0.14 W
in the starting condition, compared to PSO, GA, and the conventional PI, which consume
0.152 W, 0.16 W, and 0.15 W, respectively.

Table 5. The performance of all controllers when the voltage reference is varied.

Controllers
Starting Increasing

Vref(+6 V)
Decreasing
Vref(−2 V) ITAE

Vp (V) ts(s) ∆V (V) ts(s) ∆V (V) ts(s)

TD3 26.3491 0.0851 0 0.0300 0 0.0511 0.1290
PSO 27.5740 0.1188 0 0.0446 0 0.0704 0.1721
GA 28.2389 0.1487 0 0.0616 0 0.0912 0.2361

Conventional PI 26.8090 0.1506 0 0.0972 0 0.1343 0.3429
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The combination of input voltage variation and voltage reference change is tested on
the system to demonstrate the performance of the boost converter. The desired output
voltage is shown in Figure 9, whereas the inductor current and power are shown in
Figures 10 and 11, respectively. It is noticeable that when the reference signal is increased
and the input voltage is decreased at t = 0.4, both the output voltage and the inductor
current demonstrate a corresponding increase. Therefore, the characteristics of inductor
current are proportional to output voltage instead of inversely proportional. Furthermore,
the characteristics of output power in Figure 11 are also proportional to the output voltage
instead of being inversely proportional. So, Figures 9–11 reflect the expected characteristics.

4.2. Signal Response of the Converter for Increasing and Decreasing the Input Voltage Vin

The second test employed in this work is changing the input voltage, Vin. This test
is used to verify whether the proposed controller can overcome the variation in the input
voltage. The overall simulation time is 1.2 s. The input voltage, Vin, is 12 V at the beginning
of the simulation. The output voltage with the input voltage variation for all methods is
shown in Figure 12. From Figure 12, it can be observed that the response output of TD3 is
better than the other methods regarding robustness and fast recovery time. At t = 0.4 s,
when the input voltage Vin is increased to 16 V, the voltage deviation of TD3 is smaller,
1.8067 V, compared to other methods. Furthermore, TD3 produces the shortest recovery
time, 0.0786 s. For the next condition, at t = 0.8 s, the input voltage Vin is reduced to 12 V.
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The response signals reveal that the voltage deviation of TD3 is smaller, 2.8437 V, than
others, as well as that the recovery time of TD3 has the shortest time, which is 0.0583 s.
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ITAE is used to evaluate the overall performance of all methods. The results show that
the ITAE of TD3 is 0.1305, which is smaller compared with PSO, GA, and the conventional
PI. These results indicate that the proposed TD3 method generates a robust response, faster
recovery time in comparison to others, and stable conditions when disturbances occur.
Additionally, the proposed controller can be utilized in DC microgrid applications when
there is a disturbance, such as input voltage variation. Table 6 presents the comprehensive
data for all the methods. Figures 13 and 14 depict the inductor current iL and output power
for input voltage variations, respectively. In initial conditions, the inductor current iL for
TD3 is lower than other methods. Furthermore, when the input voltage is increased to 16 V,
the inductor current is 7.19 mA, while when the input voltage is decreased to 12 V, the
current inductor is 9.6 mA for steady-state conditions. The output power of the converter
consumes 0.115 W for all methods in steady-state conditions.

Table 6. The performance of the proposed controller when the input voltage is varied.

Controllers

Increasing
Vin(4 V)

Decreasing
Vin(−4 V) ITAE

∆V (V) trec(s) ∆V (V) trec(s)

TD3 1.8067 0.0786 2.8437 0.0583 0.1305
PSO 1.8850 0.0986 2.9563 0.0744 0.1792
GA 1.9587 0.1215 3.0680 0.0945 0.2413

Conventional PI 2.0325 0.1611 3.5707 0.1192 0.3514
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4.3. Signal Response of the Converter for Increasing and Decreasing the Load Resistance R

The final test signal applied in this study is the variation in load resistance. This
system test is employed because the load resistance of the system in the DC microgrid
application varies depending on consumer needs, and it is used to determine whether the
proposed controller can handle variations in load resistance. The simulation time (t) is set
to be 1.2 s. Initially, the load resistance R is 5 kΩ. Then, at t = 0.4 s, R is reduced to 1.7 kΩ.
The output response signals when the load resistance changes for all methods are presented
in Figure 15. TD3 demonstrates a smaller voltage deviation of 1.0682 V compared to PSO at
1.1803 V, GA at 1.2854 V, and the conventional PI at 1.3598 V. Additionally, the recovery
time of TD3 is the shortest, which is 0.2152. When the load resistance R is increased to
5 kΩ at t = 0.8 s, TD3 generates a voltage deviation of 3.2942 V, which is smaller than all
other tested methods. Furthermore, TD3 has a shorter recovery time of 0.0512 s compared
to the others. The ITAE is presented to assess the overall response of all methods. The
ITAE of TD3 is 0.1434, which is smaller in comparison with the other methods. Table 7
provides detailed data on the converter signal response. The results show that TD3 has
superior performance in terms of robustness, fast recovery, and stability when compared to
the other methods.
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Figure 15. The converter output voltage when the load resistor is changed.

In the event of a disturbance, such as a change in load resistance, the proposed
controller can be applied to DC microgrid systems. Figures 16 and 17 show the load current
and output power of the converter for load variations, respectively. The inductor current iL
reaches 28.24 mA in steady-state conditions when the load resistance decreases to 1.7 kΩ.
However, when the load resistance increases to 5 kΩ, the inductor current iL for all methods
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is 9.6 mA under steady-state conditions. The output power produced by all methods is
0.34 W when the load resistance is reduced to 1.7 kΩ, and 0.125 W when it is increased to
5 kΩ.

Table 7. The converter performance in terms of resistance change.

Controllers
Decreasing R to 1.7 kΩ Increasing R to 5 kΩ

ITAE
∆V (V) trec(s) ∆V (V) trec(s)

TD3 1.0682 0.2152 3.2942 0.0512 0.1434
PSO 1.1803 0.2412 3.3946 0.0676 0.1935
GA 1.2854 0.2667 3.5074 0.0871 0.2610

Conventional PI 1.3598 0.2738 3.6082 0.0932 0.2860
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Figure 16. Load current of the converter for load resistor variations.
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5. Experimental Validations

To further verify the effectiveness of TD3, a prototype hardware design, as shown
in Figure 18, was constructed. The design included a Siglent SPD3303X-E DC power
supply, a Siglent SDL1020X-E DC electronic load, a DC-DC boost converter using the
parameters outlined in Table 2, a Siglent SDS1202X-E two-channel digital oscilloscope, a
Siglent SDM3045X digital multimeter, an NI Elvis II for data acquisition, and a Dell personal
computer for programming the controller. IRFZ44N was used as the switching device and
gate drive circuit. The system architecture is shown in Figure 19. In this study, the voltage
reference and the frequency used for the initial condition are equal to the simulation, which



Electronics 2024, 13, 433 15 of 22

is 24 V and 100 kHz, respectively. The proposed controller was evaluated through several
system tests, including variations in Vre f , input voltage, and load resistance.
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5.1. Signal Response of the Converter for Increasing and Decreasing the Voltage Reference in
Experimental Validation

The first system test is the voltage reference change. As previously mentioned, this
test is used in a DC microgrid to meet the voltage shift on the load side. In the experimental
hardware, the voltage reference Vre f is initially raised from 24 V to 26 V. Figure 20 shows
the experimental waveform of the converter’s output voltage when the voltage reference
is changed for all methods. It can be observed that the output voltage of all methods can
follow the voltage reference and provide a stable response. The settling time required for
the output voltage to match the voltage reference using the TD3 controller as shown in
Figure 20a is the shortest, with a time of 0.082 s and without any overshoot, while the
settling time for PSO in Figure 20b, GA in Figure 20c, and the conventional PI in Figure 20d
is 0.124 s, 0.145 s, and 0.225 s, respectively.
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Figure 20. The converter output voltage in experimental validation when voltage reference is changed
(24 V to 26 V) using (a) TD3, (b) PSO, (c) GA, and (d) conventional PI.

Additionally, in Figure 21, the voltage reference Vre f is decreased from 26 V to 24 V.
It can be observed that the converter’s output voltage can follow the voltage reference
for all controllers. TD3 presented in Figure 21a produces a smaller settling time than the
others, which is 0.06 s, whereas PSO, GA, and the conventional PI depicted in Figure 21b–d
generate a settling time of 0.121 s, 0.126 s, and 0.227 s. From the results, therefore, we see
that they generate fewer steady-state errors, a reduced overshoot, a faster transient response,
and stable conditions in steady-state responses. Furthermore, the TD3 can be applied in
the DC microgrid system even when there are changes in the voltage reference to meet the
voltage shift on the load side and provide a stable output voltage in steady-state response.

5.2. Signal Response of the Converter for Increasing and Decreasing the Input Voltage Vin in
Experimental Validation

The following system test for the experimental hardware is the input voltage variation
Vin. As stated earlier, this assessment is employed in the DC microgrid application to ensure
that the proposed controller can overcome the variation in input voltage, which constantly
varies. Figure 22 depicts the experimental waveform of the converter’s output signal for all
controllers when the input voltage is decreased from 12 V to 10 V. It can be observed that
the output voltage utilizing TD3 presented in Figure 22a can return to the voltage reference
with a voltage deviation of 0.561 V and a recovery time of 0.231 s, while PSO in Figure 22b
generates a voltage deviation of 0.861 V and a recovery time of 0.311 s. Furthermore,
GA in Figure 22c provides a voltage deviation of 1.152 V and a recovery time of 0.375 s,
whereas the conventional PI in Figure 22d has a voltage deviation of 1.513 V and a recovery
time of 0.524 s. The results state that TD3 has the smallest voltage deviation and recovery
time. The experimental waveform of the output response when the Vin is increased from
10 V to 12 V is presented in Figure 23 for all techniques. It shows that the output signal
employing TD3 depicted in Figure 23a can return to the voltage reference with a small
voltage deviation of 0.851 V and a recovery time of 0.175 s, while in Figure 23b, the voltage
deviation and recovery time of PSO are 1.253 V and 0.212 s, respectively. In addition, GA
shown in Figure 23c and the conventional PI presented in Figure 23d produce a voltage
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deviation of 1.641 V and 1.92 V, with recovery times of 0.25 s and 0.31 s, respectively. Thus,
the results indicate the TD3 generates a smaller voltage deviation, a robust response, and a
faster recovery time compared to other controllers. Furthermore, it can be used in the DC
microgrid application when there is a disturbance, such as an input voltage variation.
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5.3. Signal Response of the Converter for Increasing and Decreasing the Load Resistance R in
Experimental Validation

The final system test in the experimental hardware is the load resistance R change.
As previously mentioned, due to the load resistance of the system in the DC microgrid
application always varying based on consumer needs, this test must be applied to prove
whether the proposed controller can overcome the variation in load resistance. Figure 24
presents the experimental waveform of the converter output voltage for all techniques
when the load resistance R is decreased from 5 kΩ to 1.7 kΩ. It can be observed that
with TD3 shown in Figure 24a, the output signal returns to the voltage reference with a
voltage deviation of 1.315 V and a recovery time of 0.175 s, while for PSO presented in
Figure 24b, the voltage deviation is 1.851 V and the recovery time is 0.228 s. Moreover,
the voltage deviation and recovery time using GA depicted in Figure 24c are 2.223 V
and 0.345 s, respectively. While using the conventional PI, as presented in Figure 24d,
the voltage deviation and recovery time are 3.441 V and 0.453 s, respectively. Then, the
experimental waveform of the converter output voltage when the load resistance R is raised
from 1.7 kΩ to 5 kΩ is presented in Figure 25 for all methods. Using TD3, depicted in
Figure 25a, shows that the output voltage returns to the voltage reference with a voltage
deviation of 1.321 V and a recovery time of 0.151 s. While using PSO presented in Figure 25b,
the voltage deviation is 1.802 V, and the recovery time is 0.242 s. Moreover, the voltage
deviation and recovery time using GA depicted in Figure 25c are 2.31 V and 0.275 s,
respectively, while using the conventional PI presented in Figure 25d are 3.75 V and 0.451 s,
respectively. Therefore, the results state that the TD3 has the smallest voltage deviation,
is most robust, and has the fastest recovery time. Moreover, TD3 can be applied for DC
microgrid applications that have a disturbance, such as a load resistance variation.
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6. Conclusions

This paper presents a modified TD3 algorithm for voltage control in a DC microgrid’s
boost converter. The proposed method optimizes PI controller parameters using a non-
negative fully connected layer, which is crucial to avoid negative gain parameters. Both
numerical simulations and experimental prototypes are used to demonstrate the effective-
ness and superiority of the proposed method. Tests are conducted to reveal the superior
performance of the proposed controller compared to PSO, GA, and the conventional PI
methods. The simulation and experimental results show that the TD3 method has smaller
steady-state errors, lower overshoots, a faster recovery time, a smaller voltage deviation,
and a faster transient response time when compared to other methods such as PSO, GA,
and the conventional PI. This study suggests its suitability for DC microgrid applications.
For further research, a combination of sliding mode control and RL techniques can be used
to enhance the performance of the TD3 algorithm for the optimization of DC microgrids.
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