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ABSTRACT 
 

Modern phenotyping is intended to develop and establish the understanding of quantitative traits. 
Development of crops enriched with improved stress resilience and high yield potential, made it 
necessary to look into plant biological process that are responsible to crop improvement. Plant 
breeding aims to accelerate the genetic gain by utilizing modern high throughput phenotyping 
approaches which established the association between genotype and phenotype over the time and 
offers also elucidation of complex plant characters/phenotypes. Therefore, modern phenotyping or 
high throughput is forefront of future crop improvement. The major advantage of this innovative 
technique is monitoring of plants through nondestructive manner using effective imagining 
methodologies to gather the data for studies of complex characters in quantitative manner which 
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are directly or indirectly related to plant yield, growth and to combat against biotic and abiotic stress. 
With a view to above facts this paper explains modern phenotyping approaches for crop 
improvement. 
 

 
Keywords: Phenotyping; precision agriculture; NDVI; DSS; UAVs. 

 

1. INTRODUCTION  
 
Agriculture is the ultimate source of food 
production to feed the burgeoning population but 
shrinking agricultural land, climate change and 
ever augmenting world population are some of 
the serious menaces that needs to be 
addressed. For this, horizon of research needs to 
be expanded and improvement in yield potential 
and adaptation to stressful environments to 
sustain the food security has to be accelerated 
[53]. Despite of this, conventional agriculture 
uses excess amount of chemicals like fertilizers 
and pesticides to achieve the expected yield 
resulting into degradation of environment and 
evolution of pathogen strains resistant to 
pesticides. In order to meet these wide ranging 
global concerns, advanced approaches or tools 
are needed to improve the quality and 
productivity of crops. This entire scenario has 
drawn the attention for identification and analysis 
of quantitative phenotypes and to describe the 
genetic basis of crucial traits to accelerate the 
selection of plant that can thrive well in resource 
limited environment [30]. Molecular breeding 
approaches are concentrates on genotypic 
selection but still, these molecular techniques 
requires phenotypic data to support the genetic 
information [43] because, (1) phenotypes helps 
in selection and edifies genomic selection based 
on prediction model (2) In marker based 
recurrent selection,  markers for following 
selection in generations, can be identified in a 
single phenotyping cycle [63] and (3) During 
transgenic studies, phenotyping is imperative for 
identification of propitious events [34]. 
 
Current phenotyping approaches are times 
consuming and is rely on visual scoring, which 
are prone to biasness between different 
experimental repeats. Advent in the molecular 
field specially in sequencing technologies 
provided almost limitless access to high density 
genetic markers which are really helpful to 
establish association between genotype and 
phenotype for quantitative traits at genomic level. 
But error free recording of major important traits 
and crop monitoring through conventional 
phenotyping techniques still remains bottleneck 
in plant breeding[56, 59] and needs to be 

synchronized with the fast paced evolution of 
molecular field to achieve the more genetic gain. 
Trade off between accuracy and speed is a 
major restraint in conventional phenotyping of 
complex traits. This bottleneck can be overcome 
with the help of modern phenotyping tools which 
are high through put in nature and gives 
enhancedspatial and temporal resolution [32,92]. 
 
During recent years, these approaches have 
drawn major attention and established of new 
protocols/techniques to observe and record 
different plant traits [16]. Plant phenotype is the 
product of interaction of genotypes with its local 
vital and dynamic environment in both the sphere 
(spatial and temporal). Plant phenotyping can be 
explained as the evaluation of complex plant 
traits such as growth, development, tolerance, 
resistance, architecture, physiology, ecology, 
yield and the basic measurement of individual 
quantitative parameters that form the basis for 
complex trait assessment [52]. Manual 
phenotyping of traits on single plant is more 
precise than modern phenotyping, if done 
accurately, but much slower. Modern 
phenotyping or high-throughput phenotyping 
approaches use different types of spectral and 
thermal sensors and fluorescence (for proximal 
or ground based phenotyping) and imagers (for 
UAVs), which are mounted in or on remote 
sensing devices. These sensors traps radiation 
emitted by the canopy [4]. Application of these 
modern devices for field phenotyping is 
discussed comprehensively in the various 
literatures [24-25,28,68,89]. Phenotyping through 
imaging offer opportunities to uncover the plant 
attributes like photosynthetic rate, growth rates 
and root physiology in non invasive manner via 
scanning temperature profiles [29].  
 
Canopy temperature (CT) and Normalized 
Difference Vegetation Index (NDVI) are two traits 
which are commonly screened through modern 
phenotyping tools. Canopy Temperature strongly 
associated with plant performance under stress 
condition, since it has direct correlation with 
status of water in plants and stomatal 
conductance [2,9,11] while NDVI can be used to 
appraise relative biomass of plant [5], nitrogen 
deficiency and crop senescence rate 
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(5,11,66,74,76]. In plant breeding thousands of 
germplasm lines are evaluated in small plots for 
various traits, but in precision agriculture, crop is 
evaluated for different types of stress and weeds 
at an early stage in large fields. Therefore, 
objective and approaches of phenotyping unlike 
for plant breeding and precision agriculture               
and have different requirements [16]. In            
both scenarios, modern field-phenotyping 
tools/approaches are required.  
 

2. MODERN PHENOTYPING TECHNI-
QUES  

 
Plant breeding approaches are directed to create 
new cultivars which can thrive well in target 
environment. Competency of selection is 
evaluated in terms of increase in frequency of 
favorable alleles, for which, proper screening and 
précised selection of genotypes is pre-requisite. 
Similarly, altering the genotypic structure by 
changing the gene frequency is based on precise 
phenotyping and selection. Plenty of germplasm 
lines are evaluated for various agronomic traits in 
small plots ranging 1 to 10 meter in length. Yield 
trials are replicated and conducted in multi-
environment to appraise genotype × 
environment, resource and crop management 
interaction [41]. Evaluating the large number of 
plots for different traits in different environments 
in time bound and resource limited environment 
and quality of the data is the major challenge in 
phenotyping in plant breeding. High-throughput 
phenotyping is a speedy and non-destructive 
strategy for screening of plants [92].Modern 
Phenotyping is capable of characterizing plant 
traits in considerable size of populations in both 
time and space which results into effective 
surveillance of genetic responses to 
environmental conditions [90]. Advent in modern 
phenotyping technologies and data processing 
has opened up new avenues for crop 
improvement in field as well as controlled 
environments [3, 45,50, 61,87]. Thus, high-
throughput phenotyping delivers the scope for 
greater selection intensity, upgraded selection 
accuracy and refined the decision support 
system [4]. HTPP holds the great promise to 
revolutionize the farming especially precision 
agriculture by detection of pathogen and pest 
[57]. The commonly used modern phenotyping 
approaches are:  
 

2.1 Satellite Imaging 
 

Satellite imaging is acquirable with multispectral 
spatial resolution which ranges in between 1.24 

meter to 260 meter. Data from medium resolution 
satellite freely accessible but high-resolution 
satellite data can be accessed commercially. 
Breeding programs generally carried out to 
evaluate plenty of genotypes in approximately 
one meter sized plots, especially during the early 
selection cycle. Such small size plots needs 
satellite images with higher resolution and 
currently available advanced satellite sensors 
fails to deliver such high resolution. Thus, for 
plant breeding trials, satellite imaging can be 
used only to evaluate moderate to large sized 
trial (yield trials). Yield trials are multi-location 
trials which are replicated at various locations to 
assess the G × E interactions.  
 
Multi location trials are often planted at different 
locations throughout country which makes them 
difficult to evaluate through proximal or drone-
based approaches. Therefore, satellite imaging 
could be viable for these multi location trials 
considering the reduction in cost of imaging. 
Appropriate plot size for breeding at particular 
resolution was evaluated in wheat germplasm 
with the help of Digital Globe World View-2 
satellite which has multispectral resolution 
(spatial) of 1.84 m ground sample distance 
(GSD) and it was concluded plot size which 
could be analyzed should not be smaller than 2 × 
0.8 m while 8.4 × 2.4 m plot size is appropriate at 
that resolution [89]. Large areas can be covered 
with satellite imagery at a time as compare to 
proximal phenotyping which has the chances of 
lose of precision due to coverage of small area 
instantaneously. The phenotyping through 
satellite imaging is hampered by factors like 
weather conditions, frequency, resolution and 
imaging cost. In plant breeding, low altitude 
airborne imaging which is also a unmanned 
aerial sensing, overcome the bottleneck of 
resolution at plot level while providing the 
opportunity of surveying number of plots 
concurrently at elevated temporal resolution 
[3,14]. 
 

2.2 Unmanned Aerial Systems (UAS) 
 
In field experiments with number of plots or 
large-breeding nurseries, Unmanned or 
uncrewed aerial systems (UAS) serve as a 
possible substitute to ground-based phenotyping 
platforms in sensing technology and data 
analysis [71] and available at low cost as 
compare to satellite imaging and has great 
potential to play an important role in plant 
breeding in genomics era for precise quantitative 
phenotyping of complex traits. Obviously, the 
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UAS approach has potential to increase 
throughput phenotyping but low-cost consumer-
grade sensors and platform should be developed 
and acquired precision in comparison to other 
approaches is also an affair of study [85]. UAVs 
falls broadly into four categories viz; (a) 
Parachutes (b) Blimps, (c)Rotocopters and (d) 
Fixed wing systems [82]. Although, application of 
UAVs in agriculture, especially in plant breeding, 
for the purpose of phenotyping is relatively new 
and slowly increasing [14,26,51,96] but still, 
worth of spectral indices gleaned by airborne 
system has been documented by many scientist 
to evaluate the environmentally determined traits 
in different crops [13,10,27,38,84,87,97,99]. 
 
UAVs based selection of elite breeding lines and 
clones offers an opportunity for enhancement of 
germplasm and genetic gain if low cost UAV 
platforms and proper protocols for imaging and 
analysis can be developed. Tattariset al. [89] 
compared high through put approaches viz; low 
flying UAVs, proximal sensing and satellite 

imaging while considering CT and NDVI to 
discern the most feasible approach for 
phenotyping. The UAV-based platform showed 
higher plot-level resolution at an altitude of 30–
100 m while measuring several hundred plots at 
a time and hence, supported the advantage of 
UAV-based phenotyping to pull off the         
precision and efficiency. UAS offers few 
advantagesdepending upon the aircraft, sensor 
and platforms being used and objectives [72]. 
 
Unmanned Aerial Systems are efficient enough 
to work and capture images in fluctuating 
weather conditions in contrast to satellite 
imaging. The chief limitation of UAVs is their 
higher cost although, low cost UAS is also 
available but weight and dimension of anchored 
sensors is not up to the mark. Low cost UAVs 
show limitations in stability, accuracy and 
reaching at certain altitude [78]. On the other 
hand, factors like lens distortion, overlapping of 
acquired images during airborne time and 
camera positions during image acquisitions can 

 
Table 1. UAVs used to study different traits in various crops 

 

S.N. Type of UAVs Trait/Crop Studied Scientist 

1. Octocopter at an 
altitude between 30 
and 100 m 

Experiments in spring wheat for yield 
and biomass 

Tattaris et al. [89] 

2. Octocopter at 15 m 
flight height. 

Cotton trials Xu et al. [94] 

3. Hexacopter at 25 m 
altitude 

Drought tolerance in black poplar Ludovisi et al. [54] 

4. Rotocopter at an 
altitude between 20 
and 30 m 

Vegetation indices was estimated in 
wheat trials 

Khan et al. [47] 

5. Hexacopter at an 
altitude of 50 and 75m 

Plants height in wheat Madec et al. [55] 

6. Octocopterat an 
altitude of 50mto 
digitally 

Plant population in maize Gnadingerand 
Schmidhalter [37] 

7. Hexacopter from 50 m 
altitude 

Grain yield in maize Geipel et al. [35] 

8. Octocopter at 50 m 
altitude  

Biomass and Plant height in barley Bendig et al. [8] 

9. Pheno-copter Studied ground cover, canopy 
temperature and crop lodging in 
sorghum, sugarcane and wheat 
respectively 

Chapman et al. [14] 

10. Two quadcopters Crop lodging in wheat Singh et al. [85] 

11. Fixed wing gliders Nitrogen stress variation in bread-
wheat germplasm 

Zaman-Allah et al. [96] 

12. Fixed wing gliders Height of sugarcane plants De Souza et al.[22] 

13. Fixed wing gliders Phenotyping of small sized wheat 
breeding plots 

Lelonget al. [51] 
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cause flaws up to certain limits in orthomosaics 
(Interactive image map) generated by UAVs. In 
spite of this, more technical aspects such as 
high-speed ultra-low situation, efficient data 
downloading and the software for its automatic 
processing to secure real-time application, 
payload to be carried, needs to be considered 
before using UAVs [98]. 
 

2.3 Proximal Phenotyping 
 
Fieldbased modern plant phenotyping offers 
opportunity for noninvasive quantification of plant 
structure and function and assessment of their 
interactions with environments. Phenotyping of 
plants with the help of ground-based platforms is 
known as proximal phenotyping. Proximal 
phenotyping also uses sensors which can be 
handled or can be installed on moving platforms 
(vehicles) or stationary platforms such as towers 
and cable suspensions [24]. NDVI reveals the 
photosynthetic efficiency of the plant because it 
is related to chlorophyll content and can be 
determined in the electromagnetic spectrum 
(near infrared and visible regions). Canopy 

Temperature can be indirectly used to measure 
the transpiration rate of a plant and ascertained 
from emitted infra- red radiation [9,70]. Traits like 
NDVI and CT can be phenotyped effectively 
using ground based proximal sensing approach 
while handheld sensors can be used to evaluate 
the traits like chlorophyll fluorescence, nitrogen 
content, leaf area and height of plants. On the 
other hand, mobile platforms are being 
developed and tested to determine the biomass, 
population, height, early vigor and maturity of a 
plant. Mobile platforms motion and navigation 
can be done manually or can be motorized 
supported. 
 
In plant breeding, plants are evaluated for 
multiple traits based on needs such as 
morphology, tolerance to stresses and 
phenology. This approach provides the 
opportunity to evaluate the plants for multiple 
traits at a time. Handheld sensors are useful to 
evaluate small number and size of plots. But, in 
case of large number of plots, handheld sensors 
are less efficient because of temporal errors. 
This bottleneck can be removed with the help of  

  
Table 2. Proximity sensors used for study of various important traits 

 

S.N. Type of Proximity 
sensors/instruments 

Trait/Crop Studied Scientist 

1. Infrared thermometer 
(Handheld) 

Drought tolerance in maize Keener and Kircher [46] 

2. Spectro-radiometers 
(Handheld) 

Number of morpho-physiological 
traits, disease like Yellow rust and 
nutrient use efficiency such as 
nitrogen use efficiency in wheat 

Kocet al.[49], Garrigaet al. 
[33], Huang et al. [42], 
Odilbekov et al. [64] 

3. Chlorophyll meters and 
chlorophyll fluorescence 
meter (Handheld) 

Plant health, photosynthesis, 
status of plant nitrogen and yield 
and yield attributes in several 
crops 

Keener and Kircher [46], 
Odilbekovet al. [64], 
Debaekeet al. [23],Yang et 
al. [95] and Chawade et al. 
[17] 

4. Phenocart (Mobile 
platform) 

Correlation of grain yield with 
canopy temperature and plant 
health. 

Crain et al. [21] 

5. A proximal sensing cart 
(Mobile platform) 

Breeding nurseries of wheat, 
barley, camelina and cotton. 

White and Conley [93] 

6. Modified version of PSC 
(Mobile platform) 

Drought tolerance in cotton 
germplasm 

Thompson et al. [90] 

7. Phenomobile (Mobile 
platform) 

Canopy height and temperature, 
number of spikes in wheat and 
plant stress 

Deery et al. [14] 

8. PhenoTrac 4 (Mobile 
platform) 

Evaluation of wheat and barley 
breeding nurseries for uptake of 
nitrogen, grain yield and dry 
weight 

Barmeier and Schmidhalter 
[6-7], Rischbeck et al. [77] 

9. GPhenoVision (Mobile 
platform) 

Canopy growth and development 
in a cotton breeding trial 

Kirchgessner et al. [48] 
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mobile platform which are capable of evaluating 
number of traits and rows at a time and results 
into saving costs and time [16]. Non-automatic 
platforms have additional advantages over 
motorized platforms because (i) they are 
economical and (ii) comparatively simple to 
develop. Motorized platforms are heavy 
weighted, carry more sensors and needs 
onboard energy source to move. However, 
motorized platforms are requires technical skill 
and are expensive [16]. Number of studies has 
been taken to evaluate the different traits in 
various crops using this approach, account of 
which is summarized in brief as: 
 

3. MODERN PHENOTYPING TOOLS AND 
GENETIC GAIN 

 
Although much success has been witnessed in 
last few decades in terms of yield and 
tolerance/resistance against biotic and abiotic 
stresses but, genetic gain in yield of major crops 
has been stabilized or stagnated in spite of 
modern scientific advances [1, 81]. This 
stagnation draws attention towards urgency to 
increase the efficiency of breeding approaches. 
Small breeding populations have very low 
frequency of favorable alleles and imprecise 
phenotyping in such small population will belittle 
the genetic gain. Less efficient phenotyping in 
plant breeding is considered as one of the key 
constraints to achieve the genetic gain [3, 36, 
88). Breeding programme can be accelerated to 
increase genetic gain in a number of ways [58] 
like (i) Higher selection intensity (ii) Précised 
selection (iii) Enough variation in genetic 
component (iv) Accelerated breeding cycles and 
(v) improved decision support systems. Reliable 
high-throughput phenotyping is the key 
requirements for all approaches mentioned 
above in either direct or indirect manner. 
Phenotyping is not just a recording of data or 
measurement of traits; proper phenotyping 
requires appropriate and spatial variability 
handling and trial management in a resource 
efficient manner and the development and 
management of more comprehensive data. 
Various study supported increase in genetic gain 
upon integration of genotypic data with high 
through-put field phenotypic data. Grain yield in 
wheat was predicted with the help of genomic 
prediction models by integrating HTPP data 
(obtained by UAVs) and genotypic data and 
found accuracy was lying between 56 to 
70%[80]. In another study, HTPP data on NDVI 
and canopy temperature, was collected with 
Phenocart (UAVs) and proximal phenotyping and 

was integrated with genotypic data to evaluate 
the genomic prediction model and achieved 
accuracy was 7% [20]. 
 

4. PHENOTYPING FOR PRECISION 
AGRICULTURE 

 
Concept of precision agriculture was established 
during late 1970s when it became possible to 
ascertain correct position of a point or location in 
terms of latitude, longitude and altitude at given 
time due to development of the global positioning 
system [86]. It is an integrated approach of 
various components in which, technology and 
high-resolution data is key integral part to 
monitor and manage the field so that output can 
be maximized and inputs can be minimized [12]. 
Precision agriculture works with optimized 
factors. Possible factors that can be optimized to 
achieve higher yield are controlled chemical 
spray (Fertilizers/pesticides/herbicides), control 
of disease, weeds and irrigation and optimum 
plant density. Optimization of these factors is 
possible through the sowing and fertilizer 
spraying equipment equipped with advanced 
sensors [16]. Phenotyping in precision agriculture 
is focused on improving management practices 
while in breeding; it aims in the selection of 
relevant genotypes [56]. Thus, needs for 
phenotyping is different in precision agriculture 
than plant breeding thus called for different 
strategy and solutions [15]. Management of pest, 
fertilization and irrigation is the key factor which 
that can be dealt with the help of high through-
put field phenotyping. Satellite imaging data is 
integrated with weather data to develop the 
prediction model in precision agriculture. 
 
Physical loss due to different types of stresses 
(biotic and abiotic), fluctuating rate of fertilization 
and irrigation to the crop can be determined with 
the help of satellite imaging. Factors like revisit 
frequency of satellite, available spectral bands 
and imaging resolution plays a key role in use of 
satellite imaging in precision agriculture. Higher 
revisiting frequency is utmost important in 
precision agriculture as relevant farm decisions 
are time sensitive [16].  Since, sensors and 
carriers are trait specific hence; it is peculiar to 
choose the right sensor and carrier for the 
individual trait. To customize the action, retrieved 
image is supposed to be linked with geographical 
information. Early detection and rapid analysis is 
pre-requisite to prevent losses[16]. In precision 
agriculture, to predict the urgency of the action, 
Decision support systems (DSS) with phenotype 
data should be linked to weather data. High 
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through-put phenotyping varies according to 
crop, trait and availability of resources. HTPP 
can also serve to broaden the genetic variation 
by evaluating the germplasm or breeding 
material for such traits that are invisible to naked 
eye and then they could be retained in the 
breeding programs [80]. Utility of modern 
phenotying tools in precision agriculture can be 
utilized for:  
 

4.1 Optimizing Fertilization  
 

Scattered distribution of nutrients is common 
phenomena of soil. Therefore, an application of 
fertilizers with uniform rate is inefficient, 
uneconomical and liable to have adverse effect 
on the soil and environment along with quality 
and quantity of produce [83]. In case of optimized 
fertilization variable rate of nutrient are applied 
based on the results of analysis of soil samples 
to reduce the loss of nutrients [75]. HTPP is more 
crop-centric approach in which, plant 
phenotyping is done using optical sensors to 
ascertain the status of nutrients of field and 
fertilizers is distributed in accordance to the 
derived information [96]. Ability to separate 
different types of nutrient deficiencies and certain 
disease or combinations of both at phenotypic 
level remains a challenge to optimize the 
fertilization and it can be settled by using 
amalgamation of different vegetation indices and 
wavelengths to make this distinction [57].  
 

4.2 Detecting diseases and pests 
 

At present, fields are manually surveyed for 
disease which is laborious and time consuming. 
Modern phenotyping tools can push the crop 
protection to a new level by automated early 
diagnosis of diseases in the field which would 
serve as warning system thereby customize the 
action needed to reducing crop losses and 
lowering down the need for pesticide. 
Furthermore, disease monitoring stands as one 
of the key principles in integrated pest 
management (IPM) and its application in the field 
can be simplified and amplified [16]. Effective 
identification of disease through high-throughput 
techniques remains a challenge. Recent 
developments in processing of image such as 
deep and machine learning of big data have 
brought the effectiveness in identification of crop 
and pest simultaneously [31,60]. 
 

4.3 Detecting Weeds 
  
Weeds can cause greater yield loss compared to 
pests and pathogens [65]. At present, spraying of 

herbicides is commonly used method to combat 
yield loss. However, due course of time, 
resistance against herbicides have been fetched 
by several species of weeds because of excess 
use of them [40]. It is inefficient also to spray in 
whole field with herbicides against a small 
affected patch of the field. Scientists have 
achieved the higher accuracy in weed detection 
using modern phenotyping approaches. For 
example: Pena et al. [69] scored up to 91% 
efficiency in sunflower fields with the help of a 
UAV. Blue river technologies (Sunnyvale, CA, 
USA) designed a customized tractor with 
mounted sprayers which identify the affected 
area from weed and selectively spray herbicide 
in real time [15]. 
 

4.4 Decision Support Systems (DSS) 
 
The success of precision agriculture is directly 
related to rapid and précised analysis of obtained 
phenotypic data. Acquired Phenotypic data of 
complex trait has to be processed and analyzed 
rapidly in a sturdy manner to derive useful and 
needed information. It requires integrated 
approach involving knowledge of biometrical 
genetics, statistics, geneto-phenotype with 
genomic selection etc. [18,88]. It is known that 
final achievement or gain not depends on 
improved highquality sensors or improved 
platforms but it is a data-driven approach and 
subjected to data quality and advancement in 
data processing [18, 91]. DSS is capable of 
combining the phenotypic data with weather data 
or market data and possible information 
regarding disease to optimize the yield and or 
farmer’s profit. Even though, there are 
tremendous opportunities to combine different 
types of data to optimize the yield but still, the 
use of DSS which rest on phenotypic data is very 
limited. Embracing and utilization of DSS by the 
farmers is remains very low and is another 
aspect of research [79]. Collection, precise 
classification and tailoring this data into useful 
and reliable information and or decision are also 
a matter of extensive research. Key factors of 
negligence or poor adoption of DSS by the 
farmers are less stable performance, difficulties 
in use, cost, habit, relevance and trust in DSS. 
Other factors are age of the farmer, land holdings 
and education level of farmer. 
 
Modern phenotyping tools opens up new 
avenues in the parameterization and 
configuration of models with the help of genetic 
inputs [67]. Even though, many DSShave been 
developed, very few DSS focuses on 
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(automated) phenotyping. Focus should be 
placed on key factors while developing the DSS. 
In Tanzania, an open access mobile application 
has been developed and tried out to detect the 
symptoms appearing on foliage in cassava using 
deep machine learning [45,62,73] developed a 
framework (which works on phenotyping) to 
determine the stress caused due to iron 
deficiency chlorosis in soybean. In this line, 
Hallau et al. [39] also developed an application 
that takes the picture and was able to detect and 
distinguish number of foliar diseases including 
bacterial blight of sugar beet, leaf spot caused by 
Cercospora and beet rust. 
 

5. AFFORDABLE APPROACHES 
 
Espousal of modern phenotyping approaches or 
tools is supposed to call for huge commencing 
investment specifically for testing networks and 
establishing its utility over the large geographical 
areas. Key challenge to accelerate the 
development and adoption of modern 
phenotyping is to develop the tools/techniques 
which are capable of delivering the reliable 
performance across the large geographical area 
in affordable cost especially in low or middle-
income countries where labors are available in 
relatively lower emoluments as compared to 
higher income countries. Generally field-
deployable vehicle on which robust sensors are 
mounted or proximal phenotyping is supposed to 
be imperative for field-based phenotyping than 
other approaches available for high through-put 
phenotyping [68]. 
 

6. CONCLUSION  
 
Crop improvement is very important strategy in 
order to increase the production and useful for 
food security globally. The modern and 
innovative techniques like UAV (unmanned aerial 
vehicle) will improve the field management thus 
increase the productivity. Development of 
decision support system through robust sensors 
will improve the efficiency of phenotyping. 
Exploiting a single technology always a limiting in 
improving the crop therefore integrated 
approaches will help farmers in field operations. 
This review explains about various wavelengths 
imaging technology in phenotyping. The 
important pre-requisite in collection of phenotypic 
data is sensors being used for imaging in plant 
phenotyping, physical properties, acquaintance 
with trait and depth of knowledge, software 
technology and analysis of obtained image. 
Every modern phenotyping tools used for specific 

traits like fluorescence imaging and thermal 
imaging mainly used for detection of foliar 
disease and plant water status respectively, 2D 
visible imaging for estimating shoot biomass, 
growth patterns and 3D imaging for biomass 
estimation. The challenge in modern phenotyping 
is to develop the concern software tools to further 
analyze the data and to obtain the physiologically 
interpretable data. With the improvement in the 
current imaging and refinement in new 
technologies will helpful in dissecting plant 
phenotype. One of the key examples of this 
modern technique is precision agriculture where 
satellite imaging is supporting to strengthen the 
decision. 
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