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Abstract: Pollarding oak trees is a traditional silvopastoral technique practiced across wide areas of 

the northern Zagros mountains, a unique and vast semi-arid forest area with a strong cultural and 

ecological significance. So far, the effects of pollarding on tree structure in terms of DBH (diameter 

at breast height)~H (height) relationships within the typical pollarding cycle, which often lasts 4 

years, has not been scientifically described. Here, we combine field inventories of DBH with H ob-

tained from photogrammetric UAV flights for the first time to assess   DBH  ~H relationships within 

this system. We conducted the research at six pollarded forest sites throughout the Northern Zagros. 

The sampling encompassed all three main species of coppice oak trees. In the case of multi-stem 

trees, we used the maximum DBH of each tree that formed a unique crown. A linear relationship 

between UAV and extracted H and the maximum DBH of pollarded trees explained a notable part 

of the variation in maximum DBH (R2 = 0.56), and more complex and well-known nonlinear allom-

etries were also evaluated, for which the accuracies were in the same range as the linear model. This 

relationship proved to be stable across oak species, and the pollarding stage had a notable effect on 

the DBH~H relationship. This finding is relevant for future a�empts to inventory biomass using 

remote sensing approaches across larger areas in northern Zagros, as well as for general DBH esti-

mations within stands dominated by pollarded, multi-stem coppice structures. 

Keywords: DBH; Galajar; Northern Zagros; oak; Pollarding (Galazani); tree height; UAV  

photogrammetry 

 

1. Introduction 

Forests cover around 30% of the Earth’s land area [1] , including semi-arid areas. Iran 

is climatically diverse and encompasses a considerable portion of the world’s climate 

zones [2]. However, the country is known to be dominated by semi-arid, arid, and fragile 

vegetation ecosystems [3]. The Zagros mountains are home to a significant portion of 

Iran’s semi-arid forests and woodlands, which encompass > 40% of Iran’s forests, account-
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ing for ca. six million ha [4,5]. These forests are particularly important from the socioeco-

nomic, soil conservation, and water-quality perspectives, as well as for providing consid-

erable non-market ecosystem services [6]. However, their quantity and quality have been 

almost constantly deteriorating over the last few decades due to a variety of natural and 

human-induced factors [7–11], including, in particular, the high level of dependency of 

local livelihood on these forests [12,13]. 

This close connection between people and nature in northern Zagros (located in the 

West Azerbaijan and Kurdistan provinces, Iran) [14] has led to significant alterations in 

the vegetative composition [15] and the primary structure of both trees and forest stands 

[16]. Historically, the high dependence of local forest dwellers on natural resources has 

made inventive utilization of the forest to supply both human and livestock inevitable 

[17]. Most forest dwellers practice some sort of silvopastoralism and highly depend on 

oak forests to produce forage for their livestock throughout the year [18]. In particular, 

traditional animal husbandry in northern Zagros faces a lack of pastures and fodder in 

the cold seasons. To adapt their livelihoods to such limitations, the locals have developed 

a traditional silvopastoral method called pollarding (Kurdish: Galazani) [6,19]. Pollarding 

is a generic name for pruning tree branches to provide both fodder (for domestic animals) 

and fuelwood [20]. Pollarding has been reported to be practiced in parts of Europe, Asia, 

Africa, and America, especially for the benefit of using leaves and branches as animal fod-

der. Pollarding is hence an important factor in livestock management and relates to this 

important source of income in the farming economy [21–25]. Oak pollards are a part of 

traditional forest management in many ecosystems and have a very long history of about 

4000 years [26]. In Iran, and as a part of the traditional management system in the northern 

Zagros, each rural family traditionally owns, i.e., tenures, a part of the forest (Kurdish: 

Galajar) [27]. Each Galajar is divided into three or four parcels with equal fodder produc-

tivity, termed Shanegala (in Kurdish) [28]. This is due to the fact that a given Shanegala is 

used to perform pollarding for winter fodder each year. Each Shanegala is pollarded in a 

three or four year pollarding cycle [4,28], which annually occurs from mid-September to 

early October (pre-fall). However, pollarding is not carried out in this way everywhere 

and is carried out irregularly [29]. During pollarding, forest dwellers cut leafy branches 

(Kurdish: Bakhe) of oak trees, mostly Quercus libani Olivier and Q. infectoria Olivier., and 

store them on large trees (Kurdish: Dargala), on the ground, or on rock fragments in a 

cone-shaped formation known as a Gala or a Loya Gala (in Kurdish). In winter, dried leafy 

Loya Gala branches are used to feed livestock (especially Markhoz goats and sheep) [16]. 

The locals estimate pollarding ages to conduct the above-mentioned pollarding cycle. 

Whereas a freshly pollarded tree is called Korpa, the tree is termed Kor, Khert, and 2 Khert 

following one, two, and three years from the time of its pollarding, respectively [30] (Fig-

ure 1). 

 

Figure 1. Schematic representation of a pollarded tree at different pollarding stages. This figure 

schematically shows how the shape and height of the tree changes following each year from an un-

pollarded tree (year 0) to the state after 10 years of pollarding. 
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One of the initial consequences of pollarding is reducing the tree canopy, which 

causes stress on the tree and changes the typical pa�ern of tree growth [31,32]. However, 

some studies [6,16,32–34] have shown that pollarding may result in a decrease in height, 

trunk, crown area, canopy vigor, health, seed and coppice regeneration, and density. 

However, scientific knowledge on this traditional silvicultural approach is very 

sparse, and the exact effects of pollarding on tree structure and vitality are not yet fully 

understood (an overview of earlier studies focusing on this topic is summarized in Table 

1). The first step to thoroughly examining the pollarding approach and its temporal tra-

jectories is to adequately capture the tree structure of pollarded trees [35,36]. Field inven-

tories typically involve measuring the diameter at breast height (DBH), tree height, and 

the tree crown diameter [37,38] but without considering the intrinsic features of pollarded 

trees, like their distorted DBH~height and DBH~crown area relationships. With respect to 

potential monitoring approaches, timely field measurements are challenging, as pollard-

ing typically takes place on mountain slopes [16,30,39], a problem that is exacerbated not 

only by the subjectivity and required logistics for conducting field measurements (partic-

ularly for a�ributes like tree height) but also by the fact that measurements might be pre-

vented or opposed by the local dwellers that assert a customary right to forest tenure over 

Galajars. 

As an alternative or complement, remote sensing- and photogrammetry-based ap-

proaches may partly replace or amend field measurements [40]. Remote sensing has been 

historically used in a variety of fields related to vegetation monitoring [41,42]. Well-known 

pa�ern recognition algorithms in combination with space-borne active [43–45] and pas-

sive [46–48] data have been largely employed yet face difficulties in small-scale applica-

tions. Estimating the structural variables of single trees can be accomplished using very-

high-resolution (VHR) space-borne data [49], which are, however, often prohibitive due 

to their high price and the lack of accessibility for politically sensitive areas like Iran. As 

an alternative, three-dimensional ground sensors (e.g., terrestrial laser scanners) [50] or 

aerial sensors (e.g., aerial laser scanners) [51] can be used. However, these tools are often 

either unavailable, costly, or practically infeasible for large-area assessments or subse-

quent spatial upscaling to larger domains [52]. Consumer-grade unmanned aerial vehicles 

(UAVs) may offer an intermediate solution [53] at an affordable cost [54]. Compared with 

very-high-resolution spaceborne data, their application is associated with fewer limita-

tions regarding atmospheric correction and cloud cover because of their relatively low 

flight altitudes [55]. Additionally, 3D point clouds can be created from raw UAV data by 

using stereo image-matching techniques [56]. This enhances the level of structural analysis 

from a planar space to a vertical space [57] and allows tree heights to be obtain with rea-

sonable accuracy, particularly in open forest environments. UAV photogrammetry is not 

limited to forests when it comes to tree a�ribute estimation. Several studies have success-

fully employed UAV photogrammetry to estimate the height and diameter of orchard 

trees as well [58–60]. 

The overall workflow of UAV photogrammetry in structural tree a�ribute estimation 

involves mission planning, acquisition of aerial images using a UAV, preprocessing of the 

images to correct distortions, image matching to determine position and orientation, gen-

eration of a point cloud and digital surface model, subtraction of the digital surface model 

to create a canopy height model, and estimation of tree heights using the canopy height 

model [53,61]. The accuracy of the estimated tree heights depends on the quality of the 

images, the image-matching accuracy, and the effectiveness of segmentation and meas-

urement algorithms. 

Despite all of these benefits, it is important to also mention the limitations of UAV 

data. The very small coverage of most UAVs is the primary obstacle, which is a conse-

quence of several factors, including (1) limited ba�ery power/flight time, (2) limited flight 

area that can be used for stereo analysis, and (3) the significant data volumes needed for 
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creating digital orthomosaics and digital terrain/surface models [62,63]. Despite these lim-

itations, a few earlier studies applied UAVs in the Zagros region to assess various forest 

a�ributes (Table 1). 

Table 1. The results of a systematic search on Web of Science® on relevant UAV-based studies within 

Zagros. AB in the “Search Query” column stands for abstract. 

Search Query 
Result 

Reference Year Description Region 

AB = (UAV OR UAS) 

AND AB = (Zagros) 

[61] 2022 

Edge detection-based method for delineating over-

lapped crowns of coppice trees using UAV photogram-

metry to monitor tree decline 

Middle and South 

Zagros 

[53] 2021 Structural variable extraction of Zagros single trees 
Middle and South 

Zagros 

[64] 2021 

Intra- and interspecific interaction investigation and 

their contribution to growth inhibition in the patches of 

Pistacia trees and Amygdalus shrubs 

South Zagros 

[65] 2017 
Mapping part of a wild pistachio nature reserve in Zag-

ros open woodlands 
South Zagros 

[66] 2017 

Challenges and quality of landslide assessment based 

on 

remotely sensed data 

Zagros Mountains 

AB = (pollarded) AND 

AB = (Zagros) 

[25] 2018 

Quantitative description of the pollarding process in 

the northern Zagros, with a focus on foliage stacks re-

sulting from pollarding 

North Zagros 

[67] 2018 
Structural analysis of pollarded trees to evaluate the ef-

fect of aspect on biometric indices of oak trees 
North Zagros 

[16] 2017 

Investigation of the effect of pollarding on the incre-

ment in diameter of Lebanon oak trees by comparing 

them to less disturbed stands 

North Zagros 

[6] 2014 Investigating the tree-pollarding process in Galajars North Zagros 

[18] 2012 

Allometric relationship introduction for estimating the 

crown and leaf biomass of Q. libani using the DBH, tree 

height, crown length, and crown width 

North Zagros 

[27] 2010 
Evaluation of the capability of IRS-P6 data to separate 

the pollarding areas 
North Zagros 

However, the utility of UAVs as practical and affordable tools for structural assess-

ments of pollarded trees has not yet been examined and was set as the main objective of 

this research. We were particularly interested in exploring the relationship between UAV-

derived tree heights and DBHs of the trees. This is particularly interesting for potential 

future use cases to conduct simplified forest inventories exclusively based on UAV flights 

to estimate wood volume and biomass. 

Therefore, the specific objectives of this research are: 

1. To test the feasibility of consumer-grade UAV data to estimate the height of pollarded 

trees and to use these heights to estimate the DBH of the trees; 

2. To understand how the essential DBH~H relationship is affected by the oak species 

and the stage of pollarding and whether there is a difference between multi- and 

mono-stemmed trees. 
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2. Materials and Methods 

2.1. Subsection 

The Zagros forests comprise 20% of Iran’s total vegetation cover and are a habitat to 

multiple and endemic woody species, in particular, three oak species, including Q. brantii 

Lindl., Q. infectoria Olivier, and Q. libani Olivier in both coppice and standard forms. The 

forests play a critical role in the water supply and the economic and social welfare of the 

local population [4]. The Zagros forests are biogeographically divided into northern, cen-

tral, and southern zones [68], with all three oak species jointly occurring only in the north-

ern part [4,68]. 

We analyzed the structural a�ributes of pollarded stands across 6 sites near Baneh 

county in Kurdistan province (Figure 2), one of the richest and most structurally diverse 

ecosystems in Zagros [18]. We considered the presence of Galajars of various pollarding 

ages when selecting the sites. 

 

Figure 2. Location and orthophotos of the study sites. Due to the proximity of each site to a village, 

they were geographically subdivided into two distinct regions (Region 1 and Region 2). The study 

areas consist of three sites with pollarded trees of Korpa age (S1, S3, and S6), one site of Kor age (S2), 

and two sites of 2 Khert age (S4 and S5). 

2.2. Materials 

UAV photogrammetric products were applied to derive tree heights [37,38]. The de-

rived heights were then used to estimate the field-measured DBH of the trees. Further-

more, the link between height and DBH was examined with respect to tree age, location, 
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and species groups. Tree crown area was originally considered an additional variable [69], 

but we considered it to be less relevant since it is subject to continuous change during the 

pollarding process [16,70]. 

2.2.1. Field Measurements 

The field-collected data included a general plot description (general morphology, as-

pect, presence of regeneration, and average slope), tree species, DBH (full callipering), and 

pollarding age (Table 2). In addition, we selected 4 reference trees in each site with uniform 

distribution throughout the site and measured their height using a clinometer. Finally, we 

checked whether the trees were growing from seeds or from coppice. The precise UTM 

coordinates of each tree were recorded using a Raymand® iRo-3 multi-frequency differen-

tial GNSS (Makanpardaz Raymand Inc., Tehran, Iran). The inventories were completed at 

the 6 study sites during July–September 2021, the closest possible date to the UAV flights 

(June 2021) and well before the start of the annual pollarding season (Section 2.2.2). 

Table 2. Summary of field-collected information. 

Site Area (m2) Age Average Slope (%) 
Frequency of Tree Species 

Q. brantii Q. libani Q. infectoria 

Site 1 6360 Korpa 37 14 52 165 

Site 2 2850 Kor 30 0 122 81 

Site 3 3050 Korpa 10 2 40 17 

Site 4 5360 2 Khert 10 5 130 25 

Site 5 4920 2 Khert 12 31 36 29 

Site 6 1400 Korpa 25 19 22 6 

The fieldwork revealed that none of the trees in the 6 sites were of seed origin and 

were therefore all considered coppice trees. Many trees had multiple stems, for which we 

measured multiple DBH values. Figure 3 represents the structural variations to be ex-

pected in our site based on the field observations and according to an experienced local 

ecologist. We did not examine whether the root networks of individual trees were con-

nected in the field. 

 

Figure 3. Structural differences of the coppice trees based on field observations and according to 

personal communication with a local ecologist. Please note that all of the inventoried trees were 

associated with one or a combination of these 5 states. The solid line drawn over the roots shows 

the forest floor, while the dashed grey line represents the breast height. 
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The maximum DBH value within an individual coppice tree was considered the DBH 

to be estimated for each tree [53]. A visual representation of the DBH distribution at each 

study site can be seen in Figure S1, while Table 3 shows the quantitative summary of DBH 

measurements. 

Table 3. Quantitative description of maximum DBHs measured at each site. N: number of trees, SD: 

standard deviation, Q1/Q3: 1st and 3rd quartiles. 

Variable Site N Mean SD Minimum Q1 Median Q3 Maximum 

DBH 

Site 1 231 20.0 4.5 11 17 20 23 33 

Site 2 203 17.2 3.5 10 15 17 19 28 

Site 3 59 18.9 4.6 10 16 18 21 34 

Site 4 160 18.7 4.4 11 15 18 21 34 

Site 5 96 13.6 5.1 5 9 13 17 27 

Site 6 47 15.8 5.1 5 13 15 19 29 

2.2.2. UAV Imaging 

We used a consumer-grade DJI Phantom 4 pro multi-rotor UAV (DJI, 2016) for aerial 

imaging. The device comprised a three-axis stabilization gimbal, a 1” CMOS sensor cam-

era, and an 8.8 mm/24 mm lens with a field of view of 84° (h�ps://www.dji.com/phantom-

4-pro/info/, accessed on 14 August 2023). The flights for different sites were designed ac-

cording to site-specific topographic conditions and tree cover and were designed with an 

iOS version of Pix4DCapture installed on an iPad 2018 tablet (accessible at h�ps://sup-

port.pix4d.com/hc/en-us/articles/204010419-iOS-Pix4Dcapture-Manual-and-Se�ings, ac-

cessed on 14 August 2023). The flights were conducted for all six sites between 14 and 16 

June 2021 (Table 4). Photogrammetric 3D modelling in forests is generally challenging 

[71]. To partially overcome the challenge, we additionally designed an oblique cross-flight 

in addition to the nadir cross-flights based on our previous experiences as well as sugges-

tions by former studies [72,73]. The choice of a 60° oblique flight angle was based on pre-

liminary tests and following the recommendations of earlier studies [56]. The nadir and 

oblique flights were conducted one minute apart. 

Table 4. UAV imaging technical specifications. 

Group Parameter Value 

Flight 

Altitude (m) 80 

Overlap (%) 80 

Side overlap (%) 80 

Speed Medium 

Aspect Nadir, oblique (60°) 

Georeferencing 3D control points 5 accurate 3D points were measured using PPK GNSS for each site 

Images Resolution (px) 5472 × 3648 

Products 
Models DSM, DTM, CHM, orthomosaic 

Resolution (cm) 5 

Two approaches for processing the photogrammetric data were tested: (1) dense 

point cloud production for oblique and nadir flights as two separate projects, followed by 

merging the two models, and (2) merging the images of both flights and producing a 3D 

model using all of the images. Our visual and quantitative checks on the results of both 

scenarios showed that the first scenario added considerable noise during the merging of 

the two models despite being more efficient from a processing cost point of view. The 

second approach was more time-consuming due to the simultaneous processing of more 

images but resulted in denser and more accurate models. Therefore, we applied the sec-

ond option for all sites. 
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2.3. Methodology 

The applied methodology primarily involved extracting tree heights from the crown 

height model (CHM) [74], followed by examining DBH~H relationships using ordinary 

least squares (OLS) models as well as a set of common, more complex, nonlinear ap-

proaches tested and suggested by the literature (see Section 2.3.2). 

2.3.1. Tree Height Estimation 

Production of 3D models from overlapping UAV imagery [75] is highly dependent 

on the surface color texture [63,71,76]. Due to the significant loss of leaved tree canopy 

within pollarded sites, trees exhibit a relatively poor texture, which results in technical 

obstacles during the image-matching process. Here, we produced optimal models by 

modifying the key parameters of 3D model production. We performed an exhaustive 

search for the optimal Agisoft Metashape 1.8 (h�ps://www.agisoft.com, accessed on 14 

August 2023) hyperparameters [77]. Then, we automatically filtered the key points accord-

ing to a strategy that was based on an iterative process as follows: [78,79]. 

1. Removing all points that are seen in three images or fewer; 

2. Removing the key points in such a way that the reprojection error is halved, followed 

by optimizing the camera parameters; 

3. Removing the points in such a way that the reconstruction uncertainty is halved, fol-

lowed by optimizing the camera parameters; 

4. Removing points in such a way that the projection accuracy is halved, followed by 

optimizing the camera parameters; 

5. Returning to step 2 and repeating the steps until the stopping condition is reached. 

It should be noted that our stop condition was reprojection error = 0.3 px, reconstruc-

tion uncertainty = 5 px, and projection accuracy = 3 px. Then, we created the digital surface 

model (DSM), filtered the trees, and interpolated the area of the tree locations to create the 

digital terrain model (DTM) [80] and created the CHM by subtracting the DTM from the 

DSM. The tree heights could then be extracted from the CHM [81]. To do so, the trees must 

first be segmented. Since the trees were generally sparse, we segmented the tree crowns 

using the straightforward and efficient marker-controlled watershed segmentation 

(MCWS) [82,83]. Using the maximum operator to extract the tree heights was infeasible 

due to the presence of noise in the UAV-based canopy height models [84]. To avoid a 

strong influence of corresponding outlier pixels, we assumed a normal distribution of the 

CHM values in each tree segment and identified the largest value as the tree height at a 

95% confidence level. Thus, we considered heights that were >2SD (2 × standard deviation, 

the 95th percentile of all pixels in the tree crown segment) from the average. Figure S2 and 

Table 5 show the visual and quantitative description of the tree height extraction results. 

To validate the UAV-derived tree heights, we compared them with the field-measured 

heights. The agreement with field-measured heights was reasonable, with an average dif-

ference of 0.3 m to 1.2 m (Figure S3). 

Table 5. Quantitative description of tree heights extracted from the CHM. H: height. 

Variable Site N Mean StDev Minimum Q1 Median Q3 Maximum 

H 

Site 1 231 6.7 1.2 3.4 5.7 6.5 7.6 9.6 

Site 2 203 4.8 0.9 2.4 4.1 4.9 5.3 7.5 

Site 3 59 3.7 0.5 2.9 3.4 3.5 3.7 5.7 

Site 4 160 5.5 1.2 2.2 4.5 5.6 6.3 9.7 

Site 5 96 4.5 1.2 1.7 3.8 4.0 5.5 6.9 

Site 6 47 3.5 0.7 2.1 3.1 3.4 3.6 5.7 
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2.3.2. DBH Estimation 

Despite the inherent correlation of DBH and tree height [85–87], pollarded trees are 

not comparable to undisturbed (unpollarded) oak trees due to significant changes in the 

crown area during the pollarding cycle (Figure 1). Thus, the DBH~height relationship 

might also be influenced by other variables. We hypothesized that the link between tree 

height and DBH differs across (1) single- and multi-stemmed trees, (2) trees of different 

pollarding ages, (3) the number of trunks, (4) tree species, and (5) their interactions. Items 

1, 3, 4, and 5 necessitate direct measurement of all individual trees and quantitative and 

qualitative measurements by an ecologist. Conversely, item 2 can be obtained exclusively 

through experience or by asking the Galajar’s local owner, thus negating the need for an 

examination of the individual trees. Thus, we examined all of these variables, along with 

the UAV-derived tree heights, to estimate the DBH to answer the question of whether field 

inventories for all single trees (items 1, 3, 4, and 5) are needed to estimate the DBH from 

the height obtained by the UAV. To identify the most important predictors, we applied a 

backward stepwise selection until the stopping condition was met. Then, the most effec-

tive independent variables were included in the final model [88]. Most ideally, we were 

interested in finding a linear relationship between H and DBH, which is the least depend-

ent on additional field inventories and is easier to understand because of its linearity. 

However, we were also interested in examining the nonlinear relationship between these 

two variables. To consider possible nonlinear DBH~H relationships, we also used three 

well-known nonlinear relationships that were suggested by the relevant literature (Table 

6). We used the Levenberg–Marquardt algorithm [89] to solve these models, i.e., to find 

the optimal values of the model parameters. Also, since we required initial values to find 

the optimal parameters, 500 initial values were randomly considered for each model to 

ensure the global optimum was found. We chose the optimal value according to the eval-

uation criteria of root mean square error (RMSE) and R2adj. 

Table 6. List of well-known H~DBH nonlinear allometries used in this study. 

Model Equation Source 

1 1.3 + a�1 − e��×����
�
 [90] 

2 1.3 + a� e��×���(��×���)� [91] 

3 
a

1 + b ×  e��×���
 [92] 

In OLS fits, one expects the model to improve as more variables are added but at the 

cost of overfi�ing. We used ANOVA (analysis of variance) to determine whether a rela-

tionship existed between two or more independent variables and a dependent variable. 

ANOVA can be used to determine whether the coefficients of the regression model are 

statistically significant and whether the differences among the independent variables are 

significant. It is also used to evaluate the overall effect of the independent variables on the 

dependent variable and to compare the relative importance of each of the independent 

variables on the dependent variable [93]. We used both the Akaike information criterion 

(AIC) and the Bayesian information criterion (BIC) to select variables [94]. Moreover, S, 

which is defined as �
���

��
, denotes the variance of errors around the regression line, where 

SSE and DF are the sum of the squared residuals and the degree of freedom, respectively 

[95]. The R2 from 1 −
���

���
   demonstrates the regression model’s overall performance, 

where SST is the treatment sum of squares [96]. It is crucial to take a penalty for adding a 

variable to the model into account. Hence, we used the R2adj and R2pred coefficient and 10-

fold R2 and S to evaluate how well each step performed. The coefficient R2adj is derived 

from 1-MSE/MST and R2pred is derived from 1 −
�����

���
, where PRESS is a measure of the 

difference between the predicted and observed values. To calculate PRESS, each observa-

tion is systematically removed from the data set, the regression equation is estimated, and 
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the accuracy of the model in predicting the removed observation is determined. The 10-

fold S measures the average difference between the actual values and the predicted values 

in the test data set. It provides an indication of how well the model fits the data. The 10-

fold R2 measures the proportion of variability in the response variable that is explained by 

the model. It indicates the strength of the relationship between the predictors and the re-

sponse variable. The degree of freedom, which is a function of n (number of samples) and 

p (number of parameters), is included in the denominator of MSE and MST; thus, it is easy 

to see whether adding a variable to the model has a negative impact [95]. Therefore, it is 

necessary to use this coefficient in regression equations that have more than one variable 

[96]. Also, if there is a small difference between R2adj and R2, R2 can be trusted, with a high 

probability that this difference is small in all stages. 

2.3.3. Outlier Detection for OLS Models 

We developed regressions with the independent variable H (height) for various Gala-

jar ages. It was vital to identify and eliminate outliers prior to model evaluation, as noise 

is a constant companion of UAV-based photogrammetric products. The difference in fit 

(DFFITS) is an effective metric for detecting outlier data [94]; it is a mixture of the leverage 

and R-Student metrics and evaluates the effect of each observation on the fi�ed values of 

the regression model [97,98]. The ith data enters the model twice, once as test data and 

once as training data, followed by comparison of the predicted values for the two variants. 

Although this is somewhat time-consuming in practice, it was proven that DFFITS may 

be calculated using only the diagonal values of the hat matrix without re-modelling each 

data point [94,99]. Here, we identified outliers as data with DFFITS ≥ 2 × �
�

�
. The p and n 

represent the number of regression terms and samples, respectively, which were 6 and 

796, respectively. Therefore, the data with DFFITS ≥ 0.1736 were discarded. Cook’s dis-

tance criterion [97,100] was the second strategy that was employed to filter outliers. The 

Cook’s distance criterion functions similarly to the DFITS criterion, with the exception 

that it evaluates the changes in the regression coefficients. Here, we calculated the afore-

mentioned criterion for all of the data and identified outlier data as those with a 

Cook�s distance ≥ 1. 

3. Results 

3.1. DBH Estimation 

3.1.1. Finding Effective Variables in DBH Estimation 

We used the backward stepwise selection to eliminate redundant or ineffective vari-

ables, with the p-value used as the selection criterion, i.e., the variable with the greatest p 

was eliminated in each phase. The applied termination condition was alpha-to-remove 

value = 0.1. The results are summarized in Table 7. 

Table 7. The results of variable screening in the backward stepwise selection for inlier data. Height 

(H), number of trunks (nTr), trunk (Tr), species (Sp), and pollarding age (Age) were the candidate 

terms. nTr denotes the number of tree trunks, while the categorical variable Tr distinguishes be-

tween the single-stem and multi-stem trees. 

Parameter 
p-Value 

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 

Constant          

H 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

nTr 0.305 0.396 0.166 0.266 0.204 ---- ---- ---- ---- 

Sp 0.028 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Age 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Tr 0.285 0.346 0.067 0.102 0.078 0.155 0.177 0.887 ---- 

H × nTr 0.170 0.200 0.170 0.393 ---- ---- ---- ---- ---- 
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H × Sp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

H × Age 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

H × Tr 0.049 0.056 0.039 0.079 0.045 0.040 0.174 ---- ---- 

nTr × Sp 0.348 0.408 0.309 ---- ---- ---- ---- ---- ---- 

nTr × Age 0.829 ---- ---- ---- ---- ---- ---- ---- ---- 

Sp × Tr 0.470 0.433 ---- ---- ---- ---- ---- ---- ---- 

Age × Tr 0.769 0.012 0.011 0.023 0.028 0.041 ---- ---- ---- 

S 3.1383 3.1350 3.1344 3.1351 3.1346 3.1358 3.1446 3.1463 3.1443 

R2 (%) 58.9 58.9 58.8 58.6 58.6 58.5 58.2 58.1 58.1 

R2adj (%) 57.8 57.8 57.9 57.8 57.9 57.8 57.6 57.5 57.6 

AICc 4104 4100 4098 4096 4095 4094 4097 4097 4095 

BIC 4211 4198 4186 4175 4169 4164 4157 4152 4146 

Tree species and pollarding age were the most influential variables for OLS fi�ing, 

along with height (H) (Table 7). Furthermore, observing the effect of each of these two 

variables on the R2 and R2adj coefficients revealed that eliminating the species variable had 

a negligible impact on the model accuracy. Therefore, only the pollarding age variable 

was included in the final model. We also evaluated other nonlinear models (Table 6) to 

ensure that our linear model was the appropriate choice (Table 8). 

Table 8. Comparing the performance of nonlinear allometries with linear models for inlier data. 

Model Pollarding Stage 
Estimated Parameter Evaluation Criteria 

a b c DF SSE RMSE R2adj 

1 

Korpa 9.267 0.050 1.512 334 759.172 1.508 0.300 

Kor 6.234 0.099 2.701 198 39.224 0.445 0.729 

2 Khert 9.659 0.043 1.356 253 104.486 0.643 0.747 

2 

Korpa 7.972 2.872 0.084 334 759.004 1.507 0.300 

Kor 5.958 4.012 0.121 198 39.294 0.445 0.728 

2 Khert 7.724 2.842 0.084 253 101.395 0.633 0.754 

3 

Korpa 8.820 4.335 0.110 334 758.747 1.507 0.301 

Kor 7.082 5.493 0.146 198 39.356 0.446 0.728 

2 Khert 8.497 4.255 0.113 253 100.750 0.631 0.756 

a + 

b × DBH 

Korpa 1.764 0.205 
 

335 763.590 1.510 0.300 

Kor 1.328 0.203 
 

199 41.646 0.457 0.715 

2 Khert 1.637 0.207 
 

254 107.710 0.651 0.741 

As shown in Table 8, the accuracies for different models were generally in the same 

range despite the model complexities applied. Therefore, we used the DBH~H linear 

model, which, in addition to its simplicity and comprehensibility, provides be�er inter-

pretability than nonlinear models. 

3.1.2. Outlier Detection/OLS Model 

Figure 4 shows the outlier samples and residual errors identified by the criteria that 

were described in Section 2.3.3. 
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Figure 4. Outlier data in the regression models. The left panel shows the standard residual for data 

that are >3 and <−3, considered outlier data. On the right panel, outlier data are shown in two cate-

gories: large residuals and unusual X. 

The final OLS was re-fi�ed after eliminating 35 trees (almost 4.4% of all trees) as out-

lier data. The comparison of residual errors to the fi�ed values is shown in Figure 5. 

 

Figure 5. The relationship between the residual values and the fi�ed values, where Pearson’s corre-

lation coefficient = 0 indicates no linear relationship. 



Remote Sens. 2023, 15, 5261 13 of 22 
 

 

The estimated coefficients for this equation are listed in Table 9, while Figure 6 illus-

trates the relationship between the tree height and DBH by age. A 95% confidence interval 

for the coefficients was calculated to estimate whether the model might also be valid across 

other regions beyond the parametrization domain of the six test sites. 

Table 9. The results of the analysis of the coefficients of the linear model. 

Term Symbol Coef SE Coef. 95% CI T-Value p-Value VIF 

Constant α� 10.852 0.581 (9.712, 11.992) 18.69 0.000  

Age 
2 Khert α� −12.36 1.01 (−14.35, −10.37) −12.21 0.000 17.28 

Kor α� −9.83 1.40 (−12.57, −7.08) −7.02 0.000 28.71 

H α� 1.4677 0.0972 (1.2769, 1.6585) 15.10 0.000 1.62 

H × Age 
2 Khert α� 2.111 0.185 (1.748, 2.474) 11.41 0.000 16.46 

Kor α� 1.896 0.278 (1.350, 2.442) 6.82 0.000 27.36 

The general equation was: 

DBHMax = α� + α�x� + α�x� + α�H + α�x�H + α�x�H.  (1)

The corresponding values for the variables of x� and x� are presented in Table 10. 

Table 10. The x1 and x2 coding and the final equation of linear regression for various pollarding 

ages. 

Age �� �� Equation (DBHMax=) 

Korpa 0 0 −10.85 + 1.48 H  

Kor 0 1 1.02 + 3.37 H 

2 Khert 1 0 −1.51+ 3.58 H 
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Figure 6. Relationship between height and DBH. 

Table 11 provides a summary of the model evaluation based on multiple criteria, 

while Table 12 summarizes the analysis of variance (ANOVA). 

Table 11. Summary of linear regression model evaluation. 

S R2 R2adj PRESS R2pred AICc BIC 10-Fold S 10-Fold R2 

3.21095 56.06% 55.78% 8267.26 55.40% 4124.24 4156.86 3.22838 55.25% 

Table 12. Results of the ANOVA. 

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value 

Regression 5 10,393.00 56.06% 10,393.0 2078.60 201.61 0.000 

H 1 8594.60 46.36% 2351.3 2351.28 228.05 0.000 

Age 2 217.80 1.18% 1721.6 860.80 83.49 0.000 

H × Age 2 1580.50 8.53% 1580.5 790.26 76.65 0.000 

Error 790 8145.00 43.94% 8145.0 10.31   

Lack of fit 785 8110.00 43.75% 8110.0 10.33 1.48 0.359 

Pure error 5 35.00 0.19% 35.0 7.00   
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Total 795 18,538.00 100.00%     

Table 12 shows the analysis of variance of the model. The model included five pa-

rameters, in which high values of F and very low values of p emphasized their significance. 

The lack-of-fit error (indicated by the high value of p) increased due to the discrete nature 

of the DBH values (due to the cm measurement accuracy) and the continuous nature of 

the H values. 

4. Discussion 

The general objective of our study was to examine whether height derived from UAV 

photogrammetry can predict the DBH of pollarded oak trees, which is challenging due to 

the strongly altered canopy structures [27,67]. In the following, we first discuss the tech-

nical aspects of UAV-based tree height determination and then reflect on the identified 

DBH~H relationships. 

Earlier studies discussed the challenges of producing realistic 3D models in forests 

using UAV photogrammetry [101,102]. One challenge may be that tree crowns are ob-

served only with a limited number of pixels in UAV images. This complicates solving the 

collinearity equations of automatic image-matching techniques [102]. Increasing the num-

ber of sampled pixels has been suggested in such conditions [102]. Tu et al., (2021) showed 

that the combined use of oblique and nadir flights (as compared to a nadir flight alone) 

can improve 3D photogrammetry models by 35% [103]. However, this approach might 

also be associated with image-matching issues such as changes in wind speed/direction 

and the sun exposure that may occur due to the time lag between flights, hence compli-

cating the image-matching procedure. Here, we coped with these two issues by taking 

images using continuous imaging under constant and calm wind conditions. One may 

also note that pollarded trees are less sensitive to wind because of the generally sparser 

canopy foliage compared with unpollarded trees. Additionally, we conducted the flights 

with the shortest possible time lag of approximately one minute between the two flights, 

due to which changes in sun exposure could be regarded as negligible. In order to over-

come many common image-matching problems in forests, we processed images of two 

oblique (60°) and vertical flights simultaneously to increase the number of candidate pix-

els in the image-matching process [56]. 

All in all, our analysis returned accurate estimates of the tree height using UAV pho-

togrammetric models, with an average difference of 0.3 m to 1.2 m compared to the values 

extracted from the CHM and the field measurement. This was in the range reported by 

other studies, which obtained differences of between 0.3 m to 2.9 m [104] and 0.1 m to 0.5 

m [57] when estimating tree height from UAV data. The average heights of pollarded trees 

in our study were in the range of 3.5–6.7 m, which can be considered at the lower end of 

the height values reported in the literature for these silvopastoral systems [6,18,32]. The 

tree height of pollarded trees is strongly influenced by the local inhabitants who practice 

pollarding. The traditional owners of Galajars do not allow the crown of the tree to be out 

of their reach due to the increase in height [30]. Furthermore, another reason for the low 

height of these trees may be the low canopy cover of the stands. As a result, there is less 

competition between trees to receive light (a factor influencing height growth) in pol-

larded stands, and thus the trees tend to expand their crown horizontally rather than ver-

tically (height growth) [105]. 

In terms of height–DBH relationships, previous studies on other forest types gener-

ally showed that DBH is correlated with height [106,107]. Ref. [29] showed that the DBHs 

and heights of pollarded trees of the species Quercus cerris L. were linearly correlated (cor-

relation coefficient = 0.464). Furthermore, Niemczyk and Bruchwald (2017) presented re-

lationships for estimating the DBH of Populus spp. trees and hybrids in coppice stands 

using height and the form factor [108]. Finally, Ref. [109] investigated and compared the 

relationship between the DBH and the height of Populus spp. in short rotations in northern 

Poland in two cycles of 5 and 6 years. 
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In field inventories, height measurement is generally more difficult than DBH meas-

urement [110], often with lower accuracy of measured height than that of DBH [38,111]. 

Thus, allometries are often used to estimate height using the DBH in classical inventories 

of standard forests (see Table 6). We argue that the contrary is true in our case and other 

comparable cases in stands comprising both single- and multi-stem coppice structures. 

The use of photogrammetric UAV allows for the estimation of tree heights with reasonable 

accuracies, whereas DBH measurements may be more time-consuming or prohibited. 

Therefore, we estimated DBH using the UAV-derived tree heights for single- and multi-

stem individuals in this study. In our special case, we used the maximum DBH of pol-

larded coppice groups (where trees are generally associated with more than one stem) as 

previously indicated in Section 2.2. We first checked whether distinguishing between sin-

gle- and multi-stem trees (categorical variable of Tr in Table 7) improved the model qual-

ity. The high p-value for the Tr variable throughout the variable selection suggested that 

this categorization was not helping the model. As a result, we adopted the idea of using 

the maximum DBH. 

The maximum DBH may also be suitable from an ecological perspective. In multi-

stemmed coppice oak clumps, dominant stems benefit more from the well-developed par-

ent-tree root system. Therefore, the dominant stem with maximum DBH typically grows 

faster both in diameter and height. Although multiple stems often persist within a clump 

for decades [112], as coppice stems grow larger, competition within the clump increases 

and reduces the diameter and height growth of stems. Finally, only one or two stems 

within each clump usually maintain their dominance in the crown position, and other 

stems are oppressed or excluded due to natural thinning or traditional silvicultural treat-

ments [113]. Thus, we focused on establishing an allometry between the maximum DBH 

of the coppice oak trees and our UAV-derived H measurements. 

In one of the few other studies focusing on DBH~H relationships in coppice stands, 

Niemczyk et al., (2016) used the allometric relationship suggested by [114] to estimate 

height from DBH. This relationship was nonlinear and included two fi�ed coefficients that 

were obtained by the samples measured in short rotations in northern Poland [109]. In 

northern Zagros, such allometric equations do not exist, especially not for different stages 

of pollarding. Therefore, we applied a linear model to explore the link between DBH and 

height (Figure 5), in which we used the SE coefficient, T-value, and VIF to evaluate the 

model coefficients (Table 9). The SE coefficient explains how using different sampling 

techniques might lead to changes in the estimated coefficients [95]. Here, we observed a 

higher SE coefficient for the pollarding age (Age) class 2 Khert, i.e., Galajar’s DBH at the 2 

Khert age was estimated more accurately. These linear models are not ecologically realis-

tic because the increase in tree height decreases with time, especially when the tree reaches 

the forest canopy [115]. But this is only true if the forests are minimally disturbed, whereas 

our studied forests are regularly changed by humans (see Figure 1). However, we addi-

tionally tested nonlinear allometries (Table 6). Although the findings demonstrated that 

nonlinear models exhibited slightly be�er accuracy than linear models, we chose to utilize 

the linear model. This decision was based on the simplicity, comprehensibility, and supe-

rior interpretability of linear models compared to nonlinear models. 

In our study sites, pollarding results in the complete debranching of oak trees. There-

fore, one year later, pollarding trees have almost no crown and their height decreases by 

1 to 1.5 m. With time, the tree crown recovers by producing new twigs and branches both 

apically and laterally [33]. Just 4 years after pollarding (2 Khert class), the tree crown and 

height reach their typical shape and condition. Thus, the relationship between DBH and 

height is more reliable in such stands. 

The linear model (Table 11) showed a reliable R2 in the overall assessment due to the 

small difference between R2 and R2adj. The R2pred is essentially a validation that denotes the 

degree of model reliability [116]. Furthermore, comparing k-fold S and k-fold R2 with S 

and R2, respectively, can warn of overfi�ing. We set k to 10, for which the small difference 

between the values rejected the hypothesis of model overfi�ing. In addition, the ANOVA 
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(Table 12) showed relatively high SSError, i.e., changes in DBHMax that cannot be ex-

plained by the model. Since we chose DBHMax as the DBH value of the tree (except that 

the tree was multi-stem), it added an error to the model, which can be seen in SSError. We 

instead used DBHMax due to the fact that, in oak clumps, the dominant trees are signifi-

cantly taller than the oppressed trees and stay dominant until all others are thinned or die. 

The linear model suggested in this study allows for the prediction of DBH with rea-

sonable accuracies in coppice stands at the age of Kor and 2 Khert, but the accuracy for 

stands in the Korpa age class is notably worse. Given that the models are also nearly un-

biased, there seems to be a certain potential to inventory the DBH and hence also the bio-

mass of oak coppice stands in Northern Zagros. Given the large areas covered by these 

coppice stands and given the frequently underestimated forest cover of semi-arid forests 

in global forest maps [117], this may be a relevant contribution to improve our under-

standing of global biomass distribution pa�erns and the corresponding carbon stocks. In 

future studies, it may be worthwhile to think about developing automated approaches to 

identify the pollarding age of coppice stands from remote sensing data. This may be pos-

sible with very-high-resolution UAV data but could also examined for other VHR data (if 

available). 

5. Conclusions 

In our research across silvopastoral systems (pollarded stands or Galajars) in Iran, 

we demonstrated that tree height can be effectively estimated at the scale of individual 

pollarded trees using UAV data. However, UAV photogrammetry is unable to directly 

derive DBH, which led us to demonstrate how DBH for Galajars of various ages may be 

estimated by tree height. We tested well-known nonlinear and linear allometries to model 

DBH~H and compared their performance, which suggested that DBH can be estimated 

with practically sufficient accuracy by solely using OLS with the independent variables of 

height and oak species across Galajar ages. We showed that removing species from the 

models was only associated with a marginal effect on the model accuracy; thus, we did 

not use species as a variable in the models. That is, we suggest eliminating species infor-

mation when conducting pollarding-related field measurements, which would lead to sig-

nificant savings in expert and logistics costs. We also suggest conducting a comparative 

analysis on pollarded and less-disturbed stands. Last but not least, one may note that we 

missed the Khert age group in our six inventoried sites, which calls for additional surveys 

on this age group to complement our results. 
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