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ABSTRACT

The present study was conducted on the experimental site of ITGC (Technical Institute of
Field Crops) station of Setif, Algeria; during 2010/2011 cropping season. The study was
carried out to study the performance of durum wheat genotypes in relation to yield and
yield component and evaluate genotypic and phenotypic correlations between yield and
yield components under different water deficit conditions. Three irrigation treatments were
obtained by irrigation at specified stages and no irrigation. These treatments were: no
irrigation during all growth stages (I0); 20 mm irrigation during vegetative plant growth
(Tillering stage) (I1) and 40 mm irrigation during reproductive plant growth (heading stage)
(I2). Analysis of variance revealed that number of spike per m-2 (NS m-2) and grain yield
(GY) were very significant (P < 0.001) affected under irrigation regime treatment whilst
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number of grain per spike (NG S-2) was shown highly significant (P <0.01). Grain yield
reductions were 6 %, 12.4 % under the I1 and I0 treatments respectively, when compared
with the optimum irrigation treatment (I2). Water limitation decreased NS m-² by 14.11%
and 9.67 % in the I0 and I1 treatments compared to the I2. Water limitation decreased NS
m-² by 14.11% and 9.67 % in the I0 and I1 treatments compared to the I2. Grain yield
showed significant and positive genetic and phenotypic correlation with number of spikes
per meter square (NS/m²) under all conditions of growth. Harvest index and number of
grains per meter square showed significant genetic and phenotypic correlations with grain
yield under rainfed and irrigated conditions. The differential response of cultivars to
imposed water stress condition indicates the drought tolerance ability of wheat cultivars.
The significant genetic and phenotypic correlations among grain yield and yield
components suggest that grain yield could be effectively increased by maximum genetic
expression of grains spike-1, number of spikes per meter square, number of grains per
meter square and harvest index.

Keywords: Durum wheat; genotypic and phenotypic correlations; irrigation; yield traits.

1. INTRODUCTION

Wheat production in Mediterranean region is often limited by sub-optimal moisture
conditions. Visible syndromes of plant exposure to drought in the vegetative phase are leaf
wilting, a decrease in plant height, number and area of leaves, and delay in accuracy of buds
and flowers [1,2]. Drought stress at the grain filling period dramatically reduces grain yield
[3]. Breeding for drought resistance is complicated by the lack of fast, reproducible screening
techniques and the inability to routinely create defined and repeatable water stress
conditions when a large amount of genotypes can be evaluated efficiently [4]. Achieving a
genetic increase in yield under these environments has been recognized to be a difficult
challenge for plant breeders while progress in yield grain has been much higher in favorable
environments [5]. Sharif Alhosainy [6] and Saleem [7] observed that water deficit affected the
number of spike m-2 and grains spike-1 in bread and durum wheat genotypes, furthermore
terminal drought stress significantly reduced grain weight and plant dry mass in their study.
Styk and Dziamba [8] showed that irrigation generally increased thousand-grain weight. The
responses of crops or stages of plant growth, make a different water stress effects. Under
different drought treatments, Giunta et al. [9] and Zhong-hu and Rajaram [10] found that the
most sensitive wheat stage to drought was the grain filling period. The grain weight remains
fixed at pre anthesis stage. Grain yield of durum wheat under hot and dry conditions is
frequently limited by both high temperature and drought during grain growth. Halt irrigation
induces a series of morphological and physiological changes in durum wheat such as a
reduction in yield, grain weight and leaf area duration. Correlation between different traits is
generally due to the presence of linkage disequilibrium, pleiotropic gene actions and
epistatic effect of different genes [11]. The know-how regarding the nature and magnitude of
association among plant traits is essential to improve crops yields. Singh et al. [12] observed
that wheat grain yield was positively correlated with productive tillers and flag leaf area.
Akram et al. [13] who reported significant positive correlation between number of grain per
spike, number of spikelet per spike and grain yield in wheat. The objectives of present study
were to investigate the effects of irrigation regimes during different growth and
developmental phases on yield and yield components and test the genetic and phenotypic
correlations of grain yield with the different yield components in durum wheat genotypes
under stressed and irrigated conditions.
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2. MATERIAL AND METHODS

Field experiment was done during the 2010-2011 growing season at the experimental field of
ITGC Setif, Algeria. The statistical design employed was split plot based on a complete
randomized block design (CRBD) with four replications. The three irrigation treatments were
obtained by irrigation at specified stages and no irrigation. These treatments were: no
irrigation during all growth stages (I0); 20 mm irrigation during vegetative plant growth
(Tillering stage) (I1) and 40 mm irrigation during reproductive plant growth (heading stage)
(I2). Total precipitation was recorded as 360.1 mm in 2010-2011 growing season. These
cultivars were planted on November 30, 2010 on a clay-silt. The seeds were sown using an
experimental drill in 1.2 m x 2.5 m plots consisting of 6 rows with a 20 cm row space and the
seeding rates for experiments were about 300 seeds per m-2. The plots 1.2 m x 1.5 m size
were harvested by a combined harvester. The plots were fertilized with SULFAZOT (26% N,
12% S, 120 Kg/ha) applied at tillage. Weeds were removed chemically by TOPIC (0.75 L/ha)
and GRANSTAR (15 g/ha). At harvest, data were recorded on 1000-grain weight (TKW),
grain yield (GY), and harvest index (HI). Also, some parameters such as number of spike m-
2 (NS/m²) and grains per spike (NG/S were determined.

Analysis of variance (ANOVA) was performed to determine cultivar and treatment effects.
Differences between treatments and genotypes means were tested using Fisher’s LSD Test
at the 0.05 level of probability. The genetic (rg) and phenotypic correlations (rp) between two
characters, x1 and x2, were estimated according to Kwon and Torrie [14].

r = COV (X X )
σ (x ) σ (x )

Where,

COV g (x1x2) = Genetic covariance among trait x1 and x2.
σ²g (x1) and σ²g (x2) = Genetic variance for trait x1 and x2, respectively.

r = COV (X X )
σ (x ) σ (x )

Where,

COV g (x1x2) = Phenotypic covariance among trait x1 and x2.
σ²g (x1) and σ²g (x2) = Phenotypic variance for trait x1 and x2, respectively.

3. RESULTS AND DISCUSSION

A shown in Table 1, analysis of variance revealed that number of spike per m-2 (NS m-2)
and grain yield (GY) were very significant (P < 0.001) affected under irrigation regime
treatment whilst number of grain per spike (NG S-2) was shown highly significant (P <0.01).
In addition, the genotypic effect was shown highly significant for number of spike per m-2
(NS m-2); grain yield (GY); number of grain per spike (NG S-2); number of grain per m-2
(NG m-2); 1000-grain weight (TKW) and harvest index (HI).
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Table 1. Analysis of variance for grain yield (GY), harvest index (HI), no. spike m-2

(NS/m²), no. grains per spike (NG/S) and 1000-grain weight (TKW) of the durum wheat
genotypes under different water deficit conditions

Agronomic traits
Source Mean Square (MS)
of variation DF GY HI NS/m² NG/S TKW
Bloc 3 106,21ns 49,99ns 4790,61** 3,15ns 2,209ns
Irrigation (I) 2 693,97*** 84,84ns 23329,93*** 69,17** 5,92ns
Genotype (G) 9 255,92*** 725,49*** 12873,41*** 132,77*** 207,16***
I X G 18 50,70ns 31,47ns 1392,04ns 10,8ns 16,15ns
CV % / 11,46 11,28 10,39 7,72 6,5

**Significant difference at P < 0.01, *** Significant difference at P < 0.001 and ns: no significant

3.1 Grain Yield (GY)

The results of the present study indicated that different irrigation regimes during growth and
developmental stages had different considerable effects on grain yield. The highest grain
yield (6.6 t ha-1) was produced under optimum irrigation treatment (I2) whilst the lowest (5.8
t ha-1) was observed in the (I0) treatment. Water deficit decreased grain yield at the different
growth and developmental stages although the highest negative effect was observed in the
I0 treatment. These grain yield reductions were 6%, 12.4 % under the I1 and I0 treatments
respectively, when compared with the optimum irrigation treatment (I2) (Fig. 1 and Table 2).
The negative effects of water deficit at Tillering decreased the number of spike per m-2 (NS
m-2) and number of grain per spike (NG S-1) in the durum wheat genotypes. Tillering is also
very sensitive to water stress being almost halved if conditions are dry enough [15,16].
These deleterious effects caused reduction in grain yield in the genotypes studied which are
concurrent with the findings of Donaldson [17] and Nazeri [18]. Therefore, it is reasonable to
suggest that a severe reduction in grain yield under the I0 treatment is associated with a
decrease in number of spike per m-2 (NS m-2). Table 3 shows the different values for grain
yield (GY) in the various durum wheat genotypes. The cultivar Sooty produced the highest
GY (68 Qha-1) compared to the durum wheat genotypes under the irrigation treatments,
although there was no significant difference between cultivar Sooty and Altar, Waha, Dukem,
Mexicali and Kucuk genotypes. The genotype Oued Zenati which registered the lowest value
(53.27 Qha-1), did not show a significant difference with the genotype Polonicum. According
to Blum [19], identification of high potential varieties under optimum moisture and water
deficit conditions (slow stressing) has been a principal breeding approach for durum and
bread wheat genotypes.

Table 2. Response of grain yield (GY), harvest index (HI), no. spike m-2 (NS/m²), no.
grains per spike (NG/S) and 1000-grain weight (TKW) under different irrigation

regimes

Irrigation regime Agronomic traits
GY HI NS/m² NG/S TKW

I0 (00 mm) 58,5 (c) 57,6 (a) 287,39 (c) 38,51 (b) 51,25 (a)
I1 (20 mm) 62,1 (b) 55,08 (a) 302,26 (b) 39,09 (b) 51,42 (a)
I2 (40 mm) 66,8 (a) 55,08 (a) 334,62 (a) 41,02 (a) 51,98 (a)
LSD 0,05 3,18 2,8 14,22 1,35 1,48

Column sharing the same letters indicates no significant differences.
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Fig. 1. The effect of different water deficit conditions on grain yield. Bars indicated
standard deviations. Different letters indicated significant differences at <0.05 level

3.2 Harvest Index (HI)

The harvest index is the proportion of grain yield to biological yield and it shows the ability of
the plants to translocate physiological matters to grains. Table 2 shows that there was no
significant difference among all the treatments, but there is a highly significant difference
between genotypes. The increase of the HI in the I0 treatment was related to the decreasing
biological yield (Biomass) under water deficit conditions. This result is concurrent with the
findings of Dakheel et al. [20] on durum wheat and Guinta et al. [9] on both durum wheat and
triticale. The genotypic effects on the HI values indicated that the genotype Sooty gave the
highest harvest index of 64 %, although there was no significant difference with the
genotypes Altar, Dukem, Kucuk and Hoggar. Ehdaee [21] suggested that yield increasing in
short varieties in recent years is due to increasing harvest index by selection in suitable
agricultural conditions.

3.3 Number of Spike m-2 (NS/m²)

Fig. 2 shows that water deficit conditions during the different growth and developmental
stages decreased the Number of Spike m-2. Water limitation decreased NS m-² by 14.11%
and 9.67% in the I0 and I1 treatments compared to the I2. El-Murshedy [22] summarized the
effect of irrigation treatments on wheat yield attributes it could be concluded that skipping the
irrigation at tiller stage produced the shortest plants with shortest spikes and lowest number
of spikes m-2. Water limitation can cause severe competition between the different plant
organs for photosynthesis assimilates during the stem elongation. Therefore, spike per unit
area as the effective factor due to drought stress [23,5] has reduced under reproductive
phase. With regard to genotype effects, Dukem cultivar produced the highest Number of
Spike m-2 (343.06) compared to the other durum wheat genotypes (Table 3).
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Fig. 2. The effect of different water deficit conditions on Number of spikes per meter
square. Bars indicated standard deviations. Different letters indicated significant

differences at <0.05 level

Table 3. Response of grain yield (GY), harvest index (HI), no. spike m-2 (NS/m²), no.
grains per spike (NG/S) and 1000-grain weight (TKW) in different durum wheat

genotypes

Column sharing the same letters indicates no significant differences

3.4 Number of Grains per Spike (NG/S)

The number of the grains per spike is an important grain yield component. It has been
reported that high yield in the new bread and durum wheat varieties are associated with the
increasing number of grains per spike or unit area [24]. The results of the present study
shows that there was no significant difference between I0 and I1 irrigation treatments for
grains number, the exception being the I2 treatment, which yielded the biggish number for
this important yield component (Table 2). With regard to genotype effects, Table 3 shows

Genotype Agronomic traits
GY HI NS/m² NG/S TKW

Oued Zenati 53,27(d) 40,32(e) 256,2(e) 37,3(c) 53,09(bc)
Altar 63,46(abc) 61,26(abc) 311,56(cd) 38,2(c) 54,15(b)
Sooty 68,00(a) 64,26(a) 327,5(ad) 44,3(ab) 47,10(d)
Polonicum 58,25(cd) 44,94(e) 253,8(e) 42,03(b) 51,19(c)
Waha 65,72(ab) 58,25(bc) 338,6(a) 38,82(c) 51,11(c)
Dukem 67,93(a) 61,56(ab) 343,06(a) 45,00(a) 43,19(e)
Mexicali 62,79(abc) 56,27(cd) 320,9(abc) 39,09(c) 51,77(bc)
Kucuk 65,00(ab) 59,68(abc) 338,61(a) 38,31(c) 51,59(bc)
Hoggar 60,37(bc) 60,23(abc) 300,56(cd) 38,14(c) 53,55(bc)
Bousselem 59,92(bc) 52,44(d) 290,00(d) 34,08(d) 58,77(a)
Mean 62,471 55,921 308,079 39,527 51,551
Min 53,27 40,32 253,8 34,08 43,19
Max 68 64,26 343,06 45 58,77
LSD 0,05 5,8 5,12 25,9 2,47 2,71
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that the maximum and minimum grains number was produced by Dukem and Bousselem
respectively. In addition to this, there were no significant differences among Dukem and
Sooty.

3.5 1000-grain Weight (TKW)

Although the number of grain per spike has a predominant importance over grain weight with
regard to grain yield, grain weight is well documented to be a major yield component
determining final yield in Mediterranean environments [25,26]. The effects of cultivars
treatment on thousand-grain weight were highly significant, but there is not significant effect
of irrigation treatment on thousand-grain weight   (Table 2). The absence of significant effect
of irrigation treatment on thousand-grain weight probably due to halt of irrigation at anthesis
stage. The effect of different genotypes on the TKW showed that the highest and lowest
weight was shown by Bousselem and Dukem genotypes. In addition to this, there was no
significant difference between Oued Zenati, Mexicali, Kucuk and Hoggar. The severe
reduction in the NG S-1 in the genotype Bousselem is compensated with an increase in the
TKW. Slafer et al. [27] argue that the lower grain weight observed with increased NG m-² is
not only due to a lower amount of assimilates per grain but it is the result of an increased
number of grains with a lower weight potential coming from more distal florets.

3.6 Genotypic and Phenotypic Correlations

Genetic and environmental causes of correlation combine together and give phenotypic
correlation. The dual nature of phenotypic correlation makes it clear that the magnitude of
genetic correlation cannot be determined from phenotypic correlation. Therefore, estimation
of degree of genotypic and phenotypic correlation of grain yield with yield components is
very important to utilize the available genetic variability through selection [28]. As shown in
Table 4, grain yield showed significant and positive genetic and phenotypic correlation with
number of spikes per meter square (NS/m²) under all conditions of growth. The above
findings conform with earlier reports [29,13]. Yield, as a function of various components, is a
complex character. It was suggested that yield depends on the number of spikes per unit
area, the number of grains per spike and the average grain weight [30]. In addition, grain
yield register significant genetic correlation with number of grains per spike (NG/S) (r =
0.63*) under irrigated conditions, similar results were registered by Khan and Naqvi [31] and
Burio et al. [32] under irrigated conditions. Harvest index and number of grains per meter
square showed significant genetic and phenotypic correlations with grain yield under rainfed
and irrigated conditions (Table 4). Majumder et al. [33] reported that grain yield per plant was
positively and significantly correlated with grains per spike and harvest index both at
genotypic and phenotypic levels in spring wheat. Khan et al. [34] registered significant
genetic and phenotypic correlation between grain yield and harvest index in wheat. In the
study of Leilah and Al-Khateeb [35] results proved that 1000-grain weight, weight of
grains/spike, harvest index and the biological yield were the variables most closely related to
the grain yield. Aslani et al. [36] reported in their study significant and positive correlation
between grain yield and number of grains per meter square. Increases the number of grains
per square meter is an important yield component that influences the grain yield [24]. Grain
yield (GY) showed significant and negative genetic and phenotypic correlations with
thousand grain weight (TKW) under irrigated and rainfed conditions. Abinasa et al. [37]
reported significant genetic correlation between GY and TKW. Many researchers observed
positive or negative correlations of grain yield with plant height, thousand grain weight, spike
length and protein for wheat [38,39,40].
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Table 4. Genotypic (rg) and phenotypic (rp) correlations among grain yield and yield components under rainfed and
irrigated conditions

Dependent Exploratory traits
NS/m² NG/S HI NG/m² TKW

Trait rg rp rg rp rg rp rg rp rg rp
GY Rainfed 0,95** 0,95** 0,55 0,38 0,99** 0,80** 0,95** 0,90** -0,80** -0,60

Regime 1 0,95** 0,93** 0,24 0,37 0,92** 0,69* 0,64* 0,64* 0,02 -0,54
Regime 2 0,96** 0,95** 0,63* 0,59 0,96** 0,95** 0,77** 0,66* -0,86** -0,69*

* Significant at 5% [r (5%) = 0,632], ** Significant at 1% [r (1%) = 0,765], rg = genetic correlation, rp = Phenotypic correlation
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4. CONCLUSIONS

It is concluded from the results of this study that water stress reduced durum wheat yield and
some yield components in all cultivars. The differential response of cultivars to imposed
water stress condition indicates the drought tolerance ability of wheat cultivars. The
significant genetic and phenotypic correlations among grain yield and yield components
suggest that grain yield could be effectively increased by maximum genetic expression of
grains spike-1, number of spikes per meter square, number of grains per meter square and
harvest index. Indirect selection of these yield contributing traits in early generations will
enhance genetic potential of newly durum wheat genotypes for grain yield.
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