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ABSTRACT 
 

Background: Sickle cell disease (SCD) is a highly variable condition, with some patients being 
asymptomatic and others frequently admitted to hospital. Impairment of the glutathione system due 
to genetic polymorphisms of glutathione S-transferase (GST) genes is expected to influence on the 
severity of SCD manifestations.  
Objectives: This study aimed to investigate the possible association between the presence of 
GSTM1, GSTT1 and GSTP1 gene polymorphisms and SCD severity, diversity and complications. 
Study Design: Cross-section hospital based study. 
Place and Duration of Study: This study carried out in Khartoum town in Jafar Ibn Auf Pediatric 
Hospital / Khartoum during the period (June 2017 to June 2020). 
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Methodology: The total subjects of the confirmed diagnosis were 126 patients, 78 (61.9%) are 
males and 48 (38.1%) are female. 
GSTM1 and GSTT1 genotypes were determined by polymerase chain reaction (PCR), GSTP1 
genotyping was conducted with a PCR-RFLP, and the data analyzed by SPSS version 23. 
Results: The GSTM1null genotype was found to be present in male more than female (OR=2.6 
and p=0.002) and trend to be protective from development of Dactylitis (OR=0.313 and p=0.006) 
and reduce risk to develop ACS (OR=0.23 and p=0.002) while this polymorphism increase 
requirement for blood exchange (OR=1.1 and p=0.044), the GSTT1null genotype found to be 
present in female more than male (OR=2.6 and p=0.012) and this polymorphism reduce 
requirements for blood transfusion (OR=0. 137 and p< 0.001) and annual hospitalization 
(OR=0.436 and p=0.029), and reduce risk to development of stroke (OR=0.125 and p=0.008), 
polymorphism of both GSTM1 and GSTT1 found to be associated with appearance of disease 
before one year of age (OR=1.43 and p=0.004) and trend to be protective from development of 
Dactylitis (OR=0.124 and p=0.002),and there are no statistically significance association between 
GSTP1 gene polymorphism and gender variability and clinical manifestations of SCD. 
Conclusion: Some GST genes polymorphisms were significantly associated with increased risk 
and some trend to have protective effect on clinical manifestations of SCD. 
 

 
Keywords: SCD; GST; GSTM1; GSTT1; GSTP1; polymorphisms; ACS; Sudan. 
 

1. INTRODUCTION 
 
Sickle cell diseases (SCD) is a disorder caused 
by a mutation that results in a single substitution 
of amino acid valine for glutamic acid in the sixth 
position on the beta subunit of hemoglobin 
resulting in abnormal hemoglobin, hemoglobin 
(Hb) S [1]. In its deoxygenated state, the HbS 
molecules become polymerized and deform the 
red blood cells, causing oxidative damage, 
cellular dehydration, abnormal phospholipid 
asymmetry, and increased adhesion to vascular 
endothelium [2]. The multifactorial nature of the 
SCD involves several changes in erythrocyte 
sickling, vaso-occlusive episodes, hemolysis, 
activation of inflammatory mediators, oxidative 
stress and endothelial dysfunction, which 
apparently result from HbS instability, generating 
oxygen radicals [3]. Among the major 
complications of SCD, stroke, acute chest 
syndrome, infections, osteoarticular lesions, 
lower limbs ulcers and priapism are among the 
most common [4,5]. An altered glutathione 
(GSH) metabolism in association with increased 
oxidative stress has been implicated in the 
pathogenesis of many diseases [6].  Alterations 
in GSH concentration have been demonstrated 
in many pathological conditions including SCD 
[7].  Glutathione S-transferases (GST) are a 
family of enzymes involved in phase-II 
detoxification of endogenous and xenobiotic 
compounds. Polymorphisms in GST genes have 
been associated with susceptibility to different 
diseases [8]. The clinical severity and 
hematological manifestations of sickle cell 
anemia are varied and are influenced by the 

participation of several genes in modulating the 
phenotype of sickle cell disease; polymorphisms 
of these genes may be related to the different 
manifestations between individuals [9]. 
 
The study of GSTM1, GSTT1 and GSTP1 gene 
polymorphisms in Sickle cell disease patients are 
the first step toward the understanding of the 
pathophysiology of disease, enabling predictive 
medicines and providing clinically useful 
pharmacogenomics, so this study was aimed to 
investigate the possible association between the 
presence of GSTM1, GSTT1 and GSTP1 genes 
polymorphism and SCD severity, diversity and 
complications. 
 
2. MATERIALS AND METHODS 
 
This study is cross-section hospital based study; 
included 126 pediatric patients with sickle cell 
disease who were confirmed by hemoglobin 
electrophoresis, Sickling test and clinical 
examination. Patients were invited to participate 
in the study during their regular follow up visits to 
Jafar Ibn Auf Pediatric Hospital / Khartoum. The 
study protocol was in accordance with the local 
hospital research guidelines and informed 
consent was obtained from patient's legal 
representatives. The data and blood               
samples collection were carried out in Khartoum 
town in Jafar Ibn Auf Pediatric Hospital / 
Khartoum. 
 
The DNA extraction and storage and molecular 
biology analysis were carried out in the 
department of Molecular biology Institute of 
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Endemic Diseases (IEND) –University of 
Khartoum. 
 
Clinical data were obtained from medical records 
and interviews with the patients. 
 
2.1 Molecular Analysis 
 
5 ml of blood were obtained from all participants, 
collected in sterile EDTA tubes, and then stored 
at −20°C until use. 
 
DNA was extracted from EDTA blood samples by 
G-spin TM Total DNA extraction kit protocol 
intron biotechnology: briefly, a total of 200 µl of 
blood sample was placed in1.5ml micro 
centrifuge tube, 20 µl proteinase K and 5 µl of 
RNase solution were added.  The solution was 
mixed gently by vortex, and then 200 µl of Buffer 
BL was added into sample and mixed thoroughly 
and placed at Room temperature for 2 minutes. 
The lysate was incubated at 56 C for 10 min and 
briefly centrifuged to remove drops from the 
inside of the lid. Thereafter, 200 µl of absolute 
ethanol was added into the lysate and mixed 
gently by inverting 5-6 times or pipetting.  The 
mixture was applied to the spin column (in a 2 ml 
collection tube) and centrifuged at 13,000 rpm 
forI min. The filtrate was discarded and the spin 
column was placed in a new 2ml collection tube 
then 700 µl of buffer WA was added to the spin 
column, and centrifuged for 1 min at 13,000 rpm. 
The flow-through was discarded and 700 µl of 
buffer WB was added and centrifuged for 1 min 
at 13,000 rpm. The flow-through was discarded 
and the column was placed into a new 2 ml 
collection tube, then again centrifuged for 1min to 
dry the membrane. Finally, the spin column was 
placed into a new 1.5 ml tube, and 40 µl of buffer 
CE was directly added onto the membrane, and 
incubated for 1 min at room temperature, DNA 
was then eluted by centrifugation for 1 min at 
13,000 rpm. DNA purity was quantified using a 
Nano Drop Spectro-photometer (Thermo 
Scientific 2000) and the DNA integrity was 
checked using agarose gel electrophoresis. 
 

2.2 Genotyping of GSTM1and GSTT1 
Polymorphisms 

 
The primers were synthesized by Sangon and 
PCR amplifications were carried out using the 
thermal cycler Applied QIAGEN (Rotor-Gene Q). 
 
For GSTM1 genotype, the following                          
pair of primers was used in the             
genotyping analysis: Forward primer: 

GAACTCCCTGAAAAGCTAAAGC-3, Reverse 
primer: 5- GTTGGGCTCAAATATACGGTGG -3. 
PCR was carried out in a total volume of 20 μl. It 
consists of 2 μl of genomic DNA, 1 μl from each 
primer, Master mix (Maxime TM premix kit (i-
Taq) and 16 μl distilled water. PCR was initiated 
by denaturation step at 95°C for 2 minutes 
followed by 35 cycles of denaturation at 95°C for 
30 seconds, annealing temperatures ranged 
between 59°C for 30 second and 72°C for 30 
second, and final extension at 72°C for 5 
minutes. 
 
For GSTT1 genotype, the following pair of 
primers was used in the genotyping analysis: 
Forward primer: 
TTCCTTACTGGTCCTCACATCTC -3, Reverse 
primer: 5- TCACCGGATCATGGCCAGCA -3. 
PCR was carried out in a total volume of 20 μl. It 
consists of 2 μl of genomic DNA, 1 μl from each 
primer, Master mix (Maxime TM premix kit (i-
Taq) and 16 μl distilled water. PCR was initiated 
by denaturation step at 95°C for 2 minutes 
followed by 30 cycles of denaturation at 95°C for 
30 seconds, annealing temperatures ranged 
between 60°C for 30 second and 72°C for 50 
second, and final extension at 72°C for 5 
minutes.  The product obtained from each 
reaction was subjected to electrophoresis on a 
2% agarose gel in an electric field of 10 V/cm, 
stained with 5 μg/mL ethidium bromide, and 
visualized and recorded with the aid of a video 
documentation system (Image Master VDS®, 
Amersham Pharmacia Biotech). GSTM1 and 
GSTT1 genotypes were determined by the 
presence and absence (null) of bands of 219 and 
480 bp respectively (Figs. 1 and 2). 
 

2.3 For Genotyping of GSTP1 
Polymorphism 

 
GSTP1 (Ile105Val) polymorphism was 
determined with a polymerase chain reaction- 
restriction fragment length polymorphism assay 
[PCR-RFLP]. The PCR primers were: 5′- 
ACCCCAGGGCTCTATGGGAA-3′ (F) and 5′- 
TGAGGGCACAAGAAGCCCCT -3′ (R). 
 
PCR was carried out in a total volume of 20μl. It 
consists 2μl genomic DNA, 1μl each primer, 
ready to load master mix (Maxime TM premix kit 
(i-Taq) and 16μl distilled   water.  PCR condition 
includes initial denaturation at 95°C for 2 
minutes, followed by 30 cycles at 95°C for 30 
second, 61.3°C for 30 second, 72°C for 20 
second and a last extension at 72°C for 5 
minutes.  PCR products were analyzed on a 2% 
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Agarose gel stained with 0.3 μg/mL ethidium 
bromide, and visualized by gel documentation 

system (to check the presence of 176 pb of 
GSTP1) (Fig. 3). 

 

 
 

Fig. 1. Agarose gel electrophoresis for amplified PCR products of GSTM1 (219bp) fragments 
. 

 
 

Fig. 2. Agarose gel electrophoresis for amplified PCR products of GSTT1 (480 bp) fragments 
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Fig. 3. Agarose gel electrophoresis for amplified PCR products of GSTP1 (176 bp) fragments 
 

 
 

Fig. 4. DNA fragment digestion with Alw261 restriction enzyme 
 
Then the PCR product was digested with the 
restriction endonuclease Alw261 (BsmAI) 
restriction enzyme {thermoscientific Alw261 
(BsmA1) Lot Number 00743699} as follow: For 

each 7 µl of PCR product, 1 µl from 10X NEB 
buffer and 0.5 µl from Alw261 restriction enzyme 
were added, then incubated at 37°C for 20 hrs, 
followed by incubation at 65°C for 20 minutes to 
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inhibit the enzyme activity. The products are then 
resolved on 2% agarose gel electrophoresis 
containing ethidium bromide, then visualized 
using UV trans illuminator. The amplified 
fragment after digestion with Alw261 restriction 
enzyme, will give rise to: 2 fragments at 176 bp 
and 85 bp indicating the presence of wild type 
(IIe/IIe), appearance of 2 fragments at 91 bp and 
85bp indicates the presence of homozygous 
mutant type (Val/Val), while presence of 3 
fragments at 176 bp, 91 bp and 85 bp indicates 
the presence of heterozygous mutant type 
(Ile/Val). For quality control, genotyping of the 
samples were repeated blindly and were identical 
to the initial results (Fig. 4). 
 
Lane DNA ladder: MW 100-1500 bp fragments, 
lane fragments at 176 bp and 85 bp indicates the 
presence of wild type (IIe/IIe), lane fragments at 
at176 bp, 91 bp and 85 bp indicates the 
presence of heterozygous mutant type (Ile/Val). 
Lane fragments at 91 bp and 85 bp indicates the 
presence of homozygous mutant type (Val/Val). 
 

2.4 Statistical Analysis 
 
Data were transferred to the Statistical Package 
for the Social Sciences (SPSS) Software 
program, version 23 to be statistically analyzed. 
The obtained data are presented as frequencies, 
percentage, mean and standard deviation, 
Descriptive and analytic statistics and 
crosstabulation were performed, Data were 
summarized using Chi-square or Fisher exact 
probability tests. Associations between the 
GSTM1, GSTT1 and GSTP1 polymorphisms and 
clinical manifestations of SCD patients were 
estimated using odd ratio (OR) and 95% 
confidence intervals (95% CIs). Odd ratio and 
confidence interval were used to estimate risk of 
the SCD among the population; the lowest 
accepted level of significance was 0.05 or less. 
 

3. RESULTS 
 

The total subjects of the confirmed diagnosis 
were 126 patients, 78 (61.9%) are males and 48 
(38.1%) are female, the mean age of the study 
subjects was (8.0) years old; the minimum age 
was 10 months and the maximum one was 14.5 
years. 
 
In the study subjects, 94 (74.6%) were 
diagnosed with SCD when they were less than 
one year and 32 (25.4%) were diagnosed when 
their age one year or more, the frequency of 
blood transfusion for these patients 82 (65.1%) 

were diagnosed with SCD had blood transfusion 
less than two times per year and 44 (34.9%) had 
blood transfusion more than two times per year, 
for the frequency of VOC 50 (39.7 %) were 
diagnosed with SCD had crises less than two 
times per year and 76 (60.3%) had VOC more 
than two times per year. Regarding the 
frequency of annul hospitalization 46 (36.5%) 
were diagnosed with SCD had less than two 
times per year and 80 (63.5%) had more than 
two times per year. 
 
And out of whole subjects 14 (11.1%) were 
diagnosed with SCD had stroke and 52 (41.3%) 
had Dactylities, the frequency of ACS 78 (61.9%) 
were diagnosed with SCD had less than two 
times per year and 48 (38.1%) had more than 
two times per year. 
 
And out of whole subjects 8 (6.3%) were 
diagnosed with SCD had bones problems and 4 
(3.2%) had splenomegaly and 2 (1.6%) had 
blood exchange. 
 
The GSTM1null genotype was found to be 
present in male more than female (OR=2.6, 95% 
CI=1.324 – 5.168, p=0.002) and trend to be 
protective from development of Dactylitis 
(OR=0.313, 95%  CI=0.136 – 0.716, p=0.006) 
and reduce risk to develop ACS (OR=0.259, 95%  
CI=0.107 – 0.625, p=0.002) while this 
polymorphism increased requirements to blood 
exchange (OR=1.050, 95%  CI=0.981 – 1.123, 
p=0.044). 
 
Also we found, GSTM1null genotype increased 
risk to stroke but this association not statistically 
significant (OR=3.33, 95% CI=0.710 – 15.643, 
p=0.109), and there are no significant association 
between GSTM1 genotype and time of anemia 
appearance, frequency of blood transfusion, 
annual hospitalization, VOC, bone problems and 
splenomegaly (Table 1). 
 
The GSTT1null genotype found to be present in 
female more than male (OR=2.6, 95% CI=1.224 
– 5.472, p=0.012)  and this polymorphism may 
reduce requirements to blood transfusion 
(OR=0.137, 95% CI=0.059 – 0.318,  p<  0.001) 
and annual hospitalization (OR=0.436, 95% 
CI=0.206 – 0.924 p=0.029) and reduce risk to 
development of stroke (OR=0.125, 95% 
CI=0.0267 – 0.585, p=0.008).Also this study 
found GSTT1null genotype increased frequency 
of VOC, ACS, bone problems and splenomegaly 
but this association not statistically significant 
(OR=1.34, 95% CI=0.654 – 2.738, p=0.424) , 
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(OR=1.47, 95% CI=0.713 – 3.044, p=0.294) ,  
(OR=2.9, 95% CI=0.562 – 14.96, p=0.203) and 
(OR=1.1, 95% CI=0.151 – 8.088, p=0.923)  
respectively. And there are no significant 
association between GSTT1 null genotype and 
time of anemia appearance and Dactylities 
(Table 2). 
 
Polymorphism of both GSTM1 and GSTT1 found 
to be associated with appearance of disease 
before one year of age (OR=1.43, 95% CI=1.264 

– 1.623, p=0.004) and trend to be protective from 
development of Dactylitis (OR=0.124, 95% 
CI=0.027 – 0.563, p=0.002). 
 
Also, there are no significance association 
between GSTM1/ GSTT1null genotype and 
gender, frequency of blood transfusion, 
hospitalization, VOC, stroke, ACS, bone 
problems, splenomegaly and blood exchange 
(Table 3). 

 
Table 1. Association between GSTM1 null genotype and clinical manifestations 

 

GSTM1 Clinical 
manifestations p. value Confidence interval 95% Odd ratio Chi-square Null Present 

Gender 

0.002 (1.324 – 5.168) 2.6 9.692 34 44 Male 

    8 40 Female 

Anemia appearance 

0.772 0.372 – 2.083 0.881 0.084 32 62 < 1 year 

    10 22 ≥ 1 year 

Blood transfusion 

0.792 0.412 – 1.966 0.900 0.070 28 54 < 2 per year 

    14 30 ≥ 2 per year 

VOC 

0.607 0.386 – 1.743 0.821 0.265 18 32 < 2 per year 

    24 52 ≥ 2 per year 

Annual hospitalization 

0.794 0.420 – 1.942 0.903 0.068 16 30 < 2 per year 

    26 54 ≥ 2 per year 

Stroke 

0.109 0.710 – 15.643 3.33 2.571 2 12 Yes 

    40 72 No 

Dactylities 

0.006 0.136 – 0.716 0.313 7.924 10 42 Yes 

    32 42 No 

ACS 

0.002 0.107 – 0.625 0.259 9.692 34 44 < 2 per year 

    8 40 ≥ 2 per year 

Bone problems 

0.605 0.297 – 7.971 1.54 0.267 2 6 Yes 

    40 78 No 

Splenomegaly 

0.472 0.066 – 3.590 0.488 0.516 2 2 Yes 

    40 82 No 

Blood exchange 

0.044 0.981 – 1.123 1.050 4.065 2 0 Yes 

    40 84 No 
ACS= Acute chest syndrome, VOC= Vaso-Occlusive Crisis 
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Table 2. Association between GSTT1 null genotype and clinical manifestations 
 

GSTT1 Clinical 
manifestations p. value Confidence interval 95% Odd ratio Chi-square Null Present 
Gender 

0.012 1.224 – 5.472 2.6 6.344 34 44 Male 
    32 16 Female 

Anemia appearance 
0.258 0.280 – 1.410 0.628 1.281 52 42 < 1 year 
    14 18 ≥ 1 year 

Blood transfusion 
0.000 0.059 – 0.318 0.137 23.84 56 26 < 2 per year 
    10 34 ≥ 2 per year 

VOC 
0.424 0.654 – 2.738 1.34 0.638 24 26 < 2 per year 
    42 34 ≥ 2 per year 

Annual hospitalization 
0.029 0.206 – 0.924 0.436 4.786 30 16 < 2 per year 
    36 44 ≥ 2 per year 

Stroke 
0.008 0.0267 – 0.585 0.125 9.164 2 12 Yes 
    64 48 No 

Dactylities 
0.059 0.243 – 1.027 0.500 3.602 22 30 Yes 
    44 30 No 

ACS 
0.294 0.713 – 3.044 1.47 1.101 38 40 < 2 per year 
    28 20 ≥ 2 per year 

Bone problems 
0.203 0.562 – 14.96 2.9 1.752 6 2 Yes 
    60 58 No 

Splenomegaly 
0.923 0.151 – 8.088 1.103 0.009 2 2 Yes 
    64 58 No 

Blood exchange 
0.135 0.922 – 1.013 0.967 2.235 0 2 Yes 
    66 58 No 

 

Table 3. Association between GSTM1/GSTT1 null genotype and some clinical manifestations 
 

GSTM1/GSTT1 Clinical 
manifestations p. value Confidence interval 95% Odd ratio Chi-square Null Present 
Gender 

0.291 0.554 – 4.300 1.5 0.661 14 64 Male 
    6 42 Female 

Anemia appearance 
0.004 1.264 – 1.623 1.432 8.093 20 74 < 1 year 
    0 32 ≥ 1 year 

Blood transfusion 
0.127 0.757 – 7.764 2.4 2.329 16 66 < 2 per year 
    4 40 ≥ 2 per year 

VOC 
0.304 0.631 – 4.311 1.65 1.057 10 40 < 2 per year 
    10 66 ≥ 2 per year 

Annual hospitalization 
0.724 0.448 – 3.175 1.2 0.125 8 38 < 2 per year 
    12 68 ≥ 2 per year 
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GSTM1/GSTT1 Clinical 
manifestations p. value Confidence interval 95% Odd ratio Chi-square Null Present 

Stroke 

0.085 1.070 – 1.241 1.2 2.972 0 14 Yes 

    20 92 No 

Dactylities 

0.002 0.027 – 0.563 0.124 9.591 2 50 Yes 

    18 56 No 

ACS 

0.078 0.110 – 1.123 0.352 3.301 16 62 < 2 per year 

    4 44 ≥ 2 per year 

Bone problems 

0.283 0.016 – 5.094 0.283 1.612 0 8 Yes 

    20 98 No 

Splenomegaly 

0.697 0.029 – 10.721 0.556 0.779 0 4 Yes 

    20 102 No 

Blood exchange 

0.536 0.993 – 1.046 1.1 0.383 0 2 Yes 

    20 104 No 
Also the present study found no statistically significance between GSTP1 gene polymorphism and gender 

variability and clinical manifestations of SCD. 
 

4. DISCUSSION 
 
Sickle cell anemia (SCA) is a chronic and 
progressively debilitating medical condition 
featuring ongoing hemolytic anemia and 
recurrent acute vaso-occlusive events [10]. It is 
characterized by a clinical course highly variable, 
ranging from death in early childhood [11] to a 
normal life span with few complications [12]. 
 
The complex pathophysiology of SCA which can 
be affected by a number of modifying factors 
including haplotype of β-globin gene cluster [13], 
coinheritance of polymorphisms associated with 
clinical aspects [14,15] and  Hemoglobin fetal 
(Hb F) levels [16], chronic inflammation                    
and oxidative states [17,18] as well as gender 
[13]. 
 
Human GSTs have been well characterized as 
ethnic-dependent polymorphism frequencies and 
largely divergent among populations around the 
world [19,20]. 
 
There are published reports about the 
association between GSTM1 and GSTT1 and 
GSTP1 polymorphisms and Sickle cell diseases 
but to date no study published in Africa except in 
Egypt, so this study aimed to fill the gap by 
investigating the possible association between 
the presence of GSTM1, GSTT1 and GSTP1 
genes polymorphisms and SCD severity, 

diversity and complications in pediatric Sudanese 
patients. 
 
In present study, GSTM1null genotype was 
found to be present in male more than female 
(OR=2.6 and p=0.002) and this agreed with 
another study done in Sudan [21], they observed 
male had GSTM1 null genotype more than 
female (58.8% and 41.7%) respectively. 
 
Also in this study, the GSTT1null genotype found 
to be present in female more than male (OR=2.6 
and p=0.012), and this agreed with meta-analysis 
study [22] did report a significantly higher 
frequency of GSTT1 deletion among healthy 
Caucasian females, yet was not able to explain it 
on biological grounds, since GSTT1 gene is not 
located on the sex chromosome and [23]  
observed the female (68.6%) to male ratio 
(31.4%) was high which might explain the higher 
frequency of GSTT1 deletion among female 
controls. the difference between males and 
females may also be related to gender-
associated expression of the GST family 
enzymes [24,25], or the influence of sex 
hormones, importance of which GST regulation 
is well established in rodent models [26,27]. 
 
Also, the GSTM1null genotype trend to be 
protective from development of Dactylitis 
(OR=0.313 and p=0.006) and associated with 
increase requirement to blood exchange 
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(OR=1.1 and p=0.044), to date no any published 
reports agreed or contrast this finding. 
 
Also, GSTM null genotype reduce risk of ACS 
(OR=0.3 and p=0.002), in contrast to our finding, 
in Egypt [28], and in Brazil [29], they observed 
the GSTM1 null genotype was significantly 
associated with ACS. 
 
We also observed the GSTM1null genotype 
increased risk to stroke (OR=3.33 and p=0.109), 
and this association not statistically significant, 
this agreed with study done in Brazil [29], they 
observed the patients with GSTM1 null showed a 
risk 3.9 times higher to develop stroke, 
Vasculopathy has been implicated in the 
development of pulmonary hypertension, stroke, 
leg ulcers and priapism, particularly associated 
with hemolytic severity. 
 
In this study, there are no significant association 
between GSTM1 null genotype and the time of 
disease appearance, annual hospitalization and 
splenomegaly, to date, no study involving the 
polymorphism of GSTM1 gene and these clinical 
manifestations of SCD has been published, and 
no significant association between GSTM1 null 
genotype and the frequency of blood transfusion, 
and this agreed with another studies in Egypt 
[28,30] and no significant association with VOC, 
bone problems. 
 
The GSTM1 gene contains four alleles and most 
widely studied, GSTM1 polymorphism M1*A 0.2 
is associated with decreased risk of bladder and 
breast cancer in Caucasians, M1*B 0.2 with 
decreased risk of pituitary adenomas; M1*0 0.59 
has been shown to increase the risk of lung, 
colon, bladder, and post-menopausal breast 
cancer. GSTM1*A has been associated with a 
decreased risk of bladder cancer and has an 
allele frequency of 20% [31]. 
 
Evolution from the basic identification of 
polymorphic sites has provided the tools to 
discover the genetic complexity that affects 
genotype–phenotype correlation [16]. 
 
For GSTT1 null genotype, this study found no 
significant association with the time of          
anemia appearance, Dactylities and 
splenomegaly. 
 
In this study, the GSTT1null genotype associated 
with decreased requirements to blood transfusion 
(OR=0.137 and p< 0.001), in contrast to our 
finding, in Egypt [28], found the GSTT1 null 

genotype was associated with significantly 
increased requirement of blood transfusion, and 
in the contrast for both, another studies in India 
[32], observed  the requirement of blood 
transfusion is not dependent on GST deletions, 
and in Egypt [30] found no significant association 
between GST genotypes and transfusion 
frequency. 
 
Also GSTT1 null genotype associated with 
reduce frequency of annual hospitalization 
(OR=0.436 and p=0.029), but we don’t find any 
published reports studied this association to 
confirm or contrast our finding. 
 
And GSTT1 null genotype associated with 
reduced risk to development of stroke (OR=0.125 
and p=0.008) and this agreed with [29] found 
(OR=0.55 and p=0.45) but no associated 
significance. 
 
Also, in present study, GSTT1 null genotype 
increased risk of ACS and bone problems and 
VOC (OR=1.47 and p=0.294), (OR=1.47 and 
p=0.294) and (OR=1.34 and p=0.424) 
respectively, and this association not statistically 
significant and this agreed with another studies 
[28,29,33]. 
 
The previous reports demonstrated that patients 
with SCD are subject to increased oxidative 
stress mainly in ACS [34]. 
 
Polymorphism of both GSTM1 and GSTT1 genes 
found to be associated with appearance of 
disease before one year of age (OR=1.43 and 
p=0.004) and trend to be protective from 
development of Dactylitis (OR=0.124 and 
p=0.002) but we don’t find published reports 
confirm or contrast this finding. 
 
Also, this study found no statistically significance 
between GSTM1/ GSTT1null genotype and 
gender variability, annual hospitalization, 
splenomegaly and blood exchange, no previous 
reports confirm or contrast this finding, and no 
statistically significance with VOC, frequency of 
blood transfusion, ACS, stroke and bone 
problems, and this agreed with previous studies 
[28,29,30,35], except [29], contrast our finding 
only in ACS. 
 
In this study, there are no statistically 
significance between GSTP1 gene polymorphism 
and gender variability and clinical manifestations 
of SCD, and this agreed with another studies in 
Egypt [28,30], they found the non-wild-type 
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GSTP1 polymorphism was not associated with 
clinical manifestations of SCD. 
 
In a Brazilian cohort [36] they found no 
association between GSTM1 and GSTT1 gene 
polymorphism and oxidative stress parameters in 
SCD patients, also [37] Pooled analysis of 
GSTT1 and GSTP1 polymorphisms revealed 
significantly increased risk of complications in 
SCD, while GSTM1 null genotypes  did not show 
association with SCD complications. Significant 
between study heterogeneity (I2 > 50%) was 
observed for in all three polymorphisms 
(GSTM1=68.7%), (GSTT1=71.6%), (GSTP1= 
83%). These contradictory results may be 
explained by the fact that Silva and colleagues 
studied the relation between GST gene 
polymorphisms and biochemical markers of 
oxidative stress, not the clinical manifestations of 
SCD. Thus, biochemical markers of oxidative 
stress may not be an accurate marker for 
measuring SCD severity. In addition, different 
ethnicity could explain this contradiction [29]. 
 
The difference between the clinical 
manifestations of this study and previous studies 
make complexity in detecting the association 
between these polymorphisms and SCD severity 
and diversity, this study were the first in the 
studying of some clinical manifestations to date 
no study published before such as, the time of 
disease appearance, frequency of annual 
hospitalization, Dactylities, splenomegaly and 
blood exchange in SCD patients. 
 
The unexpected clinical diversity in a monogenic 
disease such as SCD has led to countless 
genetic studies and current knowledge has 
evolved, together with technological development 
in molecular biology [34]. 
 
Moreover, since GST is a multigene family, one 
or two single polymorphisms and null genotype 
expression may not be sufficient to alter the 
overall enzymatic and antioxidant capacity [38]. 
 
Previous studies have shown that there is 
marked geographical and ethnic variation in the 
distribution of genes for polymorphic GSTs [39]. 

 
The protective effects found in this study in some 
clinical manifestations and differences in the 
associations or lack of them in the previous 
studies may be due to gene–gene interactive 
effects on GSTs and genotype–phenotype 
correlation, previous studies postulated, there 
are another mechanism for defense against 

oxidative stress, erythrocyte shave a self- 
sustaining activity of antioxidant defense 
enzymes, including superoxide dismutase 
(SOD), catalase (CAT), glutathione peroxidase 
(GPx), and glutathione reductase (GR), in 
addition to low-molecular-weight antioxidants, 
such as glutathione(GSH) and vitamins E and C 
[40], RBC superoxide dismutase (SOD) activity 
has been shown to increase in some SCD 
studies [41,42], The primary antioxidant enzymes 
against superoxide radicals include superoxide 
dismutase (SOD), catalase (CAT), and 
glutathione peroxidase (GPx) [43]. [44] Observed 
higher CAT activity in the plasma of SS children 
compared to AA controls, and [45] found higher 
GPX activity in young adults with SCA compared 
to healthy individuals. 
 
Nur et al. [46] demonstrated an increased GSSG 
efflux in sickle erythrocytes that can be a 
protective action, because GSSG is an oxidant 
itself and its enhanced excretion under oxidative 
conditions prevents the potentially toxic effects of 
its intracellular accumulation [47]. But increased 
GSSG efflux could play an important role in GSH 
depletion in these cells. 
 
Also, G6PD is an important enzyme related to 
the antioxidant defense in erythrocytes [36], 
Higher activity of this enzyme in patients with 
sickle cell disease was found than in the control 
group, previously reported that erythrocytes from 
patients with sickle cell disease have an 
increased percentage of reticulocytes, while the 
activity of G6PD in reticulocytes is normal, but 
declines exponentially as the red cells age [48]. 
 
Also these polymorphisms had protective effect 
in other diseases; some reports found that, the 
decreased GST activity served to protect the 
host erythrocytes against the invading malarial 
parasite by up-regulating oxidative defense 
mechanisms [49], homozygous deletion of 
GSTM1 may interfere with iron chelation therapy 
and lead to slow unloading of liver iron [50]. 
 
GST polymorphisms not only influence 
susceptibility to disease, but they also appear to 
to influence responsiveness to cancer 
chemotherapeutic agents [51], protective role for 
cancer [52], protection from having ALL [53], 
Diabetic retinopathy in type 1 diabetes [54], 
Diabetic retinopathy in type 2 diabetes [55,56], 
Protection against colon cancer [57], protection 
against hearing impairment in testicular cancer 
patients [58], protective effect male infertility 
[59,60]. The GSTT1 null genotype had a 
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protective effect on the development of 
schizophrenia and the combination of null 
genotypes of the GSTT1 and GSTM1 genes was 
made at a lower risk of schizophrenia [61,                
62], protection against coronary artery disease 
[63]. 
 
Due to little papers like this study are published 
and there are difference in clinical manifestations 
and population, limited information about this 
subject has been published, the absence of data 
obtained on phenotypic effects of GST family 
genes, the diversity of the clinical manifestations 
and severity among patients with similar GST 
polymorphisms may be due to the presence of 
other modifying genes effects on these genes, 
Future large studies evaluating GST genes in 
addition to other antioxidant genes are needed to 
provide evidence on gene–gene interactive 
effects on SCD, which makes further functional 
studies a necessity to determine the exact 
genotype-phenotype correlation, also any 
reported differences between studies might be 
attributed to sampling error. 
 
Most of studies done before agreed with our 
study in most finding in the same clinical. 
 
5. CONCLUSION 
 
In conclusion, this study found, The GSTM1null 
genotype was found to be present in male more 
than female and trend to be protective from 
development of Dactylitis and may reduce risk to 
develop ACS, while this polymorphism may 
increase requirements to blood exchange. 
 
The GSTT1null genotype found to be present in 
female more than male and this polymorphism 
may reduce requirements to blood transfusion 
and annual hospitalization and may reduce risk 
to development of stroke. 
 
Polymorphism of both GSTM1 and GSTT1 found 
to be associated with appearance of disease 
before one year of age and trend to be protective 
from development of Dactylitis. 
 
Also, there are no statistically significance 
between GSTP1 gene polymorphism and gender 
variability and clinical manifestations of SCD. 
 
This study were the first in the studying of some 
clinical manifestations to date no study published 
before, as time of disease appearance, 
frequency of annual hospitalization, Dactylities, 
splenomegaly and blood exchange in SCD 

patients and was the first done in Africa except 
Egypt. 
 
The polymorphism of GSTM1, GSTT1 and 
GSTP1 genes effect on clinical manifestations 
diversity of SCD. Future large studies evaluating 
GST genes are needed in order to minimize 
severity of their symptoms by using prophylactic 
antioxidants and other measures that improve 
their reductive defense mechanisms. 
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