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Abstract

The nonlinear evolution of Alfvénic fluctuations in the firehose unstable regime is investigated numerically and
theoretically for an anisotropic plasma described by the one-fluid double adiabatic equations. We revisit the
traditional theory of the instability and examine the nonlinear saturation mechanism, showing that it corresponds to
evolution toward states that minimize an appropriate energy functional. We demonstrate that such states
correspond to broadband magnetic and velocity field fluctuations with an overall constant magnitude of the
magnetic field. These nonlinear states provide a basin of attraction for the long-term nonlinear evolution of
the instability, a self-organization process that may play a role in maintaining the constant-B Alfvénic states seen in

the solar wind in the high-( regime.
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1. Introduction

Alfvénic fluctuations are incompressible, non-dispersive
perturbations of plasma velocity (U) and magnetic field (B)
such that U « FOB (Alfvén 1942). They are ubiquitous in
magnetized plasmas, and the study of their stability and
nonlinear dynamics provides the building blocks to understand
turbulence in many collisionless and weakly collisional
astrophysical environments (Schekochihin & Cowley 2000),
solar coronal heating (Rappazzo et al. 2018), and solar wind
acceleration (Verdini et al. 2010).

Since the beginning of the space age, the solar wind has
remained the most explored collisionless, turbulent natural
plasma. Fast solar wind streams are typically pervaded by
large-amplitude Alfvénic fluctuations propagating away from
the Sun that display a well-defined power-law spectrum in
frequency, the latter characterized by a low- and high-
frequency part with spectral indices close to —1 and —5/3,
respectively (Bruno & Carbone 2013). At the same time,
particle distribution functions display many nonthermal
features (Marsch 2012), like pressure anisotropy, that may
provide the free energy for the onset of kinetic instabilities
possibly coexisting with the evolving turbulent spectrum
(Matteini et al. 2013; Hellinger et al. 2015).

The large-scale expansion of the solar wind naturally drives
plasma distribution functions toward the threshold of the
oblique or parallel proton firehose instability (Hellinger et al.
2015), a similar driving to threshold also occurring, for
example via shear flow, in other astrophysical environments
like accretion disks (Kunz et al. 2014), making the study of
such an instability of particular interest. The firehose instability
arises in high-3 (thermal to magnetic pressure ratio) plasmas
when the pressure anisotropy (P>p Py and p, being the
pressure parallel and perpendicular to the magnetic field) is
large enough to remove the restoring force due to magnetic
tension (Parker 1958), leading to an increase of magnetic
energy until marginal stability is reached nonlinearly. Observa-
tions around 1 au (Kasper et al. 2002; Hellinger et al. 2006)
seem to support the idea that the firchose may play a role in
controlling the anisotropy in the high-3 wind. How the
transition to the unstable regime affects the evolution of

large-amplitude Alfvénic fluctuations, however, has remained
unexplored until the present Letter.

Particle dynamics and magnetic field variations are strongly
coupled in collisionless (or weakly collisional) plasmas via the
adiabatic invariants (BZpH) / p* and p, /(Bp) (Chew et al. 1956;
p being the plasma density and B the total magnetic field
magnitude) that are conserved to lowest order (in length and
timescales with respect to the ionic typical scales). Such a
coupling introduces a nonlinear feedback on fluctuations
mediated by the bulk response of particles to variations of B
that dramatically depends on the polarization of the
fluctuations.

In this regard, Squire et al. (2016) studied finite amplitude
effects of a linearly polarized Alfvén wave in collisionless and
weakly collisional high-G plasmas. They found that, above a
threshold amplitude, the Alfvén wave induces a firehose
instability that would ultimately lead to the “interruption” of
the wave itself. In this process the wave evolves into a sequence
of spatial discontinuities (square profiles) that minimize the
gradients of B, a tendency previously observed also in hybrid
numerical simulations (Vasquez & Hollweg 1998).

On the other hand, one of the peculiarity of Alfvénic
fluctuations in the solar wind is that the magnitude of the total
magnetic field remains nearly constant, i.e., 6B/B < 1. This
implies that the tip of the magnetic field vector is bound to
rotate on a sphere of radius B (Tsurutani et al. 1994). Such a
condition corresponds to spherical polarization, that in the
simplest case of plane fluctuations reduces to circular (for
parallel propagation) or arc polarization (for oblique propaga-
tion). A similar geometrical behavior is found also in the
velocity vector when Doppler shifted to the wave frame,
pointing to the fact that in such a frame the particle energy is
conserved (Matteini et al. 2015). Although it is known that
nonlinear Alfvénic fluctuations with constant total pressure
represent an exact solution of the magnetohydrodynamic
(MHD) equations (Barnes & Hollweg 1974), how such a
nonlinear state can be accessed dynamically and maintained
remains to be understood.

In this Letter we explore a nonlinear relaxation process that
may play a role in preserving constant-B states at large (3
values. We investigate both numerically and theoretically the
evolution of Alfvénic fluctuations subject to the firehose
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instability. By relaxing the constraint of linear polarization we
show that broadband, constant-B nonlinear states provide a
basin of attraction of the long-term evolution of the firehose
instability.

2. Setup of the Problem

In this Letter we adopt the one-fluid double adiabatic model
first introduced by Chew et al. (1956; CGL model) which, in
the limit of long wavelength and small frequencies with respect
to the typical proton spatial and temporal scale, provides a good
starting point to investigate pressure anisotropy effects (Hunana
& Zank 2017).

We start from the full set of the CGL equations, where an
explicit diffusion due to kinematic viscosity (v) and magnetic
diffusivity (n) is introduced for numerical stability, b =B/B
and Ap =p, — Py
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A spatial dependence along the z coordinate is assumed and
the background magnetic field By is taken in the (z,y) plane,
forming an angle 6, with the z-axis. In an ideal plasma
(n = v = 0), finite amplitude, one-dimensional (plane) fluctua-
tions transverse to the propagation direction are described by
the following equations:
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In the specific case in which B is spatially uniform, there are
no compressible effects and the pressure term Ap is a function
of time only. Therefore, one can easily integrate Equations (4)
to obtain the following expression:

)

B2 B2
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Equations (5)-(6) together with Equation (7) generalize the
MHD equations of Alfvénic fluctuations with arbitrary ampl-
itude and in the presence of pressure anisotropy, and they exactly
describe the dynamics of circularly or arc-polarized nonlinear
states (Tenerani et al. 2017). Note that Equations (5)—(6) are
valid also when B is not uniform in space. In this case, however,
one has to take into account the coupling with compressible
modes and the full complement of the double adiabatic and
continuity equations would have to be considered. In a high-8
plasma, however, coupling with compressible modes is
negligible, and we will see a posteriori that Equations (5)—(7)
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can be used in the more general case of non-constant-B
fluctuations to study their evolution.

For the forthcoming discussions it is useful to introduce the
normalized magnetic field and total magnetic field magnitude,
B, = B, /By, B = B/B,, the Alfvén speed V, = B, /\[47p and

Vo=V 4 2 (®)

Next, we combine Equations (5)—(6) in the following
second-order partial differential equation:
2 2
o O eo>2§—Z2(vazBu. ©)
Equation (9) describes nonlinear propagating fluctuations if
\7[12 > 0 that might be unstable to parametric decay (Tenerani
et al. 2017). Here we focus on the opposite case, in which
\7(12 < 0 at ¢ = 0. This condition corresponds to the well-known
firchose regime, whose threshold, given by the condition
\7(12 = 0, is now extended to include finite amplitude effects. In
the following, we first investigate the nonlinear evolution of
fluctuations in such a regime by integrating the set of
Equations (1)-(4) numerically, starting from an initial non-
constant-B fluctuation; next, we will use Equation (9) to discuss
the results on theoretical grounds.

3. Numerical Results

We consider a case study in parallel propagation (6, = 0)
and initialize the simulation with uniform density p and
relatively large-amplitude magnetic and velocity field fluctua-
tions of the form

B, = Acos(koz), B, = Asin(koz + 6¢), (10)
U.=-B.JC, U,=-B,JC, (11)

where C = |<\7a2 (0) > | and brackets (-) denote the spatial
average. The amplitude is fixed to A = 0.1, the initial
anisotropy & = pOL/pOHZO'l and 3 = 87rp0H/BO2 = 4, so that

Vaz (0) < O (speeds are normalized to V,). We chose ko = 3,
and we perturbed the circular polarization by imposing ¢ = 1.
The length of the box is fixed to L = 27 and we performed
eight simulations with increasing resolution by changing the
number of mesh points from N = 128 to N = 16384, and
decreasing the magnetic diffusivity () and kinematic viscosity
(v) accordingly. The Prandtl number is one (¥ = 7)) and the
diffusion coefficients range from n = 0.027 to n = 0.0002.

In Figure 1 we plot the time evolution of the normalized rms
amplitude of the magnetic field magnitude fluctuation
(B> — (B2)*)'/2/(B?)]"/? = (6B)) for each simulation.
(6B) has a peak at the early stage, due to the growth of
broadband incoherent fluctuations that are induced by nonlinear
mode coupling (including wave steepening), as will be
explained in the next section. After the peak, the system
relaxes toward the same final nonlinear state where (6B) < 1
over a timescale that becomes independent of the dissipation
for increasing resolution (decreasing dissipation). We estimated
that the relative fluctuations of the magnetic field magnitude
reaches the 5% level around ¢ = 30 for N = 2048-16384. This
can be seen by inspection of the inset plot, where we show (6B)
for the higher-resolution simulations.
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Figure 1. Nonlinear relaxation of an Alfvénic fluctuation (6, = 0). Normalized
rms amplitude vs. time for each simulation; high-resolution simulations are
shown in the inset plot.

Figures 2 and 3 display numerical results corresponding to
the simulation with the highest resolution (N = 16384 mesh
points and 1 = 0.0002), which is used as a reference. Figure 2,
upper panel, shows the spatial structure of B*(z) in the
subdomain z = 2-4.5 at three different times, showing that
B? gradually tends, from a highly variable profile reached at the
end of the linear stage (cfr. B*(z) at t = 0.1), toward a smooth
profile (cfr. B*(z) at t = 50). The lower panel of Figure 2 shows
the evolution of (B?) and of the average parallel and
perpendicular pressure (p;) and (p): at saturation (about
t ~ 0.1), the average magnetic field has reached its asymptotic
value <B2) ~ 1.31; at the same time, consistently with the
increase of magnetic energy and the conservation of the two
adiabatic invariants (initially (B?(0)) = 1.01), the initial
anisotropy is reduced, with the parallel pressure decreasing
from its initial (homogeneous) value p(0) = 2 to (p) ~ 1.54,
and the perpendicular pressure slightly increasing from
p(0) =02 to (p)) ~ 0.227.

In Figure 3 we show in more detail the final state. The left
panel displays the compensated magnetic energy spectrum
kZBk2 mediated in time in the interval r = 40-50, showing the
generation of a developed spectrum of fluctuations whose
spectral index is close to —1. The middle panel represents the
hodogram of the magnetic field at three different times: atr = 0
(black); at t = 0.1 (light blue) during the early nonlinear stage
when the magnetic fluctuations are uncorrelated; at ¢ = 50
(blue) when the system has reached its final state characterized
by circular polarization, implying that the fluctuating compo-
nents of the magnetic field are properly shifted in phase so as to
lead to a constant B> profile. In the right panel the final
magnetic field waveform is shown at ¢ = 50: light blue and red
colors correspond to the B, and B, components, each of which
has evolved toward large-amplitude fluctuations with
embedded rotational discontinuities. We found a similar
nonlinear evolution for different values of kg, for a broadband
initial fluctuation, and starting from initial incoherent noise.

We also performed a simulation by imposing the same initial
condition given in Equations (10)—(11) but choosing 6, = 50°
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Figure 2. Results from the highest-resolution simulation (fy = 0, N = 16384).
Upper panel: plot of the total magnetic field magnitude B(z) in the subdomain
7 =12-4.5 at three different times. Lower panel: temporal evolution of the
average B, p| and p, during the linear stage and saturation.

to inspect whether the relaxation toward constant-B field
survives for oblique fluctuations (with n = 0.0004, N = 8192
mesh points). Although the evolution occurs on longer
timescales, it is remarkable that the system evolves again
toward a constant-B state with analogous spectral properties. In
this case the constant-B condition corresponds to arc-polarized
fluctuations. This is shown in Figure 4, which displays the
magnetic field hodogram at three different times: the black
color corresponds to the initial condition (¢ = 0), the light blue
color corresponds to the firehose destabilization of small-scale
fluctuations (¢ = 0.2), and the blue color corresponds to the
asymptotic state (t = 90).

4. Discussion

Our simulations confirm that the constant-B state represents
a basin of attraction for the long-term evolution of fluctuations
that are in the firchose regime. Regardless of the initial
condition, the system naturally evolves toward a stationary,
broadband state whose magnetic field magnitude is almost
constant in space, resulting in a specific phase-correlation
between the components of B, that leads to a circularly or arc-
polarized magnetic field. In a previous work we have
investigated theoretically the behavior of a monochromatic
and constant-B initial state in the firehose regime (Tenerani
et al. 2017). We showed that, in that simplified case,
Equation (9) can be integrated exactly and that the solution
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Figure 3. Final state from the highest-resolution simulation (6, = 0, N = 16384). Left panel: compensated magnetic energy spectrum mediated between ¢ = 40 and
t = 50. Middle panel: hodogram of the magnetic field at # = 0 (black), = 0.1 (light blue) and # = 50 (blue). Right panel: magnetic field components B,(z) (light blue)

and B,(z) (red) at r = 50.
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Figure 4. Magnetic field hodogram for 6, = 50° at 7 = 0 (black), r = 0.2 (light
blue), and ¢ = 90 (blue).

for the amplitude B(f) can be described by analogy with the
motion of a particle moving in a conservative field of force.
The amplitude is homogeneous in space (by construction) and
oscillating in time between a minimum and a maximum value
corresponding to the two turning points of the potential energy:
any form of dissipation would cause the amplitude to decay
toward the minimum of the potential, leading to a final
stationary state of minimum energy. Although this is a
simplified case, we expect a similar behavior also in the more
general case of an initial non-monochromatic and non-
constant-B field. If B is not constant, however, there is an
additional effect due to its gradient. This can be readily seen by
inspecting the functional form of \7(12 (B?) (Equation (8)):
regions corresponding to maxima of B® will grow (or
propagate, when Vaz > 0) slower than those corresponding to
minima of B2. Such a nonlinear dispersion naturally leads to
wave steepening and in the specific case of the firechose regime
it tends to flatten the profile of B,

Let us consider the dynamical equation for nonlinear
transverse fluctuations, Equation (9), complemented by
Equations (7)—(8). We approximate B2(0) ~ (B*(0)) and
separate B> into an average and fluctuating part, B> = (B2) +
(B> — (B?)) = (B?) + 6B2. After developing V. to first order
in 6B? and transforming into Fourier space, from Equation (9)
we get the following set of coupled nonlinear equations for

each Fourier mode By,

. doy, ~2
By = ——= + (cos09)> (V)Y
k 4B, (cos o)~ (V)
+ > B,B, i, B, (12)
p=kq

where for the sake of simplicity the hat has been dropped, the
dot denotes the time derivative, (\7(,2 )Y = dVaz /dB? evaluated on
the mean field, and the potential ¢, by writing the normalized
mean square field (B%) = 1 + Y |B,* and w, = kV, cos f, is
given by

: VB (BX(0)
— Y B.|? ﬂ 2 { 13
iy Ly v (13)

The first term on the right-hand side of Equation (12)
introduces a mean-field coupling among the existing Fourier
modes and it drives amplitude oscillations in a way similar to
the monochromatic case discussed above, where the Fourier
modes can be seen alike a system of oscillators coupled via the
potential ¢,. In this case ¢ is a paraboloid that for £ < 1 and
B> 1 has a maximum at the origin and a minimum on the

hyper-surface defined by ‘7; ((B%)) = 0. The last term on the
right-hand side instead arises from the inhomogeneity of B>
This nonlinearity is at the core of the long-term nonlinear
evolution of firehose fluctuations because it couples a given
mode with wavenumber k with higher wavenumber modes,
conveying energy across scales all the way down to the
dissipative ones and leading to wave steepening. The cascade
process introduces an effective dissipation that allows the system
of oscillators to “fall” toward the minimum energy state
corresponding to ‘7; ({(B?)) = 0, which generalizes the otherwise
known marginal stability condition. Marginality predicts the
average square magnetic field magnitude at saturation that in our
simulation is (B?) ~ 1.31 (see Figure 2, lower panel). While
approaching marginal stability, the same nonlinearity ultimately
leads toward a constant-B state. This process can be better
understood by writing the corresponding equation in real space.
At marginal stability, and by retaining only the dominant
contribution from the gradient of §B* Equation (12) can be
approximated by 0’B, ~ (cos@o)z(Vf)’BLafo. As can be
verified for non-propagating fluctuations, according to this
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equation magnetic field in regions close to minima of B* tend to
increase while those close to maxima tend to decrease. Notice
that (Squire et al. 2016) found a similar description of the
nonlinear evolution of a linearly polarized Alfvén wave subject
to the (self-induced) firehose instability. However, a linearly
polarized fluctuation is constrained to have B = 0 at minima.
As a consequence, the nonlinearity tends to form a squared
magnetic field waveform, leading to flat profiles of B> spaced out
by deep magnetic holes in correspondence of the field reversals.
Instead, in the more general case with more than one fluctuating
component maxima and minima of B” are shifted with respect to
crests and null points of the field B, . This allows the fluctuating
components to undergo a phase shift that leads to a smooth,
constant profile of the total B>,

In the regime studied here an initial Alfvénic fluctuation
evolves into a non-propagating fluctuation, and therefore the
final state does not show the correlation 6B o 6U. This is to be
expected, because if \702 < 0 in the whole dominium then
Equation (9) is a non-propagative (elliptic) differential equation.
Finite amplitude effects, however, may lead to intermediate
cases in which the plasma is only partially unstable, with \7; <0
in localized regions around minima of B% In this case it is
reasonable to expect that the evolution would display both a
tendency to constant-B states while keeping a high degree of
Alfvénic correlation (cross helicity). The final cross helicity and
polarization may depend on initial conditions. This is a study
that deserves further development in future work.

The results presented here rely on a one-fluid description of
the plasma. Kinetic effects are known to lower the threshold for
the onset of the firehose with respect to the CGL prediction.
In that regime, the firehose leads to the growth of fluctuations at
the small kinetic scales, while the large MHD scales remain
unaffected (Hunana & Zank 2017). We argue that, in this case,
firehose fluctuations may grow on top of large-amplitude
Alfvénic fluctuations and lead nonlinearly to the relaxation of
the initial anisotropy. A fluid behavior should be recovered in
the presence of a statistically relevant number of particles
resonating with the unstable spectrum. In those cases our
results should remain valid on the large scales. However, the
impact of dispersion and other kinetic effects on our results
(and, vice-versa, the effect of large-amplitude Alfvénic
fluctuations on kinetic instabilities) remains an open question
that is deferred to later work.

5. Summary

We have investigated the nonlinear evolution of Alfvénic
fluctuations subject to the firehose instability in the CGL limit:
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the instability naturally leads via a nonlinear self-organization
process to a relaxed state characterized by a spectrum of
fluctuations whose spectral index is close to —1 and with
magnetic field components displaying defined phase shifts
corresponding to constant magnetic field. In the solar wind,
such a nonlinear relaxation due to the firechose may provide a
way to preserve constant-B states as Alfvénic fluctuations
propagate outwards toward the high-( regions.
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