
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Distributed Learning of CNNs on Heterogeneous
CPU/GPU Architectures

Jose Marques, Gabriel Falcao & Luís A. Alexandre

To cite this article: Jose Marques, Gabriel Falcao & Luís A. Alexandre (2018) Distributed
Learning of CNNs on Heterogeneous CPU/GPU Architectures, Applied Artificial Intelligence,
32:9-10, 822-844, DOI: 10.1080/08839514.2018.1508814

To link to this article: https://doi.org/10.1080/08839514.2018.1508814

Published online: 10 Sep 2018.

Submit your article to this journal

Article views: 500

View related articles

View Crossmark data

Citing articles: 2 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2018.1508814
https://doi.org/10.1080/08839514.2018.1508814
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2018.1508814
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2018.1508814
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2018.1508814&domain=pdf&date_stamp=2018-09-10
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2018.1508814&domain=pdf&date_stamp=2018-09-10
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2018.1508814#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2018.1508814#tabModule

Distributed Learning of CNNs on Heterogeneous CPU/GPU
Architectures
Jose Marquesa, Gabriel Falcaoa,b, and Luís A. Alexandrec

aInstituto de Telecomunicações, Department of Electrical and Computer Engineering, University of
Coimbra, Coimbra, Portugal; bVisiting Professor at École Polytechnique Fédérale de Lausanne (EPFL),
School of Computer and Communication Sciences, Lausanne, Switzerland; cInstituto de Telecomunicações,
Departamento de Informática, Universidade da Beira Interior, Covilhã, Portugal

ABSTRACT
The convolutional neural networks (CNNs) have proven to be
powerful classification tools in tasks that range from check read-
ing to medical diagnosis, reaching close to human perception,
and in some cases surpassing it. However, the problems to solve
are becoming larger and more complex, which translates to
larger CNNs, leading to longer training times that not even the
adoption of Graphics Processing Units (GPUs) could keep up to.
This problem is partially solved by using more processing units
and distributed training methods that are offered by several
frameworks dedicated to neural network training, such as Caffe,
Torch, or TensorFlow. However, these techniques do not take full
advantage of the possible parallelization offered by CNNs and the
cooperative use of heterogeneous devices with different proces-
sing capabilities, clock speeds, memory size, among others. This
paper presents a new method for the parallel training of CNNs
where only the convolutional layer is distributed. The paper
analyzes the influence of network size, bandwidth, batch size,
number of devices, including their processing capabilities, and
other parameters. Results show that this technique is capable of
diminishing the training time without affecting the classification
performance for both CPUs and GPUs. For the CIFAR-10 dataset,
using a CNN with two convolutional layers, and 500 and 1500
kernels, respectively, best speedups achieve 3:28� using four
CPUs and 2:45� with three GPUs. Larger datasets will certainly
require more than 60-90% of processing time calculating convo-
lutions, and speedups will tend to increase accordingly.

ARTICLE HISTORY
Received 15 January 2018
Accepted 23 July 2018

Introduction

Deep learning has been the engine behind tasks that are considered common
nowadays. One of the most used models within deep learning is the CNN.
The technological development allowed the access to computational
resources capable of training increasingly larger neural networks, and also

CONTACT Luís A. Alexandre lfbaa@di.ubi.pt Instituto de Telecomunicações, Departamento de Informática,
Universidade da Beira Interior, Covilhã, Portugal
This article has been republished with minor changes. These changes do not impact the academic content of the article.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uaai.

APPLIED ARTIFICIAL INTELLIGENCE
2018, VOL. 32, NOS. 9–10, 822–844
https://doi.org/10.1080/08839514.2018.1508814

© 2018 Taylor & Francis

http://www.tandfonline.com/uaai
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2018.1508814&domain=pdf&date_stamp=2019-05-11

larger datasets. More specifically, it was due to the development of faster
CPUs and RAMs, the increase in available memory/storage, and also due to
the improvement of distributed training infrastructures. It was only then that
it was possible to create frameworks like DistBelief (Dean et al. 2012), capable
of training networks with as much as 1.7 billion parameters, currently among
the largest of their type. However, it should be noted that this framework
uses thousands of CPU cores distributed along hundreds of machines and the
training takes days to complete.

Another important technological development for the evolution of deep
learning was the adoption of GPU architectures, more specifically the use of
GPGPU for scientific and generic computation.

A distinctive aspect of CNN lies on the so-called convolutional layers,
which makes it the ideal choice for image and speech recognition, since both
tasks rely heavily on the correlation of neighboring data. The major problem
with it is that the processing of convolutions is computationally intensive,
requiring from 60% to 90% of the total training time only using about 5% of
the parameters of the whole network (Krizhevsky 2014; Ward et al. 2011).
Although for such scenario, Amdahl’s Law constrains speedups to the range
2:5,10, this work shows that it is possible to work near those limits. Also,
while tools such as Caffe or TensorFlow usually explore the compute power
of a single GPU or a small group of homogeneous GPUs on the same node/
server, this work proposes an alternative for filling in the gaps of the above
mentioned frameworks, namely by using truly heterogeneous CPU and GPU
parallel computing architectures, isolated or grouped in distinct nodes/clus-
ters, eventually in different physical locations, for the compute-intensive
training of deep learning with balanced workloads.

Thus, the main contribution of this paper consists in an open-source
distribution technique that makes use of the potential parallelization that
convolutional layers have to offer, feeding platforms of conventional hetero-
geneous CPU and GPU devices the same feature maps, but providing them
with different kernels and balanced workloads, gaining speed up during the
computation of convolutions that compensates communication times for
orchestrating the different nodes. This contribution is likely to produce sig-
nificant impact, since under the current context of training CNNs, computa-
tion times can easily vary from days to weeks (Keuper and Preundt 2016).

Distributed Convolutional Neural Networks

Over the last years, Deep Neural Networks (DNNs) were able to achieve
performances, better than all humans or the best ones at it, in games like
chess (Lai 2015) and Go (Silver et al. 2016).

Despite having shown to be a powerful machine learning technique, when
applied to large inputs, like images, most DNN like deep belief nets or stacked

APPLIED ARTIFICIAL INTELLIGENCE 823

autoencoders, became rather complex and sizable, capable of reaching millions
of weights for simple inputs that consist of RGB images of size 32� 32.

Another problem is that these networks neglect correlation between neigh-
boring data, like translations and distortions, despite there are local correla-
tions in pattern recognition problems. Ideally, local features would be
extracted and analyzed in order to be able to detect certain beings or objects.
CNN, however, are able to overcome those issues by making use of 3 key
factors: local receptive fields, weight sharing, and spatial pooling.

Convolutional Neural Networks

The first proposal of a model similar to a CNN can be attributed to Fukushima
(1980) with the neocognitron. It served as inspiration to the modern concept
of CNN, which was introduced by LeCun and Bengio (1995) and also inspired
by the discovery of locally sensitive and orientation-selective neurons in the
visual cortex of a cat. By using local receptive fields, it is possible to exploit
local visual features, such as edges, corners, and end-points (in images). This is
advantageous because adjacent pixels tend to be strongly correlated while
pixels that are farther apart are usually uncorrelated, or have weak correlation.
Having the ability to share weights across locally connected neurons allows
reducing the amount of parameters to train, decreasing the amount of data
needed, making the training faster and achieving better classification perfor-
mances when compared to other approaches.

The main differences between CNN and other DNN are the use of
convolutions and pooling (or subsampling) operations, instead of simple
matrix multiplication in at least one layer. One of the most popular CNN
is LeNet-5 (LeCun et al. 1989). It contains two convolutional layers and two
subsampling layers interleaved, ending with fully connected layers. The net-
work can be tuned by changing the number of layers, the number and size of
filters from the convolutional layer or the stride of the subsampling layer.

Distributed Training Techniques

Training the largest CNN is becoming a real challenge even using GPU,
either because datasets are growing fast in size and these parallel machines
are limited in memory, or simply because the training times still remain quite
long. Performing the distributed training of CNN fosters accelerating this
type of complex processing. This section aims to provide some insight
regarding the most recent techniques of distributed training.

Distributed training can refer to distributing the training of the network
across several GPU or CPUS in the same or in different computers. There are
mainly two types of techniques for performing the distribution: data paralle-
lism and model parallelism.

824 J. MARQUES ET AL.

Data Parallelism
In data parallelism, the batch of data is split across the several nodes of the
cluster, such as CPU, GPU, or a combination of both. Each node is then
responsible for computing the gradients with respect to all the parameters,
but does so using part of the batch. However, since every node is running a
replica, it is necessary to communicate the gradients and parameter values on
every update step. Another problem with this approach is that since every
node calculates different gradients, they need to be averaged, and that causes
the loss of information and may hinder the training process.

Another condition for the use of this type of parallelism especially when
using GPU is that the batch size must be large enough to be distributed and
still be able to exploit the highly parallel capabilities of the GPU.

Model Parallelism
Model parallelism consists of dividing the network’s computation across the
several nodes that may differ considering the type of network used. In the
DistBelief (Dean et al. 2012) case, the DNN is partitioned across several
nodes and only the nodes with edges that cross-partition boundaries need to
have their state transmitted between nodes. Another possible implementation
(Yadan et al. 2013) separates the first convolutional layer across several
nodes, dividing the number of kernels, with each node calculating a part of
the network, having only cross connections at one intermediate layer and at
the very top fully connected layers.

A different type of model parallelism can also be considered by splitting
the image in tiles that are represented by thread blocks per output feature
map. Each tile is analogous to a thread block and each pixel is represented by
a thread, with a tile representing a different image (Ward et al. 2011).
However, this type of distribution is only efficient in cases where the image
and batch size is large enough, and when there are not many kernels to be
convoluted, since every device will need to have every kernel.

The distribution technique devised in this paper can be thought as a new
type of model parallelism, since the workload of the network is distributed
across several machines. This will be further detailed in Section 4.

Related Work

There are a few works that address the speedup achievable with distribution
techniques, mostly data parallel ones. Among the few frameworks that allow
the distributed training of convolutional networks, TensorFlow (Abadi,
Agarwal, and Barham et al. 2015) offers the possibility of training a model
in a parallel, distributed fashion, providing the code to do so with the
CIFAR-10 dataset (Krizhevsky 2009), using several GPUs on the same
machine. Each GPU is envisioned to have similar speed and have enough

APPLIED ARTIFICIAL INTELLIGENCE 825

memory for the entire network, so a model replica is placed in each GPU,
with the model parameters being updated synchronously, having to wait for
all GPUs to complete the processing of the corresponding data.

The results provided by TensorFlow in file cifar10_multi_gpu_train.py of
its source code show that the introduction of a second GPU is able to reduce
the step time to less than half of the case with a single device; however, for
the remaining cases, with three and four GPUs, the step time is barely
reduced, showing that it does not seem to scale.

There are also studies that try to distribute the training of a CNN across
different machines, such as (Vishnu, Siegel, and Daily 2016), that use several
CPUs connected using InfiniBand. They also used TensorFlow, taking advan-
tage of data parallelism. All the samples are divided equally across devices, as
each device is considered to have the same exact computational capabilities.
The updates are performed synchronously using MPI, which is heavily
optimized, allowing for a minimal time being spent in communications.
The results relative to a CNN trained with CIFAR-10 show a speedup of
3:01� when scaling from 4 to 64 cores.

The facts that distinct devices may receive the same amount of data and
update the parameters synchronously are limitations to the use of real-life
machines that have different capabilities. This is the main motivation in
developing a significantly distinct approach capable of performing CNN
training in truly heterogeneous devices. Another problem is the fact that
these studies seem to be limited to distribute the training across a maximum
of four GPUs placed in a single machine.

Thus, our proposal is to develop a parallelization scheme that is able to train
a CNN using the resources of different machines available on a network, with
distinct computational resources. To avoid limiting the training time to the
slowest machine used, a quick test is performed on all machines, so as to grasp
the computational capabilities of each device. Since the distribution of the
workload is performed during runtime, it allows the use of a wide variety of
devices, each one receiving a proportional share of the workload.

Distributed Convolutional Learning

Hybrid CPU–CPU and GPU–GPU Computing

One of the major problems that arises with the usage of computers having
different CPU and GPU is that distinct devices have different computational
resources and thus are able to complete the same workload in different times.
This can become a problem, especially when one or several devices are
relatively slow compared to others.

826 J. MARQUES ET AL.

In order to mitigate this problem, it is necessary to find beforehand the
suitable workload for each device, which in this case is the number of kernels, so
that each device can finish all its convolutions at approximately the same time.

To do so, a pre-processing procedure is performed, where every device
runs an N-dimensional convolution with both the size of the images and the
size of the kernels provided by the master device, trying to simulate part of
the convolutional layer. The convolution is run using random values, since
only the time spent performing calculations is relevant. After the respective
simulations complete, the computation time is reported to the master node
in order to find the performance ratio between devices, either CPU or GPU.
The slave nodes only need to know the IP address of the master node, while
the master node needs to know the number of slave nodes and their
respective IP addresses.

However, considering that during the experiment three to four computers
will be used, it is necessary to further clarify how the attribution of perfor-
mance values and subsequent distribution of work is done, in cases with
more than two devices. In general, for n devices, each with a time to
complete the task given by ti; i ¼ 1; . . . ; n, we define the workload for each
device as follows:

wi ¼
maxðtÞ

tiPn
j¼1

maxðtÞ
tj

: (1)

Workload Distribution

The similarities between this distributed approach and model parallelism lie
in sharing part of the network. However, where the nodes using model
parallelism always compute the same part of the network and communica-
tions are kept to a minimum, this approach only calculates convolutions for
the convolutional layer. This exploits the fact that convolutional layers use
less than 10% of the parameters (Krizhevsky 2014), indicating that commu-
nication overheads will not become a relevant problem when compared to
the computation time saved.

For this approach, one of the nodes orchestrates and is designated as
master node, while the remaining ones are slave nodes. Considering only
the convolutional layer is the subject of distributed training, the master node
is in charge of training the remaining network.

For the convolution distribution, the master node sends the size and
number of inputs that can be images or feature maps from previous layers.
It also sends the size and number of kernels needed for the convolution, with
different nodes receiving a different number of kernels. All this information
regarding input, kernel size and number is necessary so that the slave knows

APPLIED ARTIFICIAL INTELLIGENCE 827

how much data to read from the socket and how it should reshape it, since
data read from sockets comes in vector form. After every node concludes
their part of the convolutions, each slave sends the feature maps, after which
the master node reshapes and rearranges them.

The process is repeated until the training of the network is over, with the
master node sending a shutdown flag to every slave.

Experiments

Hardware Platforms Setup

As can be seen in Table 1, the computers are all composed by a set of distinct
devices, so the need to perform hybrid CPU–CPU and GPU–GPU processing has
emerged. The code for this experiment was written in Matlab. Thus, the compa-
tible framework for performing parallel computing is CUDA, meaning that the
GPU cluster uses three computers (PC2, PC3, and PC4), since only NVIDIA
GPUs are supported. The CPU cluster runs with all computers available.

Network Architecture and Dataset

For this experiment, the dataset used was CIFAR-10 (Krizhevsky 2009). It
consists of a labeled subset of the 80 million tiny images dataset in Torralba,
Fergus, and Freeman (2008). The dataset contains 60000 32� 32 color
images grouped into 10 classes, with each class having 6000 images. Of the
total 60000 images, 50000 are intended to be used for training and the
remaining 10000 for testing. The classes present in this dataset are as follows:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. This
dataset was chosen particularly for consisting of color images, which is the
norm for most recent image datasets, but also for having a considerably small
dataset with small images, which allows to test several CNN architectures in
shorter periods of time compared to other datasets like Imagenet
(Russakovsky et al. 2015) and is therefore able to serve as a proof of concept.
A third reason for choosing CIFAR-10 is related with comparison purposes,
since it is a popular dataset used many times in the literature.

The chosen architecture for the network is as follows: convolutional layer
(henceforth known as C1), with kernels with 5� 5 pixels size; normalization
layer; pooling layer, with stride 2; convolutional layer (henceforth known as

Table 1. CPUs and GPUs used in the experiments.
PC CPU RAM GPU RAM

PC1 i5-3210M @ 2.5GHz 6GB Radeon HD 7500M N/A
PC2 i7-4700HQ @ 2.4GHz 8GB GeForce 840M 2GB
PC3 i7-5500U @ 2.4GHz 8GB GeForce 940M 2GB
PC4 i7-6700HQ @ 2.6GHz 16GB GeForce 950M 4GB

828 J. MARQUES ET AL.

C2), with kernels with 5� 5 pixels size; normalization layer; pooling layer,
with stride 2; fully connected layer; loss layer, with softmax loss.

The goal of the experiment is threefold: (1) analyze the speedup achieved
using a varying number of devices; (2) quantify the influence that the
number of kernels in each convolutional layer has on speedups; and (3)
evaluate how the batch size impacts the speedups.

To achieve that, the number of kernels on each convolutional layer was
varied, testing four different network architectures. The smallest tested CNN
has 50 kernels in the first convolutional layer and 500 on the second one. The
next architectures use 150 and 300 kernels for the first layer and 800 and
1000 kernels for the second one, while the largest tested network has 500 and
1500 kernels on each layer, respectively.

Experimental Results

Speedups Using CPU-cluster
PC1 serves as the master node for the CPU implementation, being the reference
of comparison when using a single CPU. The rest of the devices considered, PC2,
PC3, and PC4, are introduced in this order to test the introduction of more
nodes for the cases with two, three, and four devices, respectively.

Figure 1 shows the results by maintaining the same network architecture
and varying the batch size; thus, it is possible to understand the influence of
batch sizes by analyzing each subfigure individually, and to study how the
number of kernels affects the attained speedup by comparing the result of
each batch size across different subfigures.

Figure 1 shows that a speedup always exists, even when considering the
smallest network and batch size. Figure 3 shows that the introduction of more
CPU contributes to an improvement on processing time, achieving speedups
of 1:3� for 2 CPUs, 1:5� for 3 and slightly above 1:5� for 4 CPUs.

A batch size influence analysis on the distribution technique performance
starts by comparing each subfigure individually. For the smallest considered
network, the difference in batch size does not introduce significant changes,
since the speedups attained for four CPUs are between 1:4� and 1:55� .

For the two next architectures, with 150 kernels on the first convolutional
layer and 800 kernels on the second one, and 300 kernels on the first layer
and 1000 on the second, the differences continue to be almost nonexistent.

However, for the largest network tested, there is a more prominent difference
when training it with different batch sizes, with the speedups for 4 CPUs ranging
from 2:21� to 3:28� . Nonetheless, the difference of speedups between
different batch sizes across the other trained networks is very small.

To understand the effects that the number of kernels has on the attained
speedups, it is necessary to analyze the results pertaining a batch size across
the different network architectures.

APPLIED ARTIFICIAL INTELLIGENCE 829

1
2

3
4

N
um

be
r

of
 C

P
U

s

0.
6

0.
81

1.
2

1.
4

1.
6

1.
8

Speedup Achieved

64
 im

ag
es

12
8

im
ag

es
25

6
im

ag
es

51
2

im
ag

es
10

24
 im

ag
es

1
2

3
4

N
um

be
r

of
 C

P
U

s

0.
51

1.
52

2.
5

Speedup Achieved

64
 im

ag
es

12
8

im
ag

es
25

6
im

ag
es

51
2

im
ag

es
10

24
 im

ag
es

1
2

3
4

N
um

be
r

of
 C

P
U

s

0.
6

0.
81

1.
2

1.
4

1.
6

1.
82

2.
2

2.
4

2.
6

Speedup Achieved

64
 im

ag
es

12
8

im
ag

es
25

6
im

ag
es

51
2

im
ag

es
10

24
 im

ag
es

1
2

3
4

N
um

be
r

of
 C

P
U

s

0.
51

1.
52

2.
53

3.
5

Speedup Achieved

64
 im

ag
es

12
8

im
ag

es
25

6
im

ag
es

51
2

im
ag

es
10

24
 im

ag
es

Fi
gu

re
1.

At
ta
in
ed

sp
ee
du

p
fo
r
al
lb

at
ch

si
ze
s,
us
in
g
a
CP

U
cl
us
te
r
ra
ng

in
g
fr
om

1
to

4
m
ac
hi
ne
s.

830 J. MARQUES ET AL.

Considering the case with a batch of 64 images, it is visible that the
speedup increases from 1:45� using the smallest network to almost
2:25� , with the largest one.

By further analyzing the effects of the network architecture, a quick study
involving the remaining batch sizes show that the increase in convolutional
layers always leads to an improvement in speedup, with the worst case being
with 128 images, where the 4 CPU case improves from 1.52x to 2:2� when
considering the largest network. The best case scenario comes when using a
batch of 1024 images, considering the speedups climb from 1:4� to 3:25�
when considering 4 CPUs training the largest network.

For the largest considered architecture, the speedups are always above
1:65� with 2 CPUs and are capable of achieving speedups greater than 2�
for 3 or more CPUs. To understand how communication times differ, it is
necessary to analyze how the training time is distributed. Figure 2 shows the
elapsed time relative to only one batch of 1024 images, since the time for the
training of an entire epoch is mostly linear. The full training time is divided
into three parts: Comm. time refers to the communication time between
master node and slaves. Conv. time is the time spent in convolutions by
each node, or by the slowest node, as opposed to being the cumulative time
spent in convolutions by all the nodes. Finally, Comp. time is the time spent
on computation other than convolutions.

The training time using one CPU presents a decrease in the percentage
of time dedicated to the computation of different layers, going from 25%
with the smallest network to 13% when training the largest one. A more
thorough analysis of the largest network using a batch with 1024 images
shows that, as it can be seen in Figure 2d, the use of 2 CPUs achieves a
speedup of 1.98 x, while for 3 and 4 CPUs the attained speedup is 2.73 x
and 3.28 x, respectively. Considering that the computation of the remain-
ing layers only occupies 13% of the total training time using one CPU, the
theoretical maximum speedup achievable for this particular case would be
about 7.76 x. Therefore, networks that rely more heavily on convolutions
will be able to achieve better speedups.

Thus, it is possible to see that speedups are more dependent on the
number of kernels than batch size, for the CPU case.

Vishnu et al. also parallelize aCNN trainingwithCIFAR-10, using several CPUs
connected with InfiniBand and are able to achieve a speedup of 3:01 x using 64
cores, relative to the training time using 4 cores (Vishnu, Siegel, and Daily 2016).

Speedups Using GPU-cluster
Only 3 of the 4 computers could run matlab and CUDA; hence, the max-
imum size of the GPU cluster is 3 machines, which allows the comparison
between CPU and GPU up to a certain point.

APPLIED ARTIFICIAL INTELLIGENCE 831

1
2

3
4

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

N
um

be
r

of
 C

P
U

s

Elapsed Time (seconds)

C
om

p.
 T

im
e

C
on

v.
 T

im
e

C
om

m
. T

im
e

1
2

3
4

0

50
0

10
00

15
00

20
00

25
00

N
um

be
r

of
 C

P
U

s

Elapsed Time (seconds)

C
om

p.
 T

im
e

C
on

v.
 T

im
e

C
om

m
. T

im
e

1
2

3
4

0

10
00

20
00

30
00

40
00

50
00

60
00

N
um

be
r

of
 C

P
U

s

Elapsed Time (seconds)

C
om

p.
 T

im
e

C
on

v.
 T

im
e

C
om

m
. T

im
e

1
2

3
4

0

50
00

10
00

0

15
00

0

N
um

be
r

of
 C

P
U

s
Elapsed Time (seconds)

C
om

p.
 T

im
e

C
on

v.
 T

im
e

C
om

m
. T

im
e

Fi
gu

re
2.

El
ap
se
d
tim

e
fo
r
a
ba
tc
h
si
ze

w
ith

10
24

im
ag
es
,u

si
ng

a
CP

U
cl
us
te
r
ra
ng

in
g
fr
om

1
to

4
m
ac
hi
ne
s.

832 J. MARQUES ET AL.

1
2

3
N

um
be

r o
f G

P
U

s

0.
51

1.
52

2.
5

Speedup Achieved

64
 im

ag
es

12
8

im
ag

es
25

6
im

ag
es

51
2

im
ag

es
10

24
 im

ag
es

1
2

3
N

um
be

r o
f G

P
U

s

0.
6

0.
81

1.
2

1.
4

1.
6

1.
82

2.
2

2.
4

2.
6

Speedup Achieved

64
 im

ag
es

12
8

im
ag

es
25

6
im

ag
es

51
2

im
ag

es
10

24
 im

ag
es

1
2

3
N

um
be

r o
f G

P
U

s

0.
51

1.
52

2.
5

Speedup Achieved

64
 im

ag
es

12
8

im
ag

es
25

6
im

ag
es

51
2

im
ag

es
10

24
 im

ag
es

1
2

3
N

um
be

r o
f G

P
U

s

0.
6

0.
81

1.
2

1.
4

1.
6

1.
82

2.
2

2.
4

Speedup Achieved

64
 im

ag
es

12
8

im
ag

es
25

6
im

ag
es

51
2

im
ag

es
10

24
 im

ag
es

Fi
gu

re
3.

At
ta
in
ed

sp
ee
du

p
fo
r
al
lb

at
ch

si
ze
s,
us
in
g
a
G
PU

cl
us
te
r
ra
ng

in
g
fr
om

1
to

3
m
ac
hi
ne
s.

APPLIED ARTIFICIAL INTELLIGENCE 833

Another aspect to consider is the computational capabilities of the GPU.
As stated previously, as long as divergent operations are negligible or con-
trolled the GPU is much more effective than the CPU when it comes to
receiving large quantities of data and repeat the same operation, mostly sum
and multiplication, very quickly, due to the large number of parallel cores
available. However, for smaller amounts of data globally the GPU handles
these tasks less efficiently than the CPU would.

Finally, as in the CPU case, only the convolutional layers were parallelized
using GPU computing, which implies that the computation of the remaining
layers is performed on the CPU.

For this particular case, since PC1 is not a NVIDIA GPU, the PC2 serves
as the master node, also being the reference for the case of a single GPU. PC3
and PC4 are introduced in this order to test the addition of more nodes for
the cases with 2 and 3 devices, respectively. This notation respects the one
used in Section 5.1.

The analysis of the influence of batch sizes on the distribution technique
performance is performed by comparing each subfigure individually from
Figure 3, like in the CPU case. Considering the smallest trained network,
there is a considerable difference between the distinct batch sizes, with
speedups for 3 GPUs ranging from 1:45� to 2:45� .

This is a trend that continues with the next two architectures, where
speedups range from 1:5� to 2:2� on both cases, using 3 GPUs for the
training.

However, for the largest trainednetwork, the range of speedups ismuch smaller,
when analyzing the different batch sizes, fluctuating between 1:75� and 2� .

To understand the effects that the number of kernels has on the attained
speedups, it is necessary to analyze the results pertaining a batch size across
the different network architectures, as in the CPU case.

Considering the case with a batch of 64 images, it is visible that the
speedup decreases from 2:45� using the smallest network to 2� , with
the largest one.

This trend continues with a batch size of 128, with speedups decreasing
from 2:15� to 1:95� , but change with the remaining batches, with speed-
ups increasing with larger networks. To understand the differences between
the CPU and GPU cases, it is necessary to analyze how the training time is
distributed. Figure 4 shows the elapsed time relative to only one batch of
1024 images, since the time for the training of an entire epoch is mostly
linear. The full training period is divided into three parts: Comm. time refers
to the communication time between master node and the slaves. Conv. time
is the time spent in convolutions by each node, or by the slowest node, as
opposed to being the cumulative time spent in convolutions by all nodes.
Finally, Comp. time is the time spent on computation of layers other than
performing convolutions.

834 J. MARQUES ET AL.

1
2

3
05010
0

15
0

20
0

25
0

30
0

35
0

40
0

N
um

be
r

of
 G

P
U

s

Elapsed Time (seconds)

C
om

p.
 T

im
e

C
on

v.
 T

im
e

C
om

m
. T

im
e

1
2

3
0

20
0

40
0

60
0

80
0

10
00

12
00

N
um

be
r

of
 G

P
U

s

Elapsed Time (seconds)

C
om

p.
 T

im
e

C
on

v.
 T

im
e

C
om

m
. T

im
e

1
2

3
0

50
0

10
00

15
00

20
00

25
00

N
um

be
r

of
 G

P
U

s

Elapsed Time (seconds)

C
om

p.
 T

im
e

C
on

v.
 T

im
e

C
om

m
. T

im
e

1
2

3
0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

N
um

be
r

of
 G

P
U

s

Elapsed Time (seconds)

C
om

p.
 T

im
e

C
on

v.
 T

im
e

C
om

m
. T

im
e

Fi
gu

re
4.

El
ap
se
d
tim

e
fo
r
a
ba
tc
h
si
ze

w
ith

10
24

im
ag
es
,u

si
ng

a
G
PU

cl
us
te
r
ra
ng

in
g
fr
om

1
to

3
m
ac
hi
ne
s.

APPLIED ARTIFICIAL INTELLIGENCE 835

As shown in Figure 4, an increase of kernels in the GPU case makes
almost no difference concerning communication time and speedup, and
this is also visible in the rest of the tested architectures, trained using
batches of 1024 images. All the architectures tested with this batch size
show an attained speedup between 1:45� and 1:80� for 2 GPU and
between 1:45� and 2� using 3 GPU, with the ratio between commu-
nication, convolution and computation time being virtually the same on the
3 considered experiments, with communication time rising from 19% with
2 GPU to 30% when using all 3 GPU.

The major difference between the CPU and GPU results is that while
using CPU, the computation time was the major bottleneck on that experi-
ment. However, in the GPU case, the communication and computation
time share about the same percentage of full training time, when using 3
GPU, which is explained by the fact that the GPU is able to accelerate the
convolutional phase.

Using the code provided by TensorFlow to train a CNN with CIFAR-10
with multiple GPUs on the same machine, it is possible to reduce the step
time from 0:35� 0:60 seconds per batch with 1 GPU to 0:13� 0:20 seconds
with 2 GPUs. However, the addition of more GPUs does not correlate to
better speedups, since 3 GPUs are able to reduce the step time to only 0:13�
0:18 seconds and 4 GPUs still take 0:10 seconds per batch.

Comparison between CPU and GPU
Table 2 shows the best-attained speedups for each network architecture and a
given number of devices, for both CPU and GPU. It should be noted that, for
each case, speedup is obtained by comparing execution time against a single
device of the same type:

As shown in Table 2, the difference between speedups using multiple
CPU, for a given architecture, increases with the growing convolutional
layers. The speedup improvement using 2 CPU is particularly small,
although it reaches 1:98� on the largest tested network. However, this
tendency fades with the increase in CPU. By training the network with 3
CPU, the speedup is 1:93� for the second smallest network, reaching
2:74� for the largest architecture. Using 4 CPU gives a considerable gain
in speedup, particularly for the network with 300 kernels on the first

Table 2. Best speedups achieved by network architecture and number of CPU and GPU used.
CPU GPU

Network 2 3 4 2 3

50:500 1.40x 1.51x 1.56x 1.96x 2.45x
150:800 1.68x 1.93x 2.10x 1.89x 2.23x
300:1000 1.69x 2.15x 2.33x 1.78x 2.09x
500:1500 1.98x 2.74x 3.28x 1.66x 2.00x

836 J. MARQUES ET AL.

convolutional layer and 1000 kernels on the second one, and the largest
trained network. This is explained with the increase in communication
time due to sending dozens more kernels to other nodes that are only a
couple of KBs, being counterbalanced by convolutions’ parallelization.

However, for the GPU implementation case, in Table 2, the speedups
diminish with the enlargement of the convolutional layers. This happens
because although the GPU is being used more efficiently with larger net-
works, the addition of more devices incurs in larger communication times,
due to the need of sending a substantially higher number of kernels to the
other devices. Thus, for larger networks, the attained speedup is significantly
less than for smaller ones.

Scalability
As with other methods for distributed learning, speedups may only exist
when using up to a certain number of nodes. For a more detailed study on
scalability, it is necessary to analyze some details regarding the experiments
conducted. First, the amount of data transmitted between master and slave
nodes on the convolutional layers. This depends only on the number of
convolutional layers and the size of their inputs, including width, height, and
number of input channels, size, and number of kernels and the batch size.
Taking this information into consideration, the number of elements upload
that are necessary to exchange between master and slave nodes can be
described as follows:

upload ¼
Xlayers

i¼1

ðin2i � inChi þ out2i � numKiÞ � batchþ k2i � numKi � inChi; (2)

where layers refers to the number of convolutional layers that need to be
distributed, in is the convolutional layer’s input width or height, consider-
ing a square image, like this particular case, inCh represents the input
channels, k is the kernel size, numK represents the number of kernels for
each convolutional layer, out refers to the output’s size and batch is the
batch size. All values transmitted are of type double. The next detail to
consider is the velocity at which the data is transmitted across nodes. A
quick study of the several results achieved shows that the bandwidth is
approximately constant, averaging at 5 Mbps. Another aspect to consider is
the number of kernels that should be passed to each worker, which is
explored more in detail in Section 4.1.

By understanding these details, it is possible to accurately predict new
communication times when more nodes are added, as well as convolu-
tion times and therefore the total processing time. Three different cases
where considered. The first two pertain to the CPU case (depicted in
Figure 5), where the processing time for the smallest and largest

APPLIED ARTIFICIAL INTELLIGENCE 837

1
4

8
16

32
05101520253035

N
um

be
r

of
 C

P
U

s

Elapsed Time (seconds)
C

om
p.

 T
im

e
C

on
v.

 T
im

e
C

om
m

. T
im

e

1
4

8
16

32
0

50
00

10
00

0

15
00

0

N
um

be
r

of
 C

P
U

s

Elapsed Time (seconds)

C
om

p.
 T

im
e

C
on

v.
 T

im
e

C
om

m
. T

im
e

Fi
gu

re
5.

El
ap
se
d
tim

e
fo
r
th
e
sm

al
le
st
ne
tw
or
k,
us
in
g
a
ba
tc
h
w
ith

64
im
ag
es
,a
nd

th
e
la
rg
es
t
ne
tw
or
k,
w
ith

a
ba
tc
h
si
ze

of
10
24

im
ag
es
,u

si
ng

a
CP

U
cl
us
te
r

ra
ng

in
g
fr
om

1
to

32
m
ac
hi
ne
s.

838 J. MARQUES ET AL.

networks were simulated adding 32 CPU nodes. For these simulations,
the CPU were considered to have computational capabilities similar to
the devices used in the experiment (shown in Table 1), being assigned
random performance values with Gaussian distribution, varying between
worst and best case scenario for each CPU used. These results are shown
in Figure 5.

As results show, the method is scalable without incurring in perfor-
mance loss, despite becoming irrelevant the introduction of more nodes
after a certain value. Both the case of the smallest network and the
largest one benefit little from the addition of more nodes from 4 CPU,
and there is a stabilization in speedup after 8 nodes. This occurs because
the inclusion of more CPU leads to a slight increase in information to be
sent by the master node that is counterbalanced by the decrease in time
obtained by the parallelization. It is also possible to notice that while
using 1 CPU, the convolution time is the bottleneck. But when using
several CPU, this situation is reversed and the communication and
computation times become the bottlenecks. The former can be solved
with faster data transmission, but the latter can only be fixed with
parallelization.

The final case refers to the GPU case, where only the largest network
was simulated up to 32 nodes (Figure 6). This is justified with the fact
that the most efficient use of the GPU occurs with the largest network,

1 4 8 16 32
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of GPUs

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

Comp. Time
Conv. Time
Comm. Time

Figure 6. Elapsed time for the largest network, with a batch size of 1024 images, using a GPU
cluster ranging from 1 to 32 machines.

APPLIED ARTIFICIAL INTELLIGENCE 839

trained with the highest batch size of 1024 images. As in the CPU case,
the added nodes were considered to have computational capabilities
similar to the devices used (shown in Table 1), being assigned perfor-
mance values between worst and best GPU case scenario used in the
experiment. The results are detailed in Figure 6.

As in the cases considered for simulation using CPU, the solution using
GPU is also scalable, with the speedup virtually stagnating for 8 or more
nodes, as visible in Figures 7 and 8. Since the convolution is done more
quickly on a GPU than on a CPU, communication and computation times
assume greater impact as bottlenecks. Figures 7, 8 and 9 indicate speedups
achieved for different data rates assumed in communications among distinct
computing nodes. As stated previously, the communication time can be
diminished with a faster data transmission, while the computation time can
be improved with parallelization.

The results provided by TensorFlow source code serve as a mean of com-
parison to the scalability of this method. Said results show that the average
attained speedups range from 2:6� up to 3:5� , respectively, for 2 up to 4
GPUs. Although these results are substantially better, there are two aspects that
should be addressed. First, the GPUs used for the training with TensorFlow
were all part of the samemachine that requires specific hardware configuration
and presents limitations (same hardware, same GPUs, max number of GPUs
limited by motherboard), thus the data transmission rate is considerably
higher than using devices in different machines, physically separated by the
network, which incurs in significantly lower communication times.

Secondly, TensorFlow parallelizes the entire network, whereas our distri-
bution technique focuses on the convolutional layers, thus turning the train-
ing of the remaining layers a bottleneck. Considering the case where
communication times are virtually nonexistent (which is achievable with
faster communications), the speedup obtainable with our method is about
4:3� , which is slightly better.

Conclusions

The developed solution proves to be a useful tool for the distributed
training of CNN. Although good performances were achieved, there is
one other aspect that could, and should, be further explored, and that is
implementation using OpenCL, as opposed to CUDA. Not only would
that mean that other GPU could be used, such as AMDs, but more
importantly, it would allow for the distribution of the training to be
done using mobile GPU, as well as FPGA and other low-power devices.
Despite not having the same computational resources as desktop CPU and
GPU, they can be far more energy efficient, and would allow to achieve
smaller energy consumption levels without compromising the desired

840 J. MARQUES ET AL.

1
4

8
16

32
012345678910

N
um

be
r

of
 C

P
U

s

Speedup Achieved
1

M
bp

s
2.

5
M

bp
s

5
M

bp
s

10
 M

bp
s

25
 M

bp
s

50
 M

bp
s

1
4

8
16

32
012345678910

N
um

be
r

of
 C

P
U

s

Speedup Achieved

1
M

bp
s

2.
5

M
bp

s
5

M
bp

s
10

 M
bp

s
25

 M
bp

s
50

 M
bp

s

Fi
gu

re
7.

Sp
ee
du

ps
ac
hi
ev
ed

on
th
e
la
rg
es
t
ne
tw
or
k,
tr
ai
ne
d
w
ith

10
24

im
ag
es

fo
r
a
cl
us
te
r
of

32
no

de
s
us
in
g
(a
)
lo
w
-t
o-
m
id

ra
ng

e
an
d
(b
)
hi
gh

-e
nd

CP
U
.

APPLIED ARTIFICIAL INTELLIGENCE 841

1
4

8
16

32
012345678

N
um

be
r

of
 G

P
U

s

Speedup Achieved

1
M

bp
s

2.
5

M
bp

s
5

M
bp

s
10

 M
bp

s
25

 M
bp

s
50

 M
bp

s

1
4

8
16

32
012345678

N
um

be
r

of
 G

P
U

s

Speedup Achieved

1
M

bp
s

2.
5

M
bp

s
5

M
bp

s
10

 M
bp

s
25

 M
bp

s
50

 M
bp

s

Fi
gu

re
8.

Sp
ee
du

ps
ac
hi
ev
ed

on
th
e
la
rg
es
t
ne
tw
or
k,
tr
ai
ne
d
w
ith

10
24

im
ag
es

fo
r
a
cl
us
te
r
of

32
no

de
s
us
in
g
(a
)
lo
w
-t
o-
m
id

ra
ng

e
an
d
(b
)
hi
gh

-e
nd

G
PU

.

842 J. MARQUES ET AL.

1
4

8
16

32
0

0.
51

1.
52

2.
53

N
um

be
r

of
 C

P
U

s

Speedup Achieved
1

M
bp

s
2.

5
M

bp
s

5
M

bp
s

10
 M

bp
s

25
 M

bp
s

50
 M

bp
s

14
8

16
32

64
12

8
0

0.
51

1.
52

2.
53

3.
54

4.
55

N
um

be
r

of
 C

P
U

s

Speedup Achieved

1
M

bp
s

2.
5

M
bp

s
5

M
bp

s
10

 M
bp

s
25

 M
bp

s
50

 M
bp

s

Fi
gu

re
9.

Sp
ee
du

p
ac
hi
ev
ed

on
th
e
la
rg
es
t
ne
tw
or
k,
tr
ai
ne
d
w
ith

10
24

im
ag
es

fo
r
a
m
ob

ile
G
PU

cl
us
te
r
of

(a
)
32

an
d
(b
)
12
8
no

de
s.

APPLIED ARTIFICIAL INTELLIGENCE 843

throughput and classification performance, as the extrapolated curves in
Figure 9 seem to indicate for the mobile low-power GPU case.

Acknowledgement

This work was partially supported by Instituto de Telecomunicações and Fundação para a
Ciência e a Tecnologia, under grant UID/EEA/50008/2013.

References

Abadi, M., et al. 2015. TensorFlow: Largescale machine learning on heterogeneous systems.
Software available from tensorflow.org.

Dean, J., G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A.
Senior, P. Tucker, et al. 2012. Large scale distributed deep networks. NIPS.

Fukushima, K. 1980. Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position. Biological Cybernetics 36 (4):193–202.
doi:10.1007/BF00344251.

Keuper, J., and F.-J. Preundt (2016). Distributed training of deep neural networks: Theoretical
and practical limits of parallel scalability. In 2nd Workshop on Machine Learning in HPC
Environments.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Technical
report, University of Toronto.

Krizhevsky, A. 2014. One weird trick for parallelizing convolutional neural networks. CoRR.
abs/1404.5997. https://arxiv.org/abs/1404.5997

Lai, M. 2015. Giraffe: Using deep reinforcement learning to play chess. CoRR. abs/1509.01549.
https://arxiv.org/abs/1509.01549

LeCun, Y., and Y. Bengio. 1995. Convolutional networks for images, speech, and time-series.
In The handbook of brain theory and neural networks, ed. M. A. Arbib. Cambridge,
Massachusetts: MIT Press.

LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
1989. Backpropagation applied to handwritten zip code recognition. Neural Computation 1
(4):541–51. doi:10.1162/neco.1989.1.4.541.

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, et al. 2015. ImageNet large scale visual recognition challenge. International
Journal of Computer Vision (IJCV) 115 (3):211–52. doi:10.1007/s11263-015-0816-y.

Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. 2016. Mastering the game of Go with
deep neural networks and tree search. Nature 529 (7587):484–89. doi:10.1038/nature16961.

Torralba, A., R. Fergus, and W. T. Freeman. 2008. 80 million tiny images: A large data set for
nonparametric object and scene recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence 30 (11):1958–70. doi:10.1109/TPAMI.2007.70837.

Vishnu, A., C. Siegel, and J. Daily. 2016. Distributed tensorflow with MPI. CoRR. abs/
1603.02339. https://arxiv.org/abs/1603.02339

Ward, J., S. Andreev, F. Heredia, B. Lazar, and Z. Manevska. 2011. Efficient mapping of the
training of convolutional neural networks to a cuda-based cluster. http://parse.ele.tue.nl/
education/cluster2

Yadan, O., K. Adams, Y. Taigman, and M. Ranzato. 2013. Multi-gpu training of convnets. CoRR.
https://arxiv.org/abs/1312.5853

844 J. MARQUES ET AL.

http://tensorflow.org
http://dx.doi.org/10.1007/BF00344251
https://arxiv.org/abs/1404.5997
https://arxiv.org/abs/1509.01549
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1109/TPAMI.2007.70837
https://arxiv.org/abs/1603.02339
http://parse.ele.tue.nl/education/cluster2
http://parse.ele.tue.nl/education/cluster2
https://arxiv.org/abs/1312.5853

	Abstract
	Introduction
	Distributed Convolutional Neural Networks
	Convolutional Neural Networks
	Distributed Training Techniques
	Data Parallelism
	Model Parallelism

	Related Work
	Distributed Convolutional Learning
	Hybrid CPU–CPU and GPU–GPU Computing
	Workload Distribution

	Experiments
	Hardware Platforms Setup
	Network Architecture and Dataset
	Experimental Results
	Speedups Using CPU-cluster
	Speedups Using GPU-cluster
	Comparison between CPU and GPU
	Scalability

	Conclusions
	Acknowledgement
	References

