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Abstract

An orthogonal double cover (ODC) of a graph H is a collection & = {Gv ve V(H )} of
‘V(H )‘ subgraphs of H such that every edge of H is contained in exactly two members of
& and for any two members G, and G, in &, ‘E(Gu ) ﬁE(GV )‘ is 1 if {u,v} IS E(H)
and it is 0 if {u,v} &€ E(H). An ODC & of H is cyclic (CODC) if the cyclic group of

order ‘V(H )‘ is a subgroup of the automorphism group of & . In this paper, the CODCs of

certain circulants with a specific regularity by certain infinite graph classes are concerned.
Keywords: Graph decomposition, orthogonal double covers, orthogonal labelling, circulants.

1 Introduction

Let H be any graph and let & = {G1 N CA G"V(H)‘} be a collection of ‘V(H)‘ subgraphs of

H . & is a double cover (DC) of H if every edge of H is contained in exactly two members
ing.1fG =G forallie {1,2,...,\ V(H) |}, for some graph G , then & is a DC of H

by G.If & isaDC of H by G then ‘V(H)HE(G)‘=2‘E(H)‘

ADC & of H is an orthogonal double cover (ODC) of H if there exists a bijective mapping
4 (H ) — & such that for every choice of distinct vertices u and v in V' (H),
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_ lif{u,v}eE(H),
0if {u,vieE(H).

If G, =G forall ie{l,Z,...,|V(H)]},then & isanODC of H by G .

[E(¢() N E(g(v))

T

An automorphism of an ODC g:{Gl’GZ""’C;\V(H)\} of H is a permutation

o: V(H) — V(H) such  that {J(G1),G(Gz), ""G(GW(H)\ )} =G , where for

i€ {1, 2,...] V(H) |} , G(Gi) is a subgraph of H with

V(o(G))={c(v):veV(G)} ad E(c(G,))= {{O'(u),a(v)} {u,v} e E(G, )} .
An ODC & of H is cyclic (CODC) if the cyclic group of order [V(H)| is a subgroup of the
automorphism group of & , the set of all automorphisms of & .

Throughout this article, we used the usual notation: K for the complete graph on n vertices,

K for the complete bipartite graph with partition sets of sizes m and n, P,

o .+1 for a path on

n+1 vertices, Cn for the cycle on n vertices, S , for the star on 7 +1 vertices.

n
For a sequence {d1,d2,...,d,} of positive integers with 1<d<d2<...<d, < {EJ , the
circulant graph Circ(n;{d1,do,...,d,}) has vertex set Z,={0,1,...,n-1}; two vertices V,
and Vv, are adjacent if and only if v, —v, = +d, ( modn) for some i, i€ {1,2,...,/(}. For an

edge {vl,vz} in Circ(n;{d1,d>,...,d,}) , the length of {vaz} is

min{|v, —v,

, n—|v1 -V, |}.

Given two edges e1= {V,V,} and ex={u,u,} of the same length / in
Circ(n;{d1,d>,....d,}) , the rotation-distance I’(l) between € and e, is
r(l)=min{r, r,:{v,+r,v, +r} =e,, {u, +r,u, +r,} =€} , where addition and
difference are calculated inside Z,, (that is, addition and difference are reduced modulo 7). Note

that if r(l ) =1/, then the edges € and e, are adjacent; if r(l ) # [, then the edges € and e,

are nonadjacent.
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. n .
Consider the complete graph K = Clrc(n;{l, 2,,[5“}) The author of [1] introduced the

notion of an orthogonal labelling. Given a graph G = (V, E ) with #n—1 edges, a 1 —1 mapping

vV —> 7, is an orthogonal labelling of G if:

(1) For every 16{1,2,...{(”2_1)

J} , G contains exactly two edges of length /,

and exactly one edge of length (n / 2) if n is even, and

o P 2| 51

The following theorem of Gronau et al. [1] relates CODCs of K , and the orthogonal labelling.

Theorem 1 4 CODC of Kn by a graph G exists if and only if there exists an orthogonal
labelling of G .

n
Sampathkumar and Srinivasan [2] called the orthogonal labelling an orthogonal {1,2,..., {EJ }-
labelling and generalized it to an orthogonal {dl, dz,. cd k} -labelling, where {dl, dz,. cd k}

n
is a sequence of positive integers with 1< d, <d, <...<d, < LEJ

n
a) Either n isodd or n isevenand d, # 5 :

Given a subgraph G of Circ(n; {dl’dZ""’dk}) with 2k edges, a labelling of G, in Zn, is

an orthogonal {dl , d2 eees dk} -labelling of G if:

(i) for every [ € {d19d2"‘ .d k} , G contains exactly two edges of length /, and
i) (1)1 € {dyydyy..nd }} = {dyydy,..rd, )

. n
b) n isevenand d, ZE:
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Given a subgraph G of Circ(n; {dlﬂdZ""’dk—l’g}) with 2k —1 edges, a labelling of G , in
Z.,,, is an orthogonal {d,.d,,.. "dk—l’g} -labelling of G if:
(i) for every [ € {dl,d 23e s .,dk_l} , G contains exactly two edges of length [ and G
contains exactly one edge of length % , and
i) {r(l):leld,dy,....d, \}}={dydy,..rd, )
The following theorem of Sampathkumar and Simaringa [2] is a generalization of Theorem 1.

Theorem 2 4 CODC of Circ(n;{dl,dz,...,dk}) by a graph G exists if and only if there
exists an orthogonal {dl , d2 yeuns dk} -labelling of G .

For results on ODCs of graphs, see [3], a survey by Gronau et al.

In [4], we proved the following. (i) All 3-regular Cayley graphs, except K 4> have ODCs by P4 .

(i) All 3-regular Cayely graphs on Abelian groups, except K 4> have ODCs by P3 UKZ. (i) All
3-regular Cayley graphs on Abelian groups, except K 4 and the 3-prism, have ODCs by 3K.

In [5], Sampathkumar et al. introduced a special kind of orthogonal labelling called orthogonal &
-labelling and they found it for some caterpillars of diameters 4 .

In [2], Sampathkumar et al. completely settled the existence problem of CODCs of 4-regular
circulant graphs.

Other results of ODCs by different graph classes can be found in [1,2,4,6].

The above results on ODCs of graphs with lower degree motivated me to consider CODCs by
certain infinite graph classes which has an orthogonal {dl,dz,...,d k} -labelling, these graph

classes are:

HLZ” n>0,ve Zh, graphs consisting of the edges set:
E(Hun):{{v,v+n+j},{v+n+j,v+2j}:ISjSn—l}u{v,ern}.

H,, nz22,ve 25, graphs consisting of (n — 1) C, sharing an edge, whose edges set is
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E(H,,,)={{v.v+2j}.{p+Lv+2/} 1< j<n—1}Ufv,v+1}.
H3’n :n >4, graphs consisting of 7—1 vertices X, ¥, z, a,, 1 <i <n—4 and edges set

E(HM):{{x,y},{y,z},{z,x},{z,a[} :1£i£n—4}.

H,,:n>8, graphs consisting of n—3 vertices X, y, z, W, U, v, @,, 1<i<n—8 and

edges set
E(HM):{{x,y},{y,v},{x,z},{z,v},{x,u},{u,v},{v,x},{s,al_}:lSiSn—S}.

H,, :n=11, graphs consisting of 11 vertices V},V,,...,V;; connected to form two cycles of

length 6 where they share a vertex then its edges set is

E(Hs,zn): {{{Vlﬁvz}a{V2’V3}a{V39V4}5{V4’V5}9{V5a"6}s{V69V1}}U}

Vv b v v b o Vo b Ve Vio b > s vin > s v

H,,,:n211, graphs consisting of 12 vertices V},V,,...,V}, connected to form two cycles of

length 6 and an edge where all of them share a vertex then its edges set is

(Vv b v v b v v b v vs b s, ve b v vt H O
E(He,zn): v v b v v b e, vo § Ve Vi oo i s Vi U
vt}

H,,,:n=11, graphs consisting of 14 vertices v, V,,...,V;, connected to form two cycles of

length 6 and a star S 5 where they share the center vertex of the star then its edges set is

{{Vl,vz},{vz’v3}’{v3’v4}’{V45V5}7{V59V6}3{V63V1}}U
E(H7’2,,)= {{vl’v7}’{v7’v8}’{V87V9}a{v9avlo}a{V10aV11}a{V11aV1}} )
{{v,v}:12<i<14}

Hg, :n 217, graphs consisting of 11 vertices V;,V,,...,V;; connected to form two cycles of

length 5 where they share a vertex and each of which connected to an edge then its edges set is
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v b s vsb v v b v v v v H o
E(HS,n) =91V d Vs v b v v b Vs Vo b Ve i U
{{esviots tvss v

Finally, for any positive integers m and n , let G be a graph that has an orthogonal
{d,,d,,...,d,} -labelling, then the edges of length d € A={d,,d,,...,d,} are

{ud_,ud +di} and {U,d.a“,d. —dl.} where ie{l,Z,...,k} and u, , u_, e/, Also,let H
be a graph that has an orthogonal {f,?,,...,¢ } -labelling, then the edges of length

tjeB={t1,t2,...,l‘S} are {vt/,vlj—ktj} and {v_ V. —tA} where je{l,Z,...,s} and

7] 7] J

, € Z,,,. Then let us define a new graph P (G,H ) to be the graph with edges set

J

\%
4

> Vo
{{(”d. ,V, ),(ud‘ +diavt. +l‘/.})} : dl. € A and tj S B} . For this definition, Theorem 11 can be
i Jj i J .

deduced.

2 CODC:s by Certain Infinite Graph Classes

Theorem 3 For any positive integer n , there exists a CODC of (21’1—1) -regular
Circ(2n,{1,2,...,n}) by H,,.

Proof. In H 120 » the edge of length 7 is {V,V+I’l}; the other lengths are the elements of
{ln+jl:1<j<n-1}={1,2,..,n=1} and {n—jl:1<j<n-1}={1,2,..,n-1} ,

then (i) for every [ € {1, 2,...,1n —1} , H,,, contains exactly two edges of length /, and (ii)

since every two edges of  the same length are adjacent then
{r(l):le {1,2,...,71—1}} :{1,2,...,11—1}.
From (i) and (i), /,, has an orthogonal {1, 2,00, n} -labelling. m

Theorem 4 For any positive integer n , there exists a CODC of (21’1—1) -regular
Circ(2n,{1,2,...,n}) by H, ,,.

Proof. In H, , ,

Case 1. n is even.
The edge of length
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nois {v,v+n} and the edges of lengths {|2j|:1£j£%—1} are
{{v,v+2j}:lﬁjﬁg—l} and {{v,v-ﬁ-Zj}:%—l—lSan—l} ; ones of lengths

{|2j—1|:1£j£g—1} are

{{v+1,v+2j}:1£j£§—1} and {{v+l,v+2j}:§+l£j£n—l}  then (i) for

every [ € {1, 2,...,11—1}, H,,, contains exactly two edges of length [, and (ii) since every

two edges of the same length are adjacent then {I’(l) e {1,2,.. /i —1}} = {l, 2,...,n —1} .

Case 2. n is odd.
. . ._n—1
The edge of length n is {v+1,n+1} and the edges of lengths {|2j|:1£] ST} are
_ ._n—1 4+l
{V,V+2j}:1£]£7 and {v,v+2]}:TSj£n—l ; ones of lengths
: ._n—1 : ._n—1
|2]—1|11S]ST are {v+1,v+2]}:1S]ST and

{{v+1,v+2j} :nTHSan—l}, then (i) for every lE{l,Z,...,n—l} , H,,, contains

exactly two edges of length /, and (ii) since every two edges of the same length are adjacent then

{r(l):le{l,Z,...,n—l}}2{1,2,...,11—1}. From (i) and (i), H,,, has an orthogonal
{1,2,...,n} -labelling.m

Theorem 5 For any positive integer N>4 , there exists a CODC of (l’l—l) -regular

Circ(n,{l,z,...,g J}) by H,,.

Proof. Consider the following labelling ¥ of Hy, 1y (x)=0; w(y)=1 w(z)=2;
w(a)=i+3if1<i<n—4,

Case 1. n is even.
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The edge of length g is {2,§+2}; ones of length 1 are {0,1} and{l,2}; ones of length /
where ZSISE—I are {{2,]}:4S] SE—H} and {{2,]}:5+3S] Sn—l}, then (i)

n
for every [ € {1,2,...,5—1} , H;, contains exactly two edges of length [, and (ii) since

every two edges of the same length are adjacent then

{r(z);ze{l,z,...,g—l}}={1,2,...,§—1}.

Case 2. n is odd.

n—1
The edges of length 1 are {0,1} and {1,2}; ones of length [/ where 2</<

{{2,j}:4£j£”7+3} i {{z,j}:'HS

le {l, 2,..., \‘—J}, H,  contains exactly two edges of length [, and (ii) since every two edges
2 >

of the same length are adjacent then {r(l) e {1, 2,.. ,\‘g“}} = {1, 2,... ,\‘g“} N |

Theorem 6 For any positive integer N>8 | there exists a CODC of (n—l) -regular

Circ(n,{l,z,...,g J}) by H,, |

are

< an—l} , then (i) for every

Proof. Consider the following labelling ¥ of H,, : l//(x)=0; l//(y)=1; 1//(z)=2;
1//(u)=n—1; t//(v)=4; 1//(ai)=i+6 if 1<i<n-8.

Case 1. n is even.

n n
The edge of length 5 is {4,5+4}; ones of length 1 are {0,1} and {O,n—l} ; ones of
n
length 2 are {0,2} and {2,4} ones of length [ where 3</ SE—I are

{{4,j}:7£j£%+3} and {{4,j}:§+5£j£n—2} , then (i) for every
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n
le {1, 2,...,5—1}, H,, contains exactly two edges of length [, and (ii) since every two

edges of the same length are adjacent then {r(l) e {l, 2,.. .,g— 1}} = {1, 2,.. .,g— 1} i

Case 2. n is odd.

The edges of length 1 are {0, 1} and {0,71—1}; ones of length 2 are {0,2} and {2,4} ones
-1
2

of length / where 3<] Sn_ are {{431} 7< < n;—7} ind

{{4,]'} : 77;'9 <j<n —2} , then (i) for every/ € {1,2,...,{3“} , H,, contains exactly

two edges of length /, and (ii) since every two edges of the same length are adjacent then

e

Theorem 7 For any positive integer N2>11, there exists a CODC of the 12-regular
Circ(2n,{l,2,3,4,n—6,n—4}) by Hy,, .

Proof. Consider the following labelling i of H,, :w(v)=0; w(2)=1; w(vs)=4;
wva)=T: y)=n+3: w()=2n=1; y(v,)=2; y()=6; w(v)=10;
v, =n+4;y(v,)=2n-2.

Then the edges of length 1 are {0,1} and {0,272 —1} ; ones of length 2 are {0,2} and
{0,271 —2} ; ones of length 3 are {1,4} and {4,7} ; ones of length 4 are {2,6} and{6,10};
ones of length 7—6 are {10,n+4} and{n+4,2n—2}; ones of length n—4 are {7,n+3}
and {n+3,2n—1}, then (i) for every / €{1,2,3,4,n—6,n—4}, H,,, contains exactly two

edges of length [, and (ii) since every two edges of the same length are adjacent then

{r(l):le{1,2,3,4,n—6,n—4}}:{1,2,3,4,;1—6,11—4}.l

Theorem 8 For any positive integer N2>11, there exists a CODC of the 13-regular
Circ(2n,{l,2,3,4,n—6,n—4,n}) by H,,.
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Proof. Consider the following labelling ¥ of H,, :w(v)=0 ;w(v,)=1; w(v;)=4;
wv)=7: yv)=n+3; w)=2n-1; y(v,)=2; y(5)=6; y(v)=10;
y(o)=n+4;w(v,)=2n-2;y(v,)=n.

Then the edge of length n is {O,n} ; ones of length 1 are {0,1} and {0,211—1} ; ones of
length 2 are {0, 2} and {O, 2n—2}; ones of length 3 are {1,4} and{4,7} ; ones of length 4
are {2,6} and {6,10} ; ones of length n—6 are {10,n+4} and {n+4, 2n—2} ; ones of
length n—4 are {7,1’1 +3} and {n +3,2n —1} , then (i) for every [ € {1, 2,3,4,n—6,n —4}
, H 6.2, contains exactly two edges of length [, and (ii) since every two edges of the same length

are adjacent then {r(1):1€{1,2,3,4,n-6,n-4}} ={1,2,3,4,n-6,n—4} =

Theorem 9 For any positive integer N>11, there exists a CODC of the 15-regular
Circ(2n,{1,2,3,4,5,n—6,n—4,n}) by H, .

Proof. Consider the following labeling ¥ of H , -

y() =0 (v,)=Ly()=4w(v,)=T:w(vs) =n+3;w(v) =2n-L;y(v,) =2;
w() =6 y(v) =10 ; w(v)=n+4; y()=2n-2 ; y(v,)=5; y(v;)=n;
w(vy)=2n-5.

Then the edge of length 1 is {0,7} ; ones of length 1 are {0,1} and {0,2n—1} ; ones of
length 2 are {0,2} and{0,27—2} ones of length 3 are {1,4} and {4,7} ; ones of length 4
are {2,6} and{6,10} ; ones of length 5 are {0,5} and {0,2—5} ; ones of length n—6 are
{10,n+4} and {n+4,2n—2}; ones of length n—4 are {7,n+3} and {n+3,2n—1},

then (i) for every [ € {1,2,3,4,5,71 —-6,n —4} . H,,, contains exactly two edges of length [,

and (ii) since every two edges of the same length are adjacent then

{r(l):l e{1,2,3,4,5,n—6,n—4}} ={1,2,3,4,5,n-6,n—4} .m

Theorem 10 For any positive integer N >17 | there exists a CODC of the 12-regular
Circ(n,{1,2,3,4,n—12,n—8}) by Hy, .
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Proof. Consider the following labelling ¥ of Hy, :w(v)=0; w(v,)=1; y(v;,)=4;
w)=7: w)=n-1; y)=2; w(;,)=6; w(y)=10; y(v)=n-2;
W) =14 () =n-9

Then the edges of length 1 are {0,1} and {0,n—1} ; ones of length 2 are {0,2} and
{0,n—2}; ones of length 3 are {1,4} and {4,7} ; ones of length 4 are {2,6} and{6,10};
ones of length 7—12 are {10,7—2} and{n—14,n—2} ; ones of length n—8 are {7,n—1}
and {n—1,n—9}, then (i) for every / €{1,2,3,4,n—12,n—8}, H, contains exactly two

edges of length /, and (ii) since every two edges of the same length are adjacent then

{r(1):1€{1,2,3,4,n-12,n-8}} ={1,2,3,4,n-12,n—8} .u

Theorem 11 For any positive integers m and n there exists a CODC of 4|A||B| -regular

Circ(mn, A XB) by P(G,H) with respect to Loy X L,

Proof. Since G and H have Orthogonal A -labellings and Orthogonal B -labellings
respectively then the two edges of length (d,,¢ j) in P(G,H ) are

{(udi,vtj),(udl +di,vtj +tj )} and {(”—di’v—t,)’(u—di —di,v_tj —l‘j )} and the set of all

rotation distances will be AX B . Then P (G, H ) has orthogonal A x B -labellings with respect
to Zn X Zm.

3 Conclusion

In this paper, the existences of the CODCs using certain infinite classes of graphs are completely
settled (see Theorem 3 to Theorem 11).
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