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ABSTRACT
Automatic identification of mouse behavior plays an important 
role in the study of disease or treatment, especially regarding 
the short-term action of mice. Existing three-dimensional (3D) 
convolutional neural networks (CNNs) and two-dimensional 
(2D) CNNs have different limitations when addressing the task 
of mouse behavior recognition. For instance, 3D CNNs require 
a large calculation cost, while 2D CNNs cannot capture motion 
information. To solve these problems, a low-computational and 
efficient multi-cue gate-shift network (MGSN) was developed. 
First, to capture motion information, a multi-cue feature switch
ing module (MFSM) was designed to utilize RGB and motion 
information. Second, an adaptive feature fusion module (AFFM) 
was designed to adaptively fuse the features. Third, we used 
a 2D network to reduce the amount of computation. Finally, we 
performed an extensive evaluation of the proposed module to 
study its effectiveness in mouse behavior recognition, achieving 
state-of-the-art accuracy results using the Jiang database, and 
comparable results using the Jhuang database. An absolute 
improvement of +5.41% over the benchmark gate-shift module 
was achieved using the Jiang database.
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Introduction

Mice are widely used in biomedical science research and their responses to 
disease or treatment are often measured by recording their behavior patterns. 
In most cases, the recordings are manually tagged. Annotating mouse record
ings manually can be challenging, so having a reliable and automated behavior 
recognition system to complete the task using computers would be beneficial. 
With a high-performance system, we can solve the problem of manual anno
tation and improve efficiency. Several animal motion recognition systems have 
been proposed as a result of the existing research. These systems are mainly 
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divided into two types: traditional methods based on manual feature extrac
tion and deep learning methods using neural networks.

Studies on the mouse behavior recognition system using the traditional 
method of manual feature extraction have investigated the following. In 2005, 
Dollár et al. (2005) used a classification of sparse spatio-temporal features to 
identify mouse behavior. In 2010, Jhuang et al. (2010) proposed a system for 
automatically analyzing the behaviors of caged mice. This system combined 
motion information between adjacent frames with mouse speed and position 
information, then used this input to support vector machine hidden Markov 
models (SVMHMM) to obtain the classification results. In 2012, another study 
created an application of AdaBoost with spatio-temporal and trajectory fea
tures to classify mouse behavior (Burgos-Artizzu et al. 2012).

The method of constructing a complex model based on manual feature 
expression can no longer meet the requirements of high precision and speed, 
but the introduction of deep learning brings a new development direction for 
animal behavior recognition. For example, in 2016, Kramida et al. (2016) 
proposed the use of VGG features and LSTM networks to identify mouse 
movement. In 2019, embedded networks were used to extract features for rats 
and scene contexts participating in social behavior events. These LSTM net
works were then used for behavior recognition (Zhang, Yang, and Wu 2019). 
In 2019, Nguyen et al. (2019) proposed using I3D and R(2 + 1D) models to 
address challenges with mouse behavior recognition. This produced one of the 
most advanced deep learning models for human action recognition at that 
time, which played a significant role in mouse behavior recognition.

Deep neural networks have made significant progress in human action 
recognition (Feichtenhofer 2020; Feichtenhofer et al. 2019; Tran et al. 2015a; 
Wang et al. 2015, 2016a; Zhu et al. 2017). Time modeling is also important for 
capturing motion information in video for action recognition. Currently, 
mainstream action recognition methods are realized through two mechan
isms. The common method learns motion features from RGB frames using 
either 3D-CNN (Hara, Kataoka, and Satoh 2018; Karpathy et al. 2014; Stroud 
et al. 2020; Tran et al. 2015a, 2015b) or time convolution implicitly (Li et al.  
2021; Qiu, Yao, and Mei 2017; Tran et al. 2018; Wu et al. 2020; Xie et al. 2018). 
However, 3D-CNN often has a large amount of computation and poor 
performance because of the lack of sufficiently large datasets. The other 
method uses a two-stream convolution network (Carreira and Zisserman  
2017; Feichtenhofer, Pinz, and Zisserman 2016; Shi et al. 2019; Simonyan 
and Zisserman 2014), in which one stream extracts spatial information from 
RGB frames, while the other stream extracts motion information from optical 
flow. This method can effectively improve the accuracy of action recognition 
and performs well on small datasets.

Inspired by the human action recognition method, we applied a human 
action recognition deep learning model to mouse behavior recognition. This 
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study uses a human action recognition model with the Gate-Shift Module 
(GSM) (Sudhakaran, Escalera, and Lanz 2020) as the baseline model. The GSM 
is a lightweight module that can transform a 2D-CNN into an efficient 
extractor of spatiotemporal features. Our network is two-stream, consisting 
of two modules: multi-cue feature switching module (MFSM) and adaptive 
feature fusion module (AFFM). MFSM is a feature-switching module for RGB 
and optical flow, its purpose is to replace useless features with features of other 
cues. AFFM is capable of adaptive fusion of features after feature switching. 
After fusion, the features change from two-stream to single-stream; thus, the 
two-stream convolution network changes back to a single-stream convolution 
network. Therefore, the accuracy of behavior recognition can be effectively 
improved with only a small increase in the calculation.

The contributions of the proposed method are summarized as follows:

(1) We propose a new MFSM that can replace feature maps with other cues 
that have a better effect on the final result for mouse behavior 
recognition;

(2) We propose an AFFM that can make the features perform adaptive 
fusion after feature switching;

(3) We perform extensive ablation experiments on the proposed module to 
study its effectiveness in mouse motion recognition;

(4) We achieve improved results using the Jiang database and competitive 
results using the Jhuang Database, but only show a small increase in 
parameters and floating-point operations per second (FLOPs).

Related Work

Two-Stream Networks

The basic principle of the two-stream model structure is to first calculate the 
dense optical flow every two frames in the video sequence to obtain temporal 
information. Then the convolutional neural networks (CNN) model is trained 
based on video image, spatial, and temporal, and the two branches of the 
network are used to judge each of the action categories. Finally, the training 
results from the two networks were directly fused to obtain the final classifica
tion results. The advantage of a two-stream convolution network architecture 
is its high precision, but slow speed.

Feichtenhofer, Pinz, and Zisserman (2016) followed the architecture of 
two-stream convolution network fusion for video action recognition. To 
make better use of the spatiotemporal information from the two-stream 
model, the author improved the fusion strategy of spatiotemporal net
works. They proposed five different fusion schemes for the fusion of 
spatial and temporal networks and three methods for the fusion of 
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temporal networks. Wang, Qiao, and Tang (2015) listed the accuracy of 
a two-stream network using several of the latest CNN network architec
tures. Wang et al. (2016b) found that previous research results only 
accounted for short-term actions with an insufficient understanding of 
the time structure for long-term actions and small training samples. 
Therefore, a sparse time-sampling strategy and a video supervision strat
egy were used. The video was segmented by time domain and randomly 
selected segments were used to compensate for the first deficiency, while 
cross training, regularization, and data expansion were used to compen
sate for the second deficiency. This network structure is called a Temporal 
Segment Network (TSN). Due to the recent successful application of 
residual networks (ResNet) (He et al. 2016) in deep learning, 
Feichtenhofer et al. proposed a novel spatio-temporal residual network 
model, which combines ResNet and a two-stream model (Christoph and 
Pinz 2017). The temporal and spatial characteristics of behavior are 
hierarchically learned through residual connections between spatial and 
temporal flows.

In the early stage of feature extraction, we use a two-stream network that 
combines an RGB image and an optical flow image. The purpose is to use the 
complementary advantages of the two cues to conduct mouse behavior recog
nition, which further improves the accuracy of prediction. After feature fusion, 
the two-stream network is transformed into a single-stream network, which 
can effectively control computing cost and the number of parameters, and 
improve recognition performance.

Feature Fusions

In many studies, the fusion of different modal features is an important method 
for improving accuracy. Combining the features of different modalities can 
achieve a better recognition effect by using their complementarity. Chaaraoui, 
Padilla-Lopez, and Florez-Revuelta (2013) proposed a method combining 2D 
shape human pose estimation with bone features. Integrating effective 2D 
contours and 3D bone features can yield visual features with high discrimina
tion value, and the additional discrimination data provided by the contour can 
be utilized to improve the robustness of human action recognition errors. 
Sanchez-Riera et al. (2016) combined RGB features with depth features for 
gesture recognition and general object recognition, then evaluated the two 
schemes of early and late fusion. Li, Leung, and Shum (2016) proposed 
a multi-feature sparse fusion model that extracts multiple features of human 
body parts from skeleton and depth data. When using sparse regularization 
technology to automatically identify the feature structure of key parts, the 
learned weighted features are more discriminative for multi-task classification. 
Chen, Jafari, and Kehtarnavaz (2014) extracted depth image features and RGB 
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video features of human actions using a depth camera and inertial body sensor 
to evaluate two recognition frameworks: feature-level and decision-level 
fusion.

In the current paper, we propose an effective AFFM that enables the net
work to directly learn how to filter the features of different modals to retain 
only useful information for combination. At each spatial location, the features 
of different modals are adaptively fused, and some features may be filtered out 
because they have conflicting information at that location, while others may 
dominate.

Methods

In this section, we present Multi-cue Gate-Shift Networks (MGSN) for mouse 
behavior recognition, which includes the two modules: MFSM and AFFM. We 
first introduce the two submodules and then outline how they are integrated 
into MGSNs.

Multi-Cue Feature Switching Module

The MFSM requires the use of a BN layer, we first introduce a batch normal
ization (BN) layer (Ioffe and Szegedy 2015). The function of the BN layer is to 
enhance generalization and speed up network training and convergence. We 
used xm;c to represent the c-th feature map in the m-th feature network. After 
normalization of the BN layer, xm;c performs an affine transformation, 

x0m;c ¼ γm;c
xm;c � μm;c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

m;c þ ε
q þ βm;c (1) 

where μm;c and σm;c represent the mean and mean standard deviation of all 
pixel positions of the feature map c in the m-th feature network respectively. 
γm;c and βm;c are trainable scaling factors and offsets, respectively; ε is a small 
constant that prevents division by zero. The function of factor γm;c is to 
evaluate the correlation between x0m;c and xm;c in training. If γm;c ! 0, the 
loss gradient x0m;c will approach zero, which means that x0m;c will lose its 
influence on the result, and therefore x0m;c will become redundant.

We got inspired by Wang et al. (2020) to replace the feature maps with 
smaller γm;c with those of other feature networks, because these feature maps 
would lose their influence on the result and become redundant feature maps. 
To solve this problem, we propose the following formula: 
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x0m;c ¼

γm;c
xm;c� μm;cffiffiffiffiffiffiffiffiffiffi

σ2
m;cþε

p þ βm;c ifγm;c > θ;

1
M� 1

PM

m0�m
γm0;c

xm0 ;c� μm0 ;cffiffiffiffiffiffiffiffiffiffiffi
δ2

m0 ;cþε
p þ βm0;c; else;

8
>><

>>:

(2) 

In Equation (2), if the scaling factor γm;c of feature map c is less than the threshold 
θ (θ we set in the experiment is 1e-2), the current feature map c is replaced with 
the average of the feature map c of other feature networks. In other words, if one 
feature map of a cue loses its influence on the result, it is replaced by the average 
value of other characteristic network feature maps. In our implementation, we 
applied the above formula to the process of feature extraction and each cue switch 
feature maps after convolution and nonlinear activation. We represent the scaling 
factor that must be switched as γm0;c, and apply a sparse constraint on γm0;c to 
avoid unnecessary switching. This not only enables the replacement of useless 
feature maps, but also avoids the occurrence of useless switching.

We divide the entire feature map into M equal sub-parts, and only perform 
the feature switching for different cues in each different sub-part. We denote 
the scaling factors that can be replaced by γ̂m. Contrary to γ̂m the switching in 
Equation (2) is a directed process within only one sub-part of the feature maps, 
which ideally will not only retain cue-specific propagation in the other M � 1 
sub-parts, but also avoid unavailing switching since γ̂m. Figure 1 illustrates the 
feature-switching process.

Adaptive Feature Fusion Module

We refer to different feature fusion methods and finally use the adaptive 
feature fusion method (Liu, Huang, and Wang 2019) to design our AFFM. 
In contrast to previous MFFMs based on element summation or splicing, 

Figure 1. An illustration of our multi-cue fusion strategy. The sparsity constraints on scaling factors 
are applied to disjoint regions of different cues. If a feature map’s scaling factor is lower than the 
specified threshold, the feature map will be replaced by that of other cues at the same position.
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in our AFFM, for each pixel ði; jÞ on the fused feature map, the weights of 
the features from each clue at the pixel position are adaptively learned.

Let xm
ij be the value of the feature vector at the pixel ði; jÞ position of the 

feature map of the m-th clue. The feature fusion method proposed in this 
study is as follows: 

yij ¼ αij � x1
ij þ βij � x

2
ij ; (3) 

where αij and βij represent the normalized weight coefficients of the two 
different cues when the features are adaptively fused at the pixel ði; jÞ position 
of the fused feature map. The value y of the feature vector after feature fusion 
at the pixel ði; jÞ position can be calculated using Eq.(3).

In our method, a 1 × 1 convolution layer was added after the feature 
maps of the two cues, and two convolution maps were obtained. The 
values a and b at the pixel ði; jÞ positions in the two convolution maps 
were taken as the weight coefficients of the features of the two cues and 
then normalized by the SoftMax function. Inspired by Wang, Wang, and 
Lin (2019), we force the value of each weight coefficient to be normalized 
to the interval ½0; 1�, and the sum of each weight coefficient to be normal
ized to one, that is, αij þ βij ¼ 1 and αij; βij 2 ½0; 1� were defined. Finally, 
the normalized weight coefficients αij and βij of the feature fusion for the 
two cues were obtained. This was represented by the following formula: 

αij ¼
eλaij

eλaij þ eβaij
(4) 

βij ¼
eβaij

eλaij þ eβaij
(5) 

With this method, αij and βij can thus be learned through standard back- 
propagation with the features are adaptively aggregated at each cue. AFFM is 
shown in the Figure 2.

Multi-Cue Gate-Shift Networks

Overview
MGSNs use MFSM and AFFM to feature map switching and adaptive fusion 
of the features for the two cues, so that the complementary advantages of the 

Figure 2. The feature maps of two cues are fused according to the learned weight map.
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two cues can be fully utilized. The output features are identified using Gate- 
Shift Networks. Thus, the output of the GSM can be viewed from 
a spatiotemporal perspective, channel interdependence and motion- 
sensing information. Figure 3 shows the MGSN architecture for 
InceptionV3.

The Architecture of Multi-Cue Gate-Shift Networks
We used TSN as the reference architecture for behavior recognition, which 
uses the C2D backbone to perform the time pool of frame-level features. We 
choose to use BN-Inception and InceptionV3 as the backbone options for 
TSN, but we made a few modifications to the feature extraction part in the 
front of the backbone. We changed the input to RGB and optical flow two- 
stream input and insert for MFSM and AFFM. Subsequently, we inserted GSM 
into the backbone.

Algorithm Pseudocode

Algorithm 1 Multi-cue Feature Switching

Require: The whole feature maps of a cue F, the weight parameter γ of the BN layer and the threshold θ of 
whether to switch or not

1: while Traverse F do

(Continued)

Figure 3. The overall architecture for InceptionV3. An illustration of MFSM, AFFM and inception 
block.
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Algorithm 1 Multi-cue Feature Switching

2: if γ > θ then
3: Perform affine transformation for the part of F that conforms to γ > θ based on Eq.2
4: else
5: Perform multi-cue feature switching for the part of F that conforms to else based on Eq.2
6: end if
7: end while
8: return F

Algorithm 2 Adaptive Feature Fusion

Require: The whole feature maps of two cues F1, F2
1: After the two cues pass through convolution layer, batch normalization layer and activation function, weight1 

and weight2 are obtained.
2: Concatenate weight1 and weight2 on channel dimension to obtain weightv
3: Reduce the number of channels weightv through 1 × 1 convolution to obtain weight
4: Apply softmax function on the second dimension based on Equation (4) and (5) to get α and β in the Equation 

(3)
5: Perform adaptive feature fusion to obtain F0 based on Equation (3)
6: return F0

Experiments and Results

Datasets

Our paper uses two datasets, namely, the Jhuang et al. (2010) and Jiang et al. 
(2018) datasets. The Jhuang dataset includes eight behavioral categories: drink 
(drink from the water supply), eat (take food from the feeding door), groom 
(the mouse combs its fur), hang (the mouse hangs on the top of the cage), head 
(slight movement of the limbs or head), rear (standing position, forelimb off 
the ground), rest (the mouse stays stable or sleeps), and walk (the mouse walks 
or runs in the cage). In addition to the above public data set, the Jiang dataset 
was also used, which included six behavior categories: dig (lift wood chips with 
forelimbs or head), eat (the rat gets food from the food box), groom (forelimbs 
sweep across the face or torso), rear (standing position, forelimbs off the 
ground), head (slight movement of limbs or head), and walk (movement). 
Sample video frames from the Jiang and Jhuang databases are shown in 
Figure 4. The number of frames in the two datasets is shown in Figure 5.

Implementation Details

In our experiments, BN-Inception and InceptionV3 were chose as the CNN 
backbones. MFSM and AFFM were added to BN-Inception and 
InceptionV3. All models used for the comparisons were initialized using 
ImageNet pretrained weights. We trained the entire network end-to-end 
using Stochastic Gradient Descent (SGD) with an initial learning rate of 
0.01 and momentum of 0.9. A cosine learning rate schedule was used to 
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adjust the learning rate. The network was trained for 100 epochs using the 
Jiang and Jhuang databases. The first 10 epochs were used for gradual warm- 
up. The batch size was 16 for these databases. The classification layer for 
both databases apply dropout at a rate of 0.5. We applied random scaling, 
cropping, and flipping to augment data during training. The dimensions of 
the input were 224 × 224 for BNInception and InceptionV3. We used the 
center crop during inference.

Comparison with the State of the Art

Descriptions of Existing Methods Used for Comparison
We compare our proposed MGSN with other methods using motion informa
tion or temporal modeling methods. Results are shown in Tables 1 and 2. 
These methods all use ResNet as the backbone and 16 frames as input. A TDN 
(Wang et al. 2021) was proposed to extract multi-scale temporal information. 
ACTION-Net (Wang et al. 2021) proposed a plug-and-play ACTION module 

Figure 5. Distribution of number of frames for each behavior in the Jiang and the Jhuang dataset.

Figure 4. Dataset used in our experiment. (a) The Jiang dataset. (b) The Jhuang dataset.
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that can extract appropriate spatio-temporal patterns, channel-wise features, 
and motion information to recognize actions. A Temporal Adaptive Module 
(TAM) (Liu et al. 2021) proposes an adaptive temporal modeling method, 
while the Temporal Excitation and Aggregation (TEA) (Li et al. 2020) block 
proposes to use both short- and long-range information. The above methods 
use motion information and are the most advanced methods available, which 
are of great significance.

Comparison with the Jiang Database
Table 1 shows the performance comparison between MGSNs and the most 
advanced methods from the Jiang database. Eight frames were used as input in 
the experiment. We used the various behavior recognition methods shown in 
Table 1 to conduct the experiments on the Jiang database and compared them 
with the methods used in the current study. Table 1 lists the comparison 
between the most advanced methods and our methods and the accuracy of 
using different backbones. As can be seen in the confusion matrix in 

Table 1. Comparison to state-of-the-art accuracy in the Jiang database (Red test denotes the best 
accuracy, blue is the second best accuracy, green is the third best accuracy).

Method Backbone FLOPs(G) Accuracy

TDN (CVPR2021) (Wang et al. 2021) ResNet-50 36.00 80.41%
PAN (TIP2020) (Zhang et al. 2020) ResNet-50 35.70 77.51%
ACTION-Net (CVPR2021) (Wang et al. 2021) ResNet-50 34.75 78.38%
TAM (ICCV2021) (Liu et al. 2021) ResNet-50 82.00 77.85%
TDN (CVPR2021) (Wang et al. 2021) ResNet-101 66.00 81.31%
TAM (ICCV2021) (Liu et al. 2021) ResNet-101 82.00 78.55%
TEA (CVPR2020) (Li et al. 2020) Res2Net-50 35.00 76.01%
GSM (CVPR2020) (Sudhakaran, Escalera, and Lanz 2020) InceptionV3 26.82 77.70%
GSM (CVPR2020) (Sudhakaran, Escalera, and Lanz 2020) BN-Inception 16.56 80.79%
SFV-SAN pipeline (Jiang et al. 2018) N/A N/A 72.40%
SFV-SAN+HMM pipeline (Jiang et al. 2018) N/A N/A 74.70%
MGSN (Ours) InceptionV3 28.21 83.11%
MGSN (Ours) BN-Inception 17.72 82.70%

Table 2. Comparison to state-of-the-art accuracy in the Jhuang database (Red text denotes the 
best accuracy, blue is the second best accuracy, green is the third best accuracy).

Method Backbone FLOPs(G) Accuracy

TDN (CVPR2021) (Wang et al. 2021) ResNet-50 36.00 98.90%
PAN (TIP2020) (Zhang et al. 2020) ResNet-50 35.70 95.62%
ACTION-Net (CVPR2021) (Wang et al. 2021) ResNet-50 34.75 98.91%
TAM (ICCV2021) (Liu et al. 2021) ResNet-50 82.00 97.18%
TDN (CVPR2021) (Wang et al. 2021) ResNet-101 66.00 98.03%
TAM (ICCV2021) (Liu et al. 2021) ResNet-101 82.00 97.81%
TEA (CVPR2020) (Li et al. 2020) Res2Net-50 35.00 98.12%
GSM (CVPR2020) (Sudhakaran, Escalera, and Lanz 2020) InceptionV3 26.82 98.44%
GSM (CVPR2020) (Sudhakaran, Escalera, and Lanz 2020) BN-Inception 16.56 98.28%
SFV-SAN pipeline (Jiang et al. 2018) N/A N/A 96.50%
JHuang (Jhuang et al. 2010) N/A N/A 93.00%
MGSN (Ours) InceptionV3 28.21 98.75%
MGSN (Ours) BN-Inception 17.72 98.75%
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Figure 6(b), BN-Inception is more accurate in all categories except for the 
main category.

As shown in Table 1, MGSNs have a maximum absolute gain of 5.41% (83.11% 
vs. 77.70%) on the baseline GSM. In the same case, the backbone networks have 
different degrees of gain. The top three recognition accuracies in the table are 
MGSNs that use different modules. In addition, a state-of-the-art recognition 
accuracy of 83.11% was achieved by using InceptionV3, which is larger than BN- 
Inception. The TDN, PAN, ACTION-Net, and TAM methods use resnet50 as the 
backbone. The TDN has achieved good recognition accuracy. It was used by 
ResNet-101 to reach the previous highest accuracy of 81.31%, which is higher than 
the accuracy of GSM based on BN-Inception (80.79%). However, the accuracy of 
our MGSN based on BN-Inception exceeded that of all previous methods, with an 
accuracy of 82.70%. The recognition accuracy of our MGSN based on 
InceptionV3 was further improved, exceeding that of all the current methods by 
83.11%. Our method is much lower than the aforementioned methods in terms of 
the amount of calculation, and can also obtain good results in the case of ground 
calculation.

Comparison with the Jhuang Database
Table 2 shows the performance comparison between MGSNs and the most 
advanced methods used in the Jhuang database. We trained the network using 
eight frames and sampled two clips. We use the various behavior recognition 
methods shown in Table 2 to conduct the experiments on the Jhuang database and 
to compare them with our methods. Among the methods in Table 2, our method 
attained a high degree of accuracy (the one marked in green is the third accuracy). 
However, because all of the methods showed very high accuracy in the Jhuang 
database, our method has no obvious advantage, but it also exceeds many of the 
most advanced methods available. Our method is only lower than that of TDN 
and ACTIONNet. The reason our method is lower is that the FLOPs of our 
method are much lower than those of TDN and ACTION-Net. Our method has 

Figure 6. Confusion matrixes for our system using different backbones with the Jiang and the 
Jhuang database. The diagonal cells contain the number and percentage of correct classified 
behaviors. The non-diagonal cells show the number and percentage of incorrectly classifications. 
(a) The Jiang dataset (InceptionV3). (b) The Jiang dataset (BN-Inception). (c) The Jhuang dataset 
(InceptionV3). (d) The Jhuang dataset (BN-Inception).
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a significant advantage in terms of computation and can achieve good results with 
low computation. The confusion matrices for the two backbones are shown in 
Figure 6(c,d).

Ablation Studies

In this section, we summarize the ablation analysis performed on the Jiang 
database. Exploration studies were performed on the Jiang database to inves
tigate whether MFSM and AFFM showed performance improvement from the 
baseline GSM. The specific implementation details are described in 
Section 5.2.

Study on the Impact of Different Backbones
Different backbones were used to explore its impact. For overall accuracy, 
InceptionV3 performed best when the two modules were inserted together, 
resulting in a 0.41% higher accuracy than BN-Inception and 5.41% absolute 
gain over the baseline GSM. In Table 4, the accuracy, parameters, and FLOPs 
of the two backbones are presented. Inceptionv3 has better accuracy and is 
accompanied by a larger model.

Exploring Whether to Insert MFSM and AFFM
We then compared performance improvement by inserting the MFSM into 
InceptionV3 and BN-Inception. Table 4 shows the ablation results. Baseline 
was the standard GSM architecture, with accuracies of 77.70% and 80.79%. We 
then inserted MFSM. This improved the recognition performance by 2.37% 
and 0.18% for InceptionV3 and BNInception, respectively. Inserting AFFM 
also improved the recognition performance by 2.03% and 0.97%, respectively. 
The final model, in which MFSM and AFFM are inserted into InceptionV3 
and BN-Inception, resulted in recognition accuracies of 83.11% and 82.70%, 
that is, a + 5.41% and +1.91% absolute improvement over the GSM baseline. 
Only 0.04% and 5.2% overhead in the parameters and complexity of 
InceptionV3, respectively. Similar to InceptionV3, only 0.1% and 7.0% over
head in parameters and complexity on BN-Inception, respectively.

Comparison of AFFM with Other Fusion Methods
Table 5 reports the comparison of our AFFM with three methods using the 
same backbone: addition, concatenation, and self-attention. For a more fair 
comparison, all experiments were conducted under the same experimental 
conditions, and the three methods were compared at the same location. The 
accuracy of our method outperformed the other fusion methods. While self- 
attention attains the closest performance to our method (82.56% vs. 83.11%), 
our method has fewer fusion parameters and calculations. The above conclu
sions can be drawn from the results in Table 5.
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Exploring Accuracy of Different Categories
Table 3 shows the various classes and overall recognition accuracy of the 
Jiang database. As can be seen in the BN-Inception column in Table 3, dig, 
eat, and walk have the best precision with the insertion of MFSM and AFFM 
simultaneously, while the head has the best precision when inserting only 
AFFM. This is because the MFSM is more sensitive to motion information, 
while the behavior of the head is relatively static, so AFFM alone is more 
accurate. As can be seen in the InceptionV3 column in Table 3, inserting 
our modules in addition to the groom and walk classes resulted in better 
precision. Our module improves the recognition of most categories of 
behavior. For overall accuracy, InceptionV3 performed best when the two 
modules were inserted together, with a 0.41% higher accuracy than BN- 
Inception and 5.41% absolute gain over the baseline GSM. The benchmark 
GSM was more accurate for the groom and walk classes, but with our 
module, it was less accurate for these two classes. We tallied the predictions 

Table 3. Comparison of each category in the Jiang database (Red text denotes the best accuracy 
for IncetionV3 or BN-inception).

Behavior InceptionV3 BN-Inception

GSM
MFSM 
+GSM

AFFM 
+GSM

MFSM+AFFM 
+GSM GSM

MFSM 
+GSM

AFFM 
+GSM

MFSM+AFFM 
+GSM

dig 55.17% 58.62% 75.00% 68.97% 62.07% 57.15% 62.07% 82.14%
eat 90.00% 95.00% 100.00% 95.00% 95.00% 100.00% 90.00% 100.00%
groom 71.88% 56.25% 51.61% 59.38% 71.88% 61.29% 65.66% 61.29%
head 69.16% 78.50% 77.36% 85.05% 77.57% 81.13% 83.18% 75.47%
rear 83.33% 88.10% 92.68% 88.10% 90.48% 85.37% 88.10% 90.24%
walk 96.97% 93.94% 90.61% 90.91% 93.94% 92.19% 89.39% 95.31%
all 77.70% 80.07% 80.97% 83.11% 80.79% 80.97% 81.76% 82.70%

Table 4. Recognition accuracy for inserting modules in the Jiang database (Red text 
denotes the best accuracy for InceptionV3 or BN-inception).

Method Accuracy Params.(M) FLOPs(G)

GSM (InceptionV3) 77.70% 21.86 26.82
GSM+MFSM (InceptionV3) 80.07% 21.86 28.07
GSM+AFFM (InceptionV3) 79.73% 21.87 28.21
GSM+MFSM+AFFM (InceptionV3) 83.11% 21.87 28.21
GSM (BN-Inception) 80.79% 10.32 16.56
GSM+MFSM (BN-Inception3) 80.97% 10.32 17.56
GSM+AFFM (BN-Inception) 81.76% 10.33 17.72
GSM+MFSM+AFFM (BN-Inception) 82.70% 10.33 17.72

Table 5. Comparison of AFFM with other fusion methods on Jiang database 
(the one marked in red is the best accuracy for InceptionV3).

Method Accuracy Params.(M) FLOPs(G)

baseline 77.70% 21.86 26.82
baseline + concat 80.13% 21.87 29.32
baseline + sum 80.20% 21.86 28.11
baseline + self-attetion 82.56% 21.96 30.35
baseline + AFFM 83.11% 21.87 28.21
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and found that both were most likely to misidentify the head. By analyzing 
our modules and prediction results, we conclude that the motion informa
tion in the optical flow has a significant influence on the MFSM. Because the 
motion information of groom, walk, and head are very similar, the recogni
tion of these two classes is not as good as that of the baseline GSM. Using 
the Jiang database, the recognition performance of most types was 
improved, and the recognition performance of joint addition was better 
than that of single-module addition, which again proves the inference of 
a synergistic effect.

Conclusion

In this study, we proposed a MGSN for mouse behavior recognition. The core 
contribution of the MGSN was to include MFSM and AFFM to make full use 
of the complementary advantages of the two cues with little overhead. We 
performed an extensive evaluation to study the MGSN’s effectiveness in mouse 
behavior recognition, achieving state-of-the-art accuracy results using the 
Jiang database, and obtaining competitive results using the Jhuang database. 
When MFSM and AFFM were inserted into the GSM baseline for 
InceptionV3, an absolute gain of +5.4% in recognition accuracy was obtained 
using the Jiang database with only 0.1% and 7.0% overhead in parameters and 
FLOPs, respectively.
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