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Multi-Scale Context Learning for Liver Segmentation
Feiyan Zhanga, Shuhao Yanb, Yizhong Zhaoa, Yuan Gaoa, Zhi Lia, and Xuesong Lua

aCollege of Biomedical Engineering, South-Central Minzu University, Wuhan, P. R. China; bXiangyang 
Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, P. R. China

ABSTRACT
Rapid and accurate extraction of liver tissue from abdominal 
computed tomography (CT) and magnetic resonance (MR) 
images has critical importance for diagnosis and treatment of 
hepatic diseases. Due to adjacent organs with similar intensities 
and anatomical variations between different subjects, the perfor
mance of segmentation approaches based on deep learning still 
has room for improvement. In this study, a novel convolutional 
encoder-decoder network incorporating multi-scale context 
information is proposed. The probabilistic map from previous 
classifier is iteratively fed into the encoder layers, which fuses 
high-level shape context with low-level appearance features in 
a multi-scale manner. The dense connectivity is adopted to aggre
gate feature maps of varying scales from the encoder and deco
der. We evaluated the proposed method with 2D and 3D 
application on abdominal CT and MR images of three public 
datasets. The proposed method generated liver segmentation 
with significantly higher accuracy (p <0.05), in comparison to 
several competing methods. These promising results suggest 
that the novel model could offer high potential for clinical 
workflow.
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Introduction

Liver segmentation on medical images plays a critical role in hepatic disease 
diagnosis, function assessment, radiotherapy planning, and image-guided 
surgery. In clinical workflow, computed tomography (CT) is the most com
mon technique for detecting numerous types of malignant liver tumors (Chen 
et al. 2011). On the other hand, due to non-ionizing radiation and better 
contrast of soft tissues, magnetic resonance (MR) imaging is increasingly used 
to monitor liver volume and fat content, which could aid in reducing the need 
of more invasive biopsies (Tang et al. 2015).

Manual delineation of the liver is time-consuming and prone to incur inter- 
observer variations. Semi-automatic or automatic approaches have been 
developed for radiologists and physicians (Chartrand et al. 2017; Moghbel 
et al. 2018). However, it is still a challenging task to rapidly and accurately 
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extract liver organ from both CT and MR images. As can be seen in Figure 1, 
several adjacent organs such as heart and stomach share similar intensities 
with liver. The multiple sequences of MR often suffer from image artifacts and 
intensity inhomogeneities. Moreover, the shape, size, and texture of liver in 
both CT and MR vary a lot across different subjects.

In the last few decades, most studies in liver segmentation have mainly 
focused on five types of methods (Heimann et al. 2009): statistical shape 
model, level set, graph cut, multi-atlas label fusion, and machine learning. 
Cerrolaza et al. introduced a generalized multi-resolution point distribution 
model to describe abdominal multi-organ shape, which can be integrated into 
the active shape-model-based segmentation (Cerrolaza et al. 2015). Wang et al. 
incorporated a shape-intensity prior model into level set framework for liver 
segmentation (Wang et al. 2016). Li et al. proposed the deformable graph cut 
based on shape constraints to accurately detect the

liver surface (Li et al. 2015). Chen et al. integrated the shape prior from 
multi-atlas label fusion with graph cut technique to reduce the errors of 
segmentation on abdominal CT images (Chen et al. 2020). Jin et al. applied 
generalized Hough transform and active appearance model to localize the 
renal cortex, and then a modified random forests method was employed to 
segment the kidney into four components (Jin et al. 2016).

Recently, deep learning methods, in particular convolutional neural net
work (CNN), have been used successfully in medical image segmentation (Ker 
et al. 2018; Litjens et al. 2017; Shen, Wu, and Suk 2017). A fully convolutional 
network (FCN) (Long et al. 2015) was trained end-to-end, pixels-to-pixels on 
semantic segmentation. In order to yield precise segmentation, a U-shaped 
architecture network (U-Net) (Ronneberger et al. 2015) was designed to 
combine encoding and decoding feature maps with skip connections. 
A practical deep convolutional encoder-decoder network for image segmenta
tion (SegNet) (Badrinarayanan, Kendall, and Cipolla 2017) was presented 

Figure 1. Examples of CT and MR abdominal organ images. (a) a CT image slice in axial view. (b) 
a T1-weighted sequence of MR image slice in axial view. (c) a T2-weighted sequence of MR image 
slice in axial view.
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using nonlinear upsampling with pooling indices. A dense V-network 
(DenseVNet) (Gibson et al. 2018) that enables high-resolution activation 
maps through memory-efficient dropout and feature reuse was proposed for 
abdominal multi-organ segmentation. To overcome the restrictive feature 
fusion scheme in U-Net, a novel architecture so-called UNet++ (Zhou et al.  
2020) redesigning skip connections was presented for accurate image segmen
tation, which introduces a build-in ensemble of U-Nets of varying depths.

According to human perception, when someone observes a scene, the eyes 
move along the whole visual space, and then concentrate on region of interest 
(Zhang et al. 2017). Context information (Chen et al. 2016) mimicking this 
property of human perception has shown to be useful in image segmentation. 
Salehi et al. implemented an auto-context convolutional neural network upon the 
U-Net architecture for brain extraction. The posterior probability maps from the 
network output were utilized iteratively as context information to learn the local 
shape (Salehi, Erdogmus, and Gholipour 2017). Zhang et al. efficiently combined 
features within a single CT image and among multiple adjacent images for multi- 
organ segmentation (Zhang et al. 2018). Oktay et al. proposed a novel attention 
gate model that automatically learns to focus on target structures of varying 
shapes and sizes for medical imaging (Oktay et al. 2018). Yang et al. exploited 
the bidirectional long-short term memory network (BiLSTM) that can capture 
contextual cues to refine ultrasound segmentation (Yang et al. 2019). Since the 
intrinsic locality of convolution operations, Chen et al. integrated Transformers 
into U-Net framework as a strong alternative for medical image segmentation 
(Chen et al. 2022). Cao et al. developed a U-shaped pure Transformer (Swin- 
Unet) for multi-organ segmentation of abdominal and cardiac images (Cao et al.  
2022). Hatamizadeh et al. introduced a 3D Transformer (UNETR) as the encoder 
to learn sequence representations of the input volume (Hatamizadeh et al. 2022).

To keep the model relatively simple, in this study we develop a novel 
convolutional encoder-decoder network incorporating multi-scale context 
information and apply it to liver segmentation. The probabilistic map from 
output layer of decoder part is iteratively fed into the encoder layers, which 
fuses high-level shape and context information with low-level appearance 
features in a multi-scale manner. Furthermore, the dense connectivity like 
UNet++ is adopted to aggregate feature maps of varying scales from the 
encoder and decoder. The proposed method for liver segmentation is evaluated 
on abdominal CT with 2D application and abdominal MR with 3D application.

Methods

Network Architecture

For the challenging liver segmentation of abdominal images, the architecture 
of classical U-Net with the pooling layer is prone to lose the information of 

APPLIED ARTIFICIAL INTELLIGENCE e2151186-3929



image details in the downsampling step. In order to improve network perfor
mance, the posterior probabilities from the previous classifier are considered 
as features, and are merged into the proposed network. As a result, the 
substructure information would be compensated for the downsampling pro
cedures in iterative and multi-scale manner.

As shown in Figure 2, the proposed network consists of convolutional encoder 
part and decoder part. The basic unit of node Xi;j where i indexes the down
sampling layer along the encoder and j indexes the convolution layer along the 
skip connection is the convolutional block. For 2D application, the convolutional 
block is composed of two consecutive padded 3 × 3 convolutions followed by 
ReLU (Rectified Linear Unit) (Nair and Hinton 2010) layers. At node X0;0, the 
original image x and the probabilistic map St� 1 are input to the convolutional

block, respectively. After that the feature maps from these blocks are con
catenated, a 2 × 2 max-pooling operation with stride 2 is applied. In order to 
prepare for next scale connection, the S,

t� 1 from the posterior probabilities are 
transferred to a max-pooling layer, which are used to node X1;0. Therefore the 
probabilistic map in two scales (, ¼ 1) is fed into the network for guiding the 
segmentation task. After each downsampling operation, the number of feature 
channels is doubled.

In the decoder part, a 2 × 2 transpose convolutional layer (Dumoulin 
and Visin 2018) for upsampling operation is applied after the convolu
tional block. Inspired by UNet++, the U-Nets of varying depths are 
realized through the extended decoders and unified into the ensemble 
architecture. With dense connectivity, each decoder fuses the final aggre
gated feature maps and the intermediate aggregated feature maps, as well 
as the same-scale feature maps from the encoder. As such, the multi-scale 
context information can be propagated to the aggregation layers across the 
network. After each upsampling operation, the number of feature chan
nels is halved. Without deep supervision, a 1 × 1 convolution is appended 

Figure 2. Network architecture.

e2151186-3930 F. ZHANG ET AL.



to the final layer. For 3D application, the kernel sizes of convolution and 
max-pooling layers are correspondingly extended to 3 × 3 × 3 and 2 ×  
2 × 2.

Technical Details

In the proposed segmentation method, a sequence of classifiers 
(t ¼ 1; . . . ;K) is designed in an iterative way, in which the posterior 
probabilities from the previous classifier are incorporated into the cur
rent process as features. Let xi; li; i ¼ 1f g be m training image pairs, 
where xi and li are respectively the intensity image and corresponding 

label image. For each image at step t, the pair of xi; s
t� 1ð Þ

i

n o
is delivered 

into the network for classification where s t� 1ð Þ
i is the posterior probability 

of image xi from previous step. When step t ¼ 1, s0
i is constructed with 

uniform distribution (i.e. the probability value of 0.5 for binary 
classification). 

Algorithm 1. The procedure of iterative learning based on the proposed network

Input: xi; li; i ¼ 1f g the training image pairs; s0
i the initial probability map with uniform distribution 

Output: the learned weights of the proposed networks (step t ¼ 1; . . . ; K)
repeat
Obtain the training set Γ t ¼ xi; s t� 1ð Þ

i

� �
; li; i ¼ 1

n o
;

Train the proposed network described in Figure 2 using Γ t ;
Calculate the posterior probability st

i through Sigmoid activation function for i ¼ 1f g;
Calculate the loss Ht

i via Equation (1) for i ¼ 1f g;
Calculate ΔH ¼ 1

Pm

i¼1
Ht

i � H t� 1ð Þ

i

�
�
�

�
�
�;

until ΔH< ε (ε is a predefined threshold)

For each image, the posterior probability can be calculated through 
the network in Figure 2 followed by a Sigmoid activation function. 
During the optimization, a hybrid loss consisting of pixel-wise cross- 
entropy and soft dice-coefficeint is minimized. Mathematically, it can be 
defined as: 

H L; Sð Þ ¼ � ω �
1
N

XN

n¼1
ln � log sn þ 1 �

2
PN

n¼1 lnsn
PN

n¼1 ln þ
PN

n¼1 sn

 !

; (1) 

where ln 2 L denotes image labels, sn 2 S denotes predicted probabilities, 
N denotes the number of pixels, and ω is the balance factor. Note that only 
cross-entropy loss is employed for 2D application. Algorithm 1 shows the 
procedure of weights learning for the sequence of classifiers. In the test stage, 
the learned weights can be successively applied to the first two classifiers 
(K¼2) in the sequence for segmentation.
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Experiments

Datasets

Three publicly available datasets covering liver organs were used in this study. 
The first dataset was from 3Dircadb1 (Bilic et al. 2022), which contains 20 
contrast-enhanced CT scans. The image size is 512 × 512 × 74 ~ 260 voxels. 
The in-plane spacing varies from 0.57 mm to 0.87 mm, and slice thickness 
ranges from 1 mm to 4 mm. The second dataset was from Sliver07 (Heimann 
et al. 2009), which contains 20 contrast-enhanced CT scans. The image size is 
512 × 512 × 64 ~ 394 voxels. The in-plane spacing varies from 0.58 mm to 0.82  
mm, and slice thickness ranges from 1 mm to 3 mm.

The third dataset was provided by the Combined Healthy Abdominal 
Organ Segmentation challenge in 2019 (CHAOS19) (Kavur et al. 2020), 
including 20 contrast-enhanced CT scans and 20 multi-sequence MR scans. 
For the CT data, the image size is 512 × 512 × 78 ~ 294 voxels. The in-plane 
spacing varies from 0.54 mm to 0.79 mm, and slice thickness ranges from 2.0  
mm to 3.2 mm. The MR data includes two different sequences T1-DUAL and 
T2-SPIR. In total, there are 60 images from T1-DUAL in phase (T1-DUALin), 
T1-DUAL oppose phase (T1-DUALout), and T2-SPIR for 20 patients. The 
image size is 256 × 256 × 26 ~ 50 voxels. The in-plane spacing varies from 0.72  
mm to 2.03 mm, and slice thickness ranges from 4.4 mm to 8.0 mm. The 
manual delineation of liver tissue in each image is regarded as the ground 
truth for validation.

Evaluation Metrics

To quantitatively evaluate the performance of the proposed method, we used 
four metrics (Heimann et al. 2009): the Dice coefficient (DICE), the Relative 
absolute volume difference (RAVD), the Average symmetric surface distance 
(ASSD), and the Maximum symmetric surface distance (MSSD). Assuming 
that VA denotes segmentation by the algorithm and VB denotes segmentation 
by the ground truth, the DICE and RAVD can be defined as follows: 

DICE ¼
2 VA \ VBj j

VAj j þ VBj j
; (2) 

RAVD ¼ abs
VAj j

VBj j
� 1

� �

� 100; (3) 

where �j j indicates the number of voxels within the segmentation and abs �ð Þ
indicates the absolute value. Assuming that SA denotes the surface of segmen
tation by the algorithm and SB denotes the surface of segmentation by the 
ground truth, the ASSD and MSSD can be defined as follows: 

e2151186-3932 F. ZHANG ET AL.



ASSD ¼
1

SAj j þ SBj j

X
dist SA; SBð Þ þ

X
dist SB; SAð Þ

� �
; (4) 

MSSD ¼ max max dist SA; SBð Þ;max dist SB; SAð Þf g; (5) 

where dist SA; SBð Þ indicates the Euclidean distance of the set of points on SA to 
the nearest point on SB. For the DICE, the larger the value is, the better the 
segmentation result is. For the other metrics, the smaller the value is, the better 
the segmentation result is. A value of p< 0:05 in two-sided Wilcoxon tests was 
considered to indicate a statistically significant difference between two 
methods.

Experimental Setup

For the CT images in each dataset, the networks process 2D axial slices, and 
then the segmentation results are stacked into 3D volumes. A 5-fold cross 
validation was performed on 20 cases of each dataset for liver segmentation. 
For comparison, we use the original 2D U-Net (Ronneberger et al. 2015), 2D 
Auto-Net (Salehi, Erdogmus, and Gholipour 2017), and UNet++ (Zhou et al.  
2020) for 2D tasks (2D UNet++) as baseline methods. To avoid over-fitting, 
the data was augmented by random rotation (between 0 and 90 degrees), 
random flipping (on two axes), and random elastic deformation (grid displa
cements from Gaussian distribution with 2 pixels standard deviation).

For the MR images in the CHAOS19 dataset, the networks were operated in 
3D mode. A 5-fold cross validation was performed on 20 cases of each 
sequence (T1-DUALin, T1-DUALout, and T2-SPIR) for liver segmentation. 
For comparison, we use the 3D U-Net (Cicek et al. 2016), 3D Auto-Net (Salehi, 
Erdogmus, and Gholipour 2017), and UNet++ (Zhou et al. 2020) for 3D tasks 
(3D UNet++) as baseline methods. All MR images were resampled to the 
spacing of 1.5 × 1.5 × 6.0 mm and cropped to the size of 224 × 224 × 48 voxels. 
Data augmentation including random rotation

(between 0 and 90 degrees), random flipping (on three axes), and random 
elastic deformation (grid displacements from Gaussian distribution with 2 
voxels standard deviation) was used to alleviate over-fitting problem.

Implementation Details

The proposed method was implemented using PyTorch (Paszke et al. 2017) on 
a PC with an NVIDIA GeForce RTX 3080Ti GPU. Before training and test, 
both CT and MR were normalized to zero mean and unit variance. Our model 
was trained using the Adam optimizer (Kingma and Ba 2014) with a learning 
rate of 1e-4, a batch size of 1, and 16 base filters in the first layer. The number 
of training epochs per step was 40 and ε ¼ 10� 6 for 2D application, while 80 
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epochs were set to each step and ε ¼ 10� 3 for 3D application. In addition, the 
balance factor in Equation (1) was set to ω ¼ 0:5. Our code is freely available at 
https://github.com/zfy012/Ite-netpp.

Results and Discussions

Results on Abdominal CT Images

Figure 3 shows the learning curves of the 2D UNet++ and the proposed 
method for liver segmentation on CT images. It is obvious that our method 
enables a better optimization than 2D UNet++ for the tasks of three datasets. 
The DICE results of liver segmentation using four methods are plotted in 
Figure 4. In 3Dircadb1, the median DICE of the proposed method increases 
significantly compared to 2D UNet++ from 0.946 to 0.956 (p ¼ 3:50� 10� 3). 
In Sliver07, the median

Figure 3. The training results of the 2D UNet++ and the proposed method over 80 epochs from (a) 
the 3Dircadb1 dataset, (b) the Sliver07 dataset, and (c) the CHAOS19 dataset.

Figure 4. The boxplot of DICE results using four methods on CT images of three datasets. A star 
indicates a statistical significant difference of the median DICE compared to the previous column.
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DICE of the proposed method increases significantly compared to 2D 
UNet++ from 0.947 to 0.953 (p ¼ 2:17� 10� 2). In CHAOS19, the median 
DICE of the proposed method increases significantly compared to 2D UNet 
++ from 0.958 to 0.971 (p ¼ 6:20� 10� 3). Table 1 lists the quantitative 
results of liver segmentation evaluation metrics for three datasets. The 
proposed method obtained the best DICE, RAVD, and ASSD on all datasets. 
With regard to MSSD, the 2D Auto-Net achieved the best results on the 
3Dircadb1 and CHAOS19 datasets. Figure 5 displays some segmentation 
results produced by using four methods. It can be seen that the contours 
through our method are much closer to the liver boundaries of ground 
truth.

Results on Abdominal MR Images

Figure 6 shows the learning curves of the 3D UNet++ and the proposed 
method for liver segmentation on multi-sequence MR images of the 
CHAOS19 dataset. It is clear that our method enables a better optimization 
than 3D UNet++ for these tasks. The DICE results of liver segmentation using 
four methods are plotted in Figure 7. In the T1-DUALin sequence, the median 
DICE of the proposed method increases significantly compared to 3D UNet++ 
from 0.940 to

0.952 (p ¼ 2:54� 10� 2). In the T1-DUALout sequence, the median DICE of 
the proposed method increases significantly compared to 3D UNet++ from 0.936 
to 0.942 (p ¼ 4:19� 10� 2). In the T2-SPIR sequence, the median DICE of the 
proposed method increases significantly compared to 3D UNet++ from 0.916 to 
0.942 (p ¼ 2:80� 10� 3). Table 2 lists the quantitative results of liver segmenta
tion evaluation metrics for three sequences. The proposed method obtained the 
best DICE, RAVD, and MSSD on all sequences. With regard to ASSD, the 3D 
Auto-Net achieved the best results except for the T1-DUALout sequence. Figure 8 

Table 1. The mean and standard deviation of quantitative measures for liver segmentation on 
three datasets.

Methods DICE RAVD ASSD(mm) MSSD(mm)

3Dircadb1 2D U-Net 0.925±0.023 6.030±3.428 3.927±2.150 55.300±20.047
2D Auto-Net 0.940±0.021 4.899±3.631 2.997±1.588 29.457±6.317
2D UNet++ 0.941±0.028 4.859±5.510 1.277±1.124 38.079±19.871
the proposed method 0.955±0.012 3.782±2.306 1.071±0.981 32.939±12.252

Sliver07 2D U-Net 0.918±0.032 7.720±5.917 4.839±2.224 55.963±45.400
2D Auto-Net 0.933±0.031 5.831±4.376 4.183±2.210 39.682±12.647
2D UNet++ 0.938±0.032 4.127±3.369 3.660±2.195 40.635±15.212
the proposed method 0.954±0.014 3.166±2.721 2.059±0.748 29.448±9.285

CHAOS19 2D U-Net 0.931±0.016 6.064±3.460 3.832±1.811 45.633±26.153
2D Auto-Net 0.947±0.016 4.698±2.437 2.493±1.066 28.485±7.028
2D UNet++ 0.952±0.021 3.025±2.231 1.217±0.434 36.245±11.945
the proposed method 0.967±0.011 2.296±1.980 0.929±0.341 28.948±8.856
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displays some segmentation results produced by using four methods. It can be 
found that there are more under-segmentation and over-segmentation in the 
results of the first three methods.

Figure 5. Typical liver segmentation results on CT images of the 3Dircadb1 (top row), the Sliver07 
(middle row), and the CHAOS19 (bottom row) datasets by using four methods. (a) 2D U-Net. (b) 2D 
Auto-Net. (c) 2D UNet++. (d) the proposed method. Green contours indicate the ground truth 
segmentation, and red contours indicate the automatic segmentation by the algorithm.

Figure 6. The training results of the 3D UNet++ and the proposed method over 160 epochs from 
(a) the T1-DUALin sequence, (b) the T1-DUALout sequence, and (c) the T2-SPIR sequence.
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Comparison with Transformer-Based Methods

For segmentation on all CT images, we compared the proposed method to the 
Swin-Unet method (Cao et al. 2022). In principle, Swin Transformer block 
that computes self-attention within 2D local windows (Liu et al. 2021) is taken 
as the basic unit of U-shaped architecture in this method. The Swin-Unet 
model was trained using the Adam optimizer for 100 epochs with a learning 
rate of 1e-4, a batch size of 8, patch size of 16, and pre-trained initial weights. 
In quantitative measures (see Table 3), the Swin-Unet method obtained the 
better MSSD than the proposed method.

For segmentation on all MR images, we compared the proposed method to 
the UNETR method (Hatamizadeh et al. 2022). In this method, the 
Transformer operating 3D input volumes is employed as the main encoder 
of network. The UNETR model was trained using the AdamW optimizer for 

Figure 7. The boxplot of DICE results using four methods on multi-sequence MR images of the 
CHAOS19 dataset. A star indicates a statistical significant difference of the median DICE compared 
to the previous column.

Table 2. The mean and standard deviation of quantitative measures for liver segmentation on 
multi-sequence MR images of the CHAOS19 dataset.

Methods DICE RAVD ASSD(mm) MSSD(mm)

T1-DUALin 3D U-Net 0.916±0.021 4.162±3.420 1.268±0.689 19.378±6.962
3D Auto-Net 0.936±0.018 3.987±2.949 0.711±0.362 19.161±5.346
3D UNet++ 0.938±0.019 3.663±2.608 0.878±0.681 18.856±5.193
the proposed method 0.951±0.012 3.299±1.603 0.834±0.625 16.750±4.328

T1-DUALout 3D U-Net 0.911±0.021 4.990±1.535 1.601±1.809 24.347±17.257
3D Auto-Net 0.914±0.024 4.674±6.358 1.245±0.640 23.819±9.686
3D UNet++ 0.930±0.021 4.515±2.071 1.466±0.830 22.369±8.108
the proposed method 0.942±0.012 3.040±1.621 1.102±1.101 20.461±5.989

T2-SPIR 3D U-Net 0.908±0.019 7.090±2.279 1.825±1.080 26.990±9.357
3D Auto-Net 0.926±0.019 5.340±2.628 1.285±0.805 25.304±9.741
3D UNet++ 0.918±0.014 5.891±2.164 1.782±1.146 23.089±8.905
the proposed method 0.935±0.018 3.654±2.651 1.397±0.639 22.240±10.163
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25,000 epochs with a learning rate of 1e-4, a batch size of 2, patch size of 16, 
and pre-trained initial weights. It can be seen from Table 3 that segmentation 
accuracy of the UNETR method is slightly higher than the proposed method in 
terms of the DICE and MSSD.

Ablation Study

We conducted an ablation study to evaluate the contribution of the shape 
context. For MR images with 3D application, node X1;0 in Figure 2 was 

Figure 8. Typical liver segmentation results on MR images with the T1-DUALin (top row), the T1- 
DUALout (middle row), and the T2-SPIR (bottom row) sequences by using four methods. (a) 3D 
U-Net. (b) 3D Auto-Net. (c) 3D UNet++. (d) the proposed method. Green contours indicate the 
ground truth segmentation, and red contours indicate the automatic segmentation by the 
algorithm.

Table 3. The overall quantitative results of liver segmentation on CT and MR images as mean by 
using the Transformer-based methods and the proposed method.

Methods DICE RAVD ASSD(mm) MSSD(mm)

CT Swin-Unet 0.947 4.103 2.152 28.541
the proposed method 0.958 3.081 1.353 30.445

MR UNETR 0.950 3.684 1.276 18.722
the proposed method 0.943 3.331 1.111 19.817

e2151186-3938 F. ZHANG ET AL.



replaced by the common convolutional block. It means that the posterior 
probabilities from the previous classifier are fused in a single-scale manner 
(IterConv-SSC). Except for changing of network structures, all parameters 
settings in this variation are the same as those in the proposed method in 
a multi-scale manner (IterConv-MSC). The overall results of quantitative 
measures for this variation are given in Table 4. They show that using 
IterConv-MSC brings an increase of DICE from 0.933 to 0.943, a decrease 
of RAVD from 4.035 to 3.331, a decrease of ASSD from 1.326 mm to 1.111  
mm, and a decrease of MSSD from 20.563 mm to 19.817 mm. Therefore, 
the effectiveness of our method in a multi-scale manner is confirmed. 

In addition, the influence of different steps (t ¼ 1; . . . ;K) was examined. 
For CT images with 2D application, Figure 9 shows the mean DICE for liver 
segmentation at four steps of the proposed algorithm. It can be observed that 
the networks learned multi-scale context information through iterations for 
improvement in the Dice coefficient. Therefore, K ¼ 2 is a good compromise 
between segmentation accuracy and computational burden.

Table 4. The overall quantitative results of liver segmentation on MR images as 
mean by using the proposed method with different scales.

Methods DICE RAVD ASSD(mm) MSSD(mm)

IterConv-SSC 0.933 4.035 1.326 20.563
IterConv-MSC 0.943 3.331 1.111 19.817

Figure 9. The DICE results of liver segmentation on all CT images as mean by using four steps of 
the proposed method.
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Model Complexity

The model complexity in terms of trainable parameters and floating-point 
operations (FLOPs) for the proposed method and various baseline methods is 
listed in Table 5. It shows that the proposed method still have an acceptable 
computational complexity, although containing the probabilistic map. In the 
inference stage of 2D application, it costs about 0.1 s to segment each CT slice. 
For 3D application, the inference time is about 1.3 s to segment each MR 
volume. Since the model can be trained offline, our method would be practic
able and efficient in routine clinical workflow.

Conclusion

In this work, we proposed an iterative convolutional encoder-decoder net
work, which integrates multi-scale context information for liver segmentation. 
We evaluated this model on abdominal CT and MR images of three public 
datasets. The experimental results show that the proposed model is able to 
produce more accurate liver segmentation than other models. In future work, 
we will embed attention mechanisms into this model for further improvement 
(Zhang et al. 2022). Moreover, the initial probabilistic map from multi-atlas 
registration (Zhang et al. 2021) and segmentation post-processing (Chen et al.  
2022) would be another future direction.
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Table 5. The model complexity of different networks.
Methods Params FLOPs

2D U-Net 1.95M 15.98G
2D Auto-Net 1.95M 16.02G
2D UNet++ 2.29M 34.57G
the proposed method (2D) 2.32M 36.73G
3D U-Net 4.12M 167.58G
3D Auto-Net 4.12M 168.18G
3D UNet++ 6.87M 664.63G
the proposed method (3D) 6.96M 697.08G
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