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ABSTRACT 
 

Bianchi type-IX space-time is considered in the framework of the )(Rf  theory of gravity when the 

source of the energy momentum tensor is a perfect fluid. The cosmological model is obtained by 

using the condition that the expansion scalar ( ) is proportional to the shear scalar ( ). The 
physical and geometrical properties of the model are also discussed.  
 

 
Keywords: )(Rf gravity; Bianchi type-IX space-time. 

 

1. INTRODUCTION  
 
Cosmological observations in the late 1990’s 
from different sources such as the Cosmic 
Microwave Background Radiation (CMBR) and 
supernova (SN Ia) surveys indicate that the 
universe consist of 4% ordinary matter, 20% dark 
matter (DM) and 76% dark energy (DE) [1-4]. 

The DE has large negative pressure while the 
pressure of DM is negligible. Wald [5] has 
distinguished DM and DE and clarified that 
ordinary matter and DM satisfy the strong energy 
conditions, whereas DE does not. The DE 
resembles with a cosmological constant and the 
self-interaction potential of scalar fields. The 
scalar field is provided by the dynamically 
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changing DE including quintessence, k-essence, 
tachyon, phantom, ghost condensate and 
quintom etc. The study of high redshift 
supernova experiments [6-8], CMBR [9,10], large 
scale structure [11] and recent evidences from 
observational data [12-14] suggest that the 
universe is not only expanding but also 
accelerating. 
 
There are two major approaches to the problem 
of accelerating expansion. One is to introduce a 
DE component in the universe and study its 
effects. The alternative is to modify general 
relativity; this is termed as modified gravity 
approach. We are interested in second 
approach. After the introduction of General 
Relativity (GR) in 1915, questions related to its 
limitations were in discussion. Einstein pointed 
out that Mach’s principle is not substantiated by 
general relativity. Several attempts have been 
made to generalize the general theory of 
gravitation by incorporating Mach’s principle and 
other desired features which were lacking in the 
original theory. Alternatives to Einstein’s theory 
of gravitation have been proposed incorporating 
certain desirable features in the general theory. 
In recent decades, as an alternative to general 
relativity, scalar tensor theories and modified 
theories of gravitation have been proposed. The 
most popular amongst them include the theories 
of Brans-Dicke [15], Nordtvedt [16], Sen [17], 
Sen and Dunn [18], Wagonar [19], Saez-
Ballester [20] etc. Recently, )(Rf  gravity and 

),( TRf  gravity theories have gained importance 

amongst the modified theories of gravity because 
these theories are supposed to provide natural 
gravitational alternatives to dark energy. Among 
the various modifications, the )(Rf  theory of 

gravity is treated most suitable due to 
cosmologically important )(Rf  models. In )(Rf  

gravity, the Lagrangian density f  is an arbitrary 

function of R  [15, 21-23]. The model with )(Rf  

gravity can lead to the accelerated expansion of 
the universe. A generalization of )(Rf  modified 

theory of gravity was proposed by Takahashi and 
Soda [24] by including explicit coupling of an 
arbitrary function of the Ricci scalar R  with the 

matter Lagrangian density mL . There are two 

formalisms to derive field equations from the 
action in )(Rf  gravity. The first is the standard 

metric formalism in which the field equations are 
derived by the variation of the action with respect 
to the metric tensor g . The second is the 

Palatini formalism. Maeda [25] have investigated 

Palatini formulation of the non-minimal geometry-
coupling models. Multamaki and Vilja [26] 
obtained spherically symmetric solutions of 
modified field equations in )(Rf  theory of 

gravity. Akbar and Cai [27] studied )(Rf  theory 

of gravity action as a nonlinear function of the 
curvature scalar R . Nojiri and Odinstove [28-30] 
derived the result that a unification of the early 
time inflation and late time acceleration is 
allowed in )(Rf  theory. Ananda, Carloni and 

Dunsby [31] studied structure growth in )(Rf  

theory with a dust equation of state. Sharif and 
Shamir [32] and Sharif [33] have studied the 
vacuum solutions of Bianchi type-I, V and VI 
space-times. Sharif and Shamir [34] and Sharif 
and Kausar [35] obtained the non-vacuum 
solutions of Bianchi type-I, III and V space-times 
in )(Rf  theory of gravity. Adhav [36,37] have 

investigated the Kantowski-Sachs string 
cosmological model and the Bianchi type-III 
cosmological model with a perfect fluid in )(Rf  

gravity. Singh and Singh [38] have obtained 
functional form of )(Rf  with power-law 

expansion in Bianchi type-I space-times. 
Recently Jawad and Chattopadhyay [39] have 
investigated new holographic dark energy in 

)(Rf  Horava Lifshitz gravity. Rahman et al. [40] 

have obtained non-commutative wormholes in 
)(Rf  gravity with Lorentzian distribution. 

 
Motivated by the above investigations, in this 
paper an attempt is made to study Bianchi type-
IX space-time when the universe is filled with a 
perfect fluid in the )(Rf  theory of gravity with 

standard metric formalism. Bianchi type-IX 
space-time is of vital importance in describing 
cosmological models during the early stages of 
evolution of the universe. This work is organized 
as follows: In Section 2, the )(Rf  gravity 

formalism is introduced. In Section 3, the model 
and field equations are presented. The field 
equations are solved in Section 4. The physical 
and geometrical behavior of the model is 
discussed in Section 5. Section 6 contains 
concluding remarks. 
 
2. )(Rf  GRAVITY FORMALISM 

 
The action of )(Rf  gravity is given by 

 

.          (1)  







 xdLRf

G
gS m

4)(
16

1


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Here )(Rf  is a general function of the Ricci 

scalar R  and mL  is the matter Lagrangian. 

 
The corresponding field equations of )(Rf  

gravity are found by varying the action with 
respect to the metric g : 

 

 

 F kT ,                         (2) 

 

where ,  ,   is the 

covariant derivative and T  is the standard 

matter energy-momentum tensor derived from 

the Lagrangian mL .  

 
Taking the trace of the above equation (with 

), we obtain 
 

 TF  .           (3) 

 
On simplification, equation (3) leads to 
 

.                       (4) 

 

3. METRIC AND FIELD EQUATIONS 
 
Bianchi type-IX metric is considered in the form, 
 

  ydxdzadzyayb

dybdxadtds

cos2cossin 222222

222222




    (5) 

 

where ba,  are scale factors and are functions of 

cosmic time t . 
 
The Ricci scalar for Bianchi type-IX model is 
given by 
 

.     (6) 

 
The energy momentum tensor for the perfect 
fluid is given by 
 

jijiji pguupT  )( ,           (7) 

 

satisfying the barotropic equation of state 
 

, 10   ,                        (8) 

 
where   is the energy density and p  is the 

pressure of the fluid. 
 
In co-moving coordinates 
 

,3
3

2
2

1
1 pTTT  ,4

4 T  pT 3  .       (9) 

 
With the help of equations (7) to (9), the field 
equations (2) for the metric (5) are found 
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where the over dot )( . denotes the differentiation 

with respect to t. 
 
4. SOLUTIONS OF FIELD EQUATIONS 
 
The field equations (10) to (12) are highly non-
linear differential equations in five unknowns

Fpba ,,,,  . Hence to obtain a well determined 

solution of the system, we assume that the 
square of the expansion scalar (  ) is 

proportional to the shear scalar (
2 ) [41], which 

leads to  
 

mba  , )1( m                       (13) 

 
where m  is proportionality constant. 
 
Also the power law relation between the scale 
factor )(A  and scalar field ( F ) [37,42-43] has 

been given by  
 

nAF  ,                       (14) 
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where n  is an arbitrary constant and A  is the 
average scale factor. 
 

For the metric (5), the average scale factor A is 
 

3

1
2 )(abA                                                    (15) 

 

Equation (14) leads to 
 

nAKF  ,                                                    (16) 
 

where K  is a proportionality constant. 
 

With the help of equations (13) and (15), 
equation (16) reduces to 
 

3

)2( nm

bKF



 .          (17) 

 
Subtracting equation (10) from (11) and (12) 
respectively and dividing the result by F gives 
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Subtracting equation (19) from equation (18) yields 
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With the help of equations (13) and (17), equation (20) leads to 
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Multiplying equation (21) by b2  
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With the help of equation (23), equation (22) reduces to 
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This is linear differential equation of order one. 
 

Integrating equation (24) with respect to b  
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Taking square root 
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Using equations (13) and (26), metric (5) reduces to 
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Using the new coordinate Tb  , equation (27) leads to 
 

.            (28) 

 

5. SOME PHYSICAL PROPERTIES OF THE MODEL 
 

The physical quantities such as the spatial volume V , Hubble parameter H , expansion scalar  , 

mean anisotropy parameter mA , shear scalar 2 , energy density  are obtained as follows: 

 

The spatial volume is in the form, 
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The Expansion scalar is, 
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The mean anisotropy parameter is, 
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The shear scalar is given by, 
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We observe that, 
 

)0(constant
)2(3

)1(
2

2

2

2







m

m




, for 1m .                              (34) 

 

Using equations (8), (17) and (26) in equation (10), the energy density is obtained as 
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From equation (6) we obtain 
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Equation (4) leads to the following expression for the function )(Rf  of the Ricci scalar 

 

          (37) 

 
which clearly indicates that )(Rf  depends upon T only.  
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In the special case when ,2 nm )(Rf  turns out to be 
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This gives )(Rf  explicitly as a function of R

only. 
 

6. CONCLUSION 
 
A Bianchi type-IX cosmological model have been 
obtained when universe is filled with a perfect 
fluid in )(Rf  theory of gravity. The obtained 

model is singular at 0T  and the physical 

parametersH ,   and 2  are divergent at 0T  
as well. We observed that the scale factors and 
volume of the model vanishes at the initial epoch 
and increases with the passage of time 
representing an expanding universe. From 
equations (30) and (32), the mean anisotropy 

parameter mA  is shown to be constant and 

)0(
2

2





 is also constant, hence the model is 

anisotropic throughout the evolution of the 

universe except at when 1m ; i.e. the model 
does not approach isotropy. 
 
It is worth mentioning that, the obtained model is 
point type singular, expanding, shearing, non-
rotating and does not approach isotropy for large 
T . We hope that our model will be useful in the 
study of structure formation in the early universe 
and the accelerating expansion of the universe at 
present. 
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