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ABSTRACT 
 

This paper determines the dynamic buckling load of a lightly and viscously damped imperfect 
spherical cap with a step load. The spherical cap is discretized into a pre-buckling symmetric mode 
and a buckling mode that consists of axisymmetric and non-axisymmetric buckling modes. The 
imperfection is taken at the shape of the buckling mode. The inherent problem contains a small 
parameter which necessitated the adoption of regular perturbation procedures, using asymptotic 
technique. The general result is designed to display the contributions of each of the terms in the 
governing differential equations. We deduce the results for the respective special cases where the 

axisymmetric imperfection parameter, namely


1ξ , and the non-axisymmetric imperfection 

parameter 


2ξ , are zeros. We also determine the effects of each of the non-linear terms as well as 

the effects of the coupling term. 
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1. INTRODUCTION 
 
The subject of dynamic buckling of elastic 
structures has been a thriving area of 
investigation ever since [1-3] developed the 
discipline of dynamic stability of elastic structures 
from the original static consideration that was 
prevalent before this time. Over the years, many 
investigations on dynamic stability of elastic 
structures have been added to the original 
sketchy and scattered pieces that saw the 
genesis of dynamic buckling of elastic structures 
as a research interest. Among the many 
scholarly investigations that have come to light 
include [4,5,6,7,8], who investigated the dynamic 
buckling, of two-degree – of freedom systems 
with mode interaction under step loading. 
Mention must also be made of relatively recent 
investigations which include [9], who investigated 
the dynamic buckling of thin cylindrical shells 
under axial impact, [10,11], who studied the 
nonlinear dynamic buckling of stiffened plates 
under in-plane impact load. 
  
But by far, the investigation that concerns us in 
this study is that by [12], who investigated the 
dynamic buckling loads of imperfection-sensitive 
structures from perturbation procedures. His 
analysis was predicated primarily on the studies 
earlier enunciated by [1-3]. Other Pertinent 
investigations include those by [13,14,15,16], 
among others. 
 
However, a cursory appraisal of all the 
investigations to date reveals that the 
phenomenon of damping has been given very 
little or no attention at all in the dynamic buckling 
process. We are of the strong opinion that since 
dynamic buckling process is a time dependent 
process, the effect of damping, no matter how 
slight, should not be overlooked. In this 
investigation, the presence of a small viscous 

damping is therefore assumed and given some 
level of prominence. Of course, the result 
obtained is far more representative of the actual 
physical life situation. To this end, we remark that 
a few of the many existing investigations that 
have tended to incorporate damping include the 
studies by [17-20], among others.  
 
The layout of this investigation is as follows: 
 
We shall first write down the mathematical 
equations satisfied by the structure investigated. 
 
We shall next develop asymptotic techniques, 
using perturbation procedures to solve the 
governing equations analytically. We note that 
dynamic bucking problems are always non linear 
and therefore, closed-form exact solutions are 
not always possible. Therefore, regular 
perturbation method provides a suitable 
alternative to the solution of such problems, 
particularly when the problems contain small 
parameters in which asymptotic series expansion 
can always be invoked. 
 
We shall lastly make pertinent deductions. 
 
There are five sections in this paper. Section two 
examines the dynamic buckling load of an 
imperfect viscously damped spherical cap 
stressed by a step load. Section three introduces 
the viscous damping to Danielson’s results. 
Section four considers the analysis of results 
while section five ends this work with a 
conclusion. 
 
2. THE DYNAMIC BUCKLING LOAD 
 
Danielson, had, for simplicity, assumed that the 
normal displacement  TyxW ,,  of the spherical 

cap was given as 

 

             yxWTyxWTyxWTTyxW ,,,,, 221100                                                  (1) 

 

where  yxW ,0  is the pre-buckling mode and    yxWyxW ,,, 21  are the axisymmetric and non-

axisymmetiic modes respectively.
 

   TT 10 ,  and  T2  are the respective time dependent 

amplitudes of the associated modes. Imperfection 


W was introduced as 
 

 2211 WWW


                                                                                                                   (2) 
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Where 21,WW  still have meanings as before and 



21,  are the imperfect amplitudes assumed to 

be small relative to unity. On assuming suitable 

forms for 210 ,, WWW and substituting same into 

the compatibility and dynamic equilibrium 
equations and simplifying, using his 
assumptions, Danielson obtained the following 
coupled differential equations for step loading. 
 

  Tf
dT

d





 02

0
2

2
0

1
                                (3) 

 

  01
2
22

2
11012

1
2

2
1

1
1








 kk
dT

d
   (4)   

                                

  0221022
2

2

2
2

1
1









dT

d
            (5) 

    

    .2,1;000 /  iii                          

 

Here,  Tf  is the loading history which in our 

investigation, (as in Danielson’s case), is the step 
load characterized by 
 

   0,1
0,0


 T
TTf    ,                                            (6) 

 

and,  ,is the load parameter, considered to be 
non-dimensionalized and satisfies the inequality

.10    
 
In our guest for solution, we are to determine a 

particular value of , called the dynamic buckling 

load represented by D and which satisfies the 

inequality .10  D   We define the dynamic 

buckling load D as the largest load parameter 
such that the solution to the damped version of 
problems (3)-(6) remains bounded for all time 

T>0. As in (3)-(5), we note that 2,1,0; ii are 

the circular frequencies of the associated modes 

10 ,  and 2  respectively while 2k  and 2k are 

constants considered positive. 
 

3. THE USE OF VISCOUS DAMPING IN 
DANIELSON’S RESULTS 

 
The present study is an extension of Danielson’s 
problem to the case where a small viscous 
damping is present. We however avoid 
Danielson’s method (who used Mathieu – type of 
instability), for, as noted by [3, page 100], 
Mathieu – type  of instability is always associated 
with many cycles of oscillations as opposed to 
just one shot of oscillation that triggers off 
dynamic buckling. 
 
For simplicity of analysis, we assume the 
existence of damping on the buckling modes. 
Since this damping must be only proportional to 

the velocity, we add the terms 
dT

d
c 1
1


 and 

dT

d
c 2

2


 to (4) and (5) respectively and the 

formulation now becomes 
 

 Tf
dT

d
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1                                     (7)  
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 kk
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d
c
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 (9)  

 

where 2,1, ici  are the damping constants 

and which satisfy the inequality .10  ic  
 

Using   1Tf  and substituting (6) into (7) we 

have  
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Now using, 
 

,0Tt   

 
so that 
 

       
2

2
2

2

2

0 ,
dt

d

dT

d

dt

d

dT

d
o  , 

 
 

Then    1210   become       
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                                                                                                                      (13) 
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 kk
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Next, we let   
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 SRQ

cc
                                               (16)    

        
where, 
 

2

0

12













 Q ,                                                                                                            (17)  

 
 and 
 

1010,10,10,10 21   andRQ       

    
Substituting (16) into (14) and (15) yield 
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dt

d
                                                                                                                      (18)     
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 QQkQkQ
dt

d
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d
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  02
2

21
2

02
22

22
2

2

12 



 

 RRR
dt

d

dt

d
                                                        (20) 

    

    .2,1;00 /  ioii      

                                                                                                

As in  31 , we neglect the pre-buckling inertia term, so that from (18) we get 

 

 0                                                                                                                                   (21) 

 
Here, we assume zero pre-buckling inertia term since the load imparts zero initial displacement and 
velocity to the pre-buckling mode. 
 
On simplification, using (21), equations (19) and (20) yield 
 



 1
2
2

2
2

2
1

2
111

21
12

1
2

2 





QkQkQ
dt

d

dt

d
                                                   (22)  

 
and    
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2
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22

22
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SRSR
dt

d

dt

d
                                                            (23) 

            

    2,1;000 /  iii   

 
where, 
 

.

2










Q

R
S  

 

We assume a small time scale such that, 
 

t                                                                                                                                    (24a)  
 
and 
 

 ,,
/

itii                                                                                                                     (24b)     

                                                                                                                                    

2,1;2 ,
2

,,
//  iitittii                                                                                       (24c) 

 

We denote our perturbation parameter by   so that 
 

     i

i

i tt  





1

1 ,                                                                                                              (25)  

     i
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i tt  ,
1

2 




                                                                                                             (26) 
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Substituting (25) and (26) into (22) and (23), using (24b) and (24c), equating terms of the orders of   
we get, 
 

   


 1
121

,  Qtt                                                                                                                   (27) 

   

             1
,

212
2

212
1

11
,1

222
, 22  tttt QkQkQ                                              (28) 

 
and  

                                                                       

              
   



 2
121

,  SRtt                                                                                                              (29) 

 
             1121

,
11

,2
222

, 22   RSR tttt                                                              (30)  

                  
      2,1,00,00,0  iii                                                                                              (31) 

       
      2,1,00,00,0 ,,  ii

t
i
t                                                                                              (32)   

 
            2,1,00,00,00,00,0 ,

1
,,

1
,   iii

t
ii

t                                                        (33)  

           
The solution of (27) using (31) and (32) is 
 

      
2
1

11
1 sincos,

Q
QtbQtat






                                                                       (34a) 

 

    00;0 12
1

1 



b
Q

a


                                                                                                      (34b) 

                                                               
Similarly, the solution of (28) is 
 

      
2
2

22
1 sincos,

R

S
RtbRtat






                                                                      (35a)     

           

                  00;0 22
2

2 



b
R

S
a


                                                                                                  (35b) 

 
Substituting using (34a) and (35a) into (28), we have  

     

















2
1

11111
222
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To maintain a uniformly valid asymptotic solution in time scale t , we equate the coefficients of Qtcos  

and Qtsin  to zero to get (on the rhs of 36). This ensures a finite at infinite time, i.e. as t  tends to 

infinity, such terms tends to zero. The terms are called secular terms, we therefore device a way of 
eliminating the terms, hence making the solution bounded for all t  

Qtcos :- 02
2

α2 /
12

2
111

111 
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Q
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On simplification, we get 
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1 abb                                                                                                                     (37a) 

 
 Similarly, 

Qtsin  :- 02
2
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2
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Simplifying gives 
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where, 
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and 
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Simplification of (37a, b) yield 
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                                                                                               (37d) 

 
The remaining part of the equation in the substitution into (28) as obtained from (36) is  
 

        QtpQtpQkqQtt 2cos2sin 10
2

11
222

,                                              

        RtpRtpRtpRtpQk sincos2cos2sin 5432
2

2                                 (38a) 
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where,  
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                                                            (38f)  
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The solution of (38a), using (38b) is 
  

           QtpQtp
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Substituting using (34a) and (35a) into (30) we get,  
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Now, to ensure a uniformly valid asymptotic 
solution in tine scale t, we equate the coefficients 

Rtcos  and Rtsin  to zero. This will ensure a 

finite at infinite time, i.e. as t  tends to infinity, 
such terms tends to zero thereby making the 
solution not to be bounded, hence non-uniform. 
Such terms are called secular terms and our aim 
is to get rid of them.  
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Simplifying gives 
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Simplification of (41a, b) yield 
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The remaining part of the equation in the 
substitution into (30) as obtained from (40) is
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The solution of (42a) using (42b) is     
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Next, using (34a), (39a) and (35a), (43a) we deduce the displacements as 
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1   ttt                                                                                     (44a) 

 
and              

        ...,, 221
2   ttt                                                                                    (44b) 

 

We seek the maximum displacement for both  t1  and  t2 . To achieve this, we shall first 

determine the critical values of t and  for each of  t1  and  t2  at their maximum values. The 

condition for the maximum displacements of  t1  and  t2  is obtain from (24b). hence 
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We know from (44a, b) that 
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                     ...,, 221
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On applying (45a, b) to (46a, b), we get 
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+        0...,, 22
,

1
,    cccc TT                                                                            (47b) 

 

where,  aat ,  and  ccT ,  are the values of t and  at the maximum displacement of    ,t  and 

  ,t  respectively. 

 

We now expand (47a, b) in a Taylor series about 0,0  aa tt   and 0,0  cc TT  , and thereafter 

equate to zero the terms of the same orders of   to get 
                   

   00,0
1

, tt                                                                                                                        (48a) 
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            00,0,0,0, 0
1

,0
2

,0
1

,00
1

,1  tttttt tttt                                                              (48b) 

 
and 
 

   00,0
1

, Tt                                                                                                                       (49a)  

 
            00,0,0,0, 0

1
,0

2
,0

1
,00

1
,1  TTTTTT tttt                                                         (49b) 

 

Substituting for 
 1
,t  from (34a) in (48a) and simplifying we get 

 

0sin 0 Qt                                                                                                                          (50a) 

 
A further simplification of (50a) gives 
 

Q
t


0                                                                                                                                 (50b) 

 
A similar solution for (49a) is 
 

R
T


0                                                                                                                                (50c) 

 
Next, we deduce from (48b) that 
 

  
         0,0,0,

0,

1
0

1
,0

2
,0

1
,0

0
1

,

1 tttt
t

t tt

tt

 


                                                            (51a) 

 
Simplification of the following terms are however necessary in this analysis,  

      810
1

,72
2

26115110
2

, 0,;0,
22

ltlSklklt tt



                                                    (51b) 

 

         1010
1

10
1

,910
1

, 20,;0,;0, lttlt tt



                                                               (51c) 

 

      ;00,;20, 0
1

,13

2

22212111110
2

22











tl
R

S
klklt t                                             (51d) 

 
where 
 

 223
0

2

72
0

625
4

2
;

3

2
;

1

RQR

RtSinQ
l

Q

QtSin
l

Q
l


                                                                       (51e) 

 
 

42124112102
1

98
3

11
;

1
;

1
;;

QQ
l

Q
l

Q
l

Q
l

Q
l 


                                                     (51f) 
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2222

2

2222213

2

4

1

4

1

42

1
1

RQRQ
Q

RQRRQ
l                        (51g) 

 
 
On substituting (51, b-d) on (51a), we have 
 

980722611511 lltlSklklt 


                                                                                (52) 

 
Similarly, deducing from (49b) yields 
 

  
         0,0,0,

0,

1
0

1
,0

2
,0

1
,0

0
1

,

1 tTTT
T

T tt

tt

 


                                                        (53a) 

 
We however note the following simplifications  

      1720
1

,1621152
2

14220
2

, 0,;0, lSTlSlSlST tt



                                         (53b) 

 

         2020
1

20
1

,182
2

0
1

, 20,;0,;0, lSTSTlST tt



                                            (53c) 

 

      ;00,;0, 0
1

,1921
2

212
2

0
2 



TlSRlST t                                                           (53d) 

 
where 
 

03152
0

14 sin;
cos

RTRll
R

RT
l                                                                                      (53e) 

 

     
   

   
   

    

































QRRQQ

TRQRQ

QRRQQ

TRQRQ

QRRQ

QT

QRQR

QT

R
RTSlRl

2

sin

2

sin

2

cossin2

2
sin

2
0

2
0

2
0

222
0

2

04
3

16                   (53f) 

 

 
4214212202

2
1817

1
;

1
;

1
;;

R
l

R
l

R
l

R
l

R
l 





                                                           (53g)       

    

  
 

   
 

    




























QRRQQ

TRQ

QRRQQ

TRQ

QRRQ

QT
ll

2

cos

2

coscos2

2

1
2

0
2

0
2222

0
419                    (53h) 

 
On substituting (53, b-d) on (53a), we have 
 

181701611421 llTllT 


                                                                                               (54) 
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We, now, determine the maximum values of  t and  t  say a  and c  respectively by evaluating 

(46 a, b) at the critical values namely aatt   ,  and ., ccTT    

 
      ...,, 221   aaaaa tt                                                                                  (55a) 

 
 

      ...,, 221   ccccc TT                                                                                 (55b) 

 
 
Expanding (55 a) in Taylor series using, 
 

 ......; 2
2

102
2

10  tttttttt aaa                                                     (56a) 

 
we have 
 

            ...0,...0,0, 1100
1

,2
2

10
1

,0
1    ttttttt ta   

   ...0, 2
0

2   t                                                                                                               (56b)                             

 
Regrouping the terms in orders of   yields 
 

             ...0,0,0,0, 0
2

0
1

,00
1

,1
2

0
1  tttttt ta                                               (56c) 

 
On substituting the terms in (56c) from (51, b-d), we have 
 

...22 2
13

2

2221211111910101

22























 l
R

S
klklltla                                     (57)        

                                                                                                                
Similarly, expanding (55 b) in Taylor series using, 
 

 ......; 2
2

102
2

10  TTTTTTTT ccc                                               (58a) 

 
we have 
 

             
            ...0,...0,0, 1100

1
,2

2
10

1
,0

1  TTTTTTT tc    

   ...0, 2
0

2   T                                                                                                               (58b)                                                                                       

 
Regrouping the terms in orders of   yields 
 

             ...0,0,0,0, 0
2

0
1

,00
1

,1
2

0
1  TTTTTT tc                                          (58c) 

 
On substituting the terms in (58c) from (53, b-d), we have 
 

...2 2
1921

2
212

2
182

2
0202 









 lSRlSlSTlSc                                           (59) 
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The net maximum displacement m  is 

 

   ccaacam Tt  ,,                                                                                        (60) 

 
Substituting for terms in (60) from (57) and (59) we get    
               

             ...2
21   CCm                                                                                                           (61a) 

 
where 

1921
2

13

2

2221211242
2

2312221

22

; lSRl
R

S
klklSlClC









                            (61b) 

 

 180212490112320210122 ;2;22 lTllltlllSll 


                                                     (61c) 

 

As noted by  31  and  21 ,the condition for dynamic buckling is 

 

0
md

d




                                                                                                                               (62) 

 
As in [21,22], applying the method of reversal of series of (61a), we get 
 

...2
21  mm dd                                                                                                              (63)  

 

Substituting for m  from (61a) in (63) and equating powers of orders of , we get  

 

3

1

2
2

1

1 ,
1

C

C
d

C
d                                                                                                               (64) 

 
The maximization in (62) is better done from (63), thus implementing (62) using (63) we have 
 

 
2

2
1

2C

C
Dm                                                                                                                        (65) 

 

where,   Dm   is the value of the net displacement at buckling. In determining the dynamic buckling 

load, we evaluate (63) at 
 

D   

 
to yield 
 

   DmDm dd 


 21                                                                                                 (66)  

 

On substituting for terms 1d and 2d from (64) and  Dm   from (65) in (66) and simplify to get  

2

1

4C

C
D                                                                                                                             (67) 
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The expansion of (67) gives [using (61b, c)] 
  

1

1921
2

13

2

2221211242
2

231

202101

2

1

0

22

22
4

1






















































lSR

l
R

S
klklSl

lSlD









           (68) 

 

Here, (68) gives the formula for evaluating the dynamic buckling load D , and is valid for 

)1,1,2,,2,1( QQQQR   and )12,0,1,1,2,(  RRRRRQ  

 

4. ANALYSIS OF RESULT 
 
We note that the results display all the imperfection parameters stated in problems (3)-(5).This is 
unlike Danielson’s problem in which the axisymmetric imperfection was neglected for easy solution. In 
fact, the method is such that we can adequately account for all modal imperfections allowed in the 

formulation .The contributions of the quadratic terms 
2
22

2
11 ,  kk  and the coupling term 21 are 

respectively given in the denominator of (68) by  and 19

_

2

_

1
2 SlR  . 

Thus if we assume that the axysymmetric imperfections are zero then ,01 


 and the dynamic 

buckling load D responsible for the buckling in this case is obtained from (68) as 
 

1

13

2

222242
2

202

2

1

0

2

2
4

1



































 l

R

S
klSlSD 




                                                    (69) 

 
We note from (69), that, the effects of the 

coupling terms 21 , 01  and the quadratic term

2
11k  are zeros. The effect of the quadratic term 

2
22k  is non-zero and it is this term that 

dominates the buckling process. Neglecting 


1 is 

sufficient to completely nullify the effect of 
2
1

where the converse is not necessarily the case. 
 
However, if the non-axymmetric imperfections 

are neglected then ,02 


 and the dynamic 

buckling load D following (68) become 

 
1

1211231101

2

1

0

2

2
4

1


























 lkllD 




     (70) 

We deduce from (70), that, the effects of the 

coupling terms 21 , 02  and the quadratic term 

2
22k  are again zeros. The effect of the quadratic 

term 
2
11k  is non-zero and this singular term is 

the only non-linear term that influences the 

buckling process. Neglecting 


2 is sufficient to 

completely nullify the effect of 
2
2 where the 

converse is not necessarily the case. 
 
The results also confirm that the only condition 
under which the effects of the coupling term 



21  would be felt is if none of the imperfection 

parameters in the shape of the mode coupling is 
neglected. In other word, is that nether the 

imperfection parameter 


1 nor 2



 should vanish 

for post dynamic buckling behavior of the 
structures. Once an imperfection is neglected the 
coupling effect of the mode that is in the shape of 
the neglected imperfection, with any other mode 
is neglected. 
 
The graphical view of this phenomenon, we 
assume the following values. k1 = 0.2, K2 = 0.3, 

132221111

22

, l
R

S
klk 
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1ξ


 = 0.02, 2ξ


= 0.03, 1 = 0.01 and 2 = 0.03. By 

varying 2ξ


and 2 while keeping 1ξ


constant at 

0.02 and 1 = 0, the corresponding values of D 

were computed from (68). The plots of dynamic 
buckling load against the imperfection parameter 
and light viscous damping of the discretized 
spherical cap are shown in Figs. 1 and 2 below.  

 

 
 

Fig. 1. Dynamic buckling load of a spherical cap against the imperfection parameter  

2ξ


 ( 0.02ξ1 


) 

 

 
 

Fig. 2. Dynamic buckling load of a spherical cap against the light viscous damping 2(1 = 0) 
‘
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From Fig. 2 above we observe that dynamic 
buckling load increases with increased damping. 
Also in Fig. 1 dynamic buckling load increases if 
the structure is less imperfect, in other word, 
dynamic buckling load decreases with increased 
imperfection.  

 
5. CONCLUSION 
 
From the above discussions, we note that while 

neglecting the imperfection parameters 


1 and 



2 automatically implies, among other things, 

neglecting the effects of the non-linear terms 
2
11k  and 

2
22k  respectively. Also, we observe 

that the only condition under which the effect of 

the coupling term  21  would be felt, is when the 

imperfection parameters 


1 and 


2 are not equal 

to zero. Moreover, our results confirm those 
obtained by [23,24]. Finally, we notice that we 
can determine the value of the dynamic buckling 

load D for whatever number of modal 

imperfections 
 

COMPETING INTERESTS 
 
Authors have declared that no competing 
interests exist. 
 

REFERENCES 
 
1. Hutchinson JW, Budiansky B. Dynamic 

buckling estimates. AIAAJ. 1966;4:525-
530. 

2. Budiansky B, Hutchinson JW. Dynamic 
buckling of imperfection- sensitive 
structure, proceedings of the XIth Inter. 
Congr. Applied Mech., Springer-Verlag, 
Berling; 1966.                     

3. Budiansky B. Dynamic buckling of elastic 
structures; Criteria and estimates, in, 
Dynamic stability of structures. 
Pergamons, New York; 1966. 

4. Ohsaki M. Imperfection sensitivity of 
optimal, symmetric braced frames against 
buckling. Int. J. Non-Linear Mechanics. 
2003;38(7):1103-1117. 

5. Dumir PC, Dube GP, Mullick A. 
Axisymmetric static and dynamic buckling 
of laminated thick truncated conical cap. 
Int. J. Non-Linear Mechanics. 2003; 
38(6):903-910.    

6. Kardomateas GA, Simites GJ, Shem L, Li 
R. Buckling of sandwich wide columns, Int. 
J. Non-Linear Mechanics. 2002;37(7): 
1239-1247.   

7. Anwen W, Wenying. Characteristic-value 
analysis for plastic dynamic buckling of 
columns under elastoplastic compression 
waves. Int. J. Non-Linear Mechanics. 
2003;38(5):615-628. 

8. Rafteyiannis IG, Kounadis A. Interaction 
under step loading. Int. J. Non-Linear 
Mechanics. 2000;35(3):531-542. 

9. Wei ZG, Yu JL, Batra RC. Dynamic 
buckling of thin cylindrical shells under 
axial impact. Int. J. Impact Engng. 2005; 
32:572-592.                 

10. Batra RC, Wei ZG. (2005), Dynamic 
buckling of thin thermoviscoplastic 
rectangular plate. J. of Thin-Walled 
Structures. 2005;43:273-290.  

11. Zhang T, Liu TG, Zhao Y, Luo JZ. 
Nonlinear dynamic buckling of stiffened 
plates under in-plane impact load. J. of 
Zhejiang University of Science. 2004;5(5): 
609-617. 

12. Danielson D. Dynamic buckling loads of 
imperfection sensitive structures from 
perturbation procedures. AIAAJ. 1969;7: 
1506-1510. 

13. Aksogan O. Sofiyev AV. Dynamic buckling 
of cylindrical shells with variable thickness 
subjected to a time-dependent external 
pressure varying as a power function of 
time, J. of Sound and Vibration. 2002; 
254(4):693-703. 

14. Schenk CA, Schueller GI. Buckling of 
cylindrical shells with random 
imperfections. Int. J. Non-Linear 
mechanics. 2003;38:1119-1132. 

15. Wang A, Tian W. Twin characteristics- 
parameter solution under elastic 
compression waves. Int J. Solids 
Structures. 2002;39:861-877. 

16. Wang A, Tian W. Twin characteristic 
parameter solutions of axisymmetric 
dynamic plastic buckling for cylindrical 
shells under axial compression waves. Int. 
J. Solids Structures. 2003;40:3157-3175.  

17. Ette AM. On a two-small-parameter 
dynamic buckling of a lightly damped 
spherical cap trapped by a step load. 
Journal of the Nigerian Mathematics 
Society. 2007;23:7-26. 

18. Ette AM. On a two-small-parameter 
dynamic stability of a lightly damped 
spherical shell pressurized by a harmonic 
excitation. Journal of the Nigerian 



 
 
 
 

Ozoigbo et al.; PSIJ, 7(3): 192-213, 2015; Article no.PSIJ.2015.086 
 
 

 
211 

 

Association of Mathematical Physics. 
2007;11:333-362. 

19. Ette AM. On the buckling of lightly damped 
cylindrical shells modulated by a periodic 
load. Journal of the Nigerian Association of 
Mathematical Physics. 2006;10:327-344. 

20. Ette AM. Perturbation technique on the 
dynamic stability of a damped cylindrical 
shell axially stressed by an impulse, 
Journal of the Nigerian Association of 
Mathematical Physics. 2008;12:103-120. 

21. Amazigo JC. Buckling of stochastically 
imperfect columns of nonlinear elastic 
foundations. Quart. App. Math. 1973;31: 
403. 

22. Amazigo JC. Dynamic buckling of 
structures with random imperfections. 
Stochastic problem in Mechanics. Ed. H. 
Leipolz, University of Waterloo Press. 
1974;243-254. 

23. Ette AM. Dynamic buckling of imperfect 
spherical shell under an axial Impulse. Int. 
J. Non-Linear Mechanics. 1997;32(1):201-
209.      

24. Ette AM. Perturbation approached on the 
dynamic buckling of a lightly damped 
cylindrical shells modulated by a periodic 
load. Journal of the Nigerian Mathematics 
Society. 2009;28:97-135. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

Ozoigbo et al.; PSIJ, 7(3): 192-213, 2015; Article no.PSIJ.2015.086 
 
 

 
212 

 

APPENDIX 

 

k1=0.2; 

k2=0.3; 

zi2bar=0.03; 

zi1bar=0.02; 

alpha1=0.01; 

alpha2=0.03; 

R=0.1; 

Q=0.3; 

S=(R/Q)^2; 

L0=-1/Q^4; 

L1=-1/(2*Q^2) + 1/(6*Q^2); 

L2=0.5 + 1/(2*(Q^2-4*R^2))-2/(R^2*(Q^2-4*R^2)); 

L3=-1/R^4; 

L4=1/(R^2*Q)^2 + 0.5*(-2/((R*Q)^2*(R^2-Q^2))-1/(Q*(R*Q)^2*(2*R+Q)) + 1/(Q*(R*Q)^2*(2*R-Q))); 

L5=1/Q^2; 

t0=pi/Q; 

Bt0=pi/R; 

phi=1/(2*Q)*(1+2*k1*zi1bar); 

L6=sin(2*Q*t0)/(3*Q^2); 

omega=1/(2*R)*(S-R^2*zi1bar/Q^2); 

L7=Q^2*sin(2*R*t0)/(R^3*(Q^2-4*R^2)); 

L8=phi/Q; 

L9=-alpha1/Q^2; 

L10=1/Q^2; 

L11=1/Q^4; 

L12=1/Q^2-1/(3*Q^4); 

L13=-1 -1/(2*(Q^2-4*R^2)) + 1/(R^2*(Q^2-4*R^2))-Q^2*(1/(Q^2-4*R^2))+ 2/(Q^2-R^2); 

L14=-cos(R*Bt0)/R^2; 

L15=-R*L3*sin(R*Bt0); 

L16=-R^3*S*L4*sin(R*Bt0)-(R^2/2)*(2*sin(Q*Bt0)/(Q*R^2*(R^2-Q^2))-
cos(Q*Bt0)/((R*Q)^2*(2*R+Q))-(Q+R)*sin(Q+R)*Bt0/(Q*(R*Q)^2*(2*R+Q))-(Q-R)*sin(Q-
R)*Bt0/(Q*(R*Q)^2*(2*R-Q))); 

L17=omega/R; 

L18=-alpha2/R^2; 

L19=-L4 + 0.5*(2*cos(Q*Bt0)/(Q^2*R^2*(R^2-Q^2)) + cos(Q+R)*Bt0/(Q*(R*Q)^2*(2*R+Q)) + 
cos(Q-R)*Bt0/(Q*(R*Q)^2*(2*R-Q))); 

L20=1/R^2; 

L21=1/R^4; 

L22=2*zi1bar*L10 + 2*S*zi2bar*L20; 

L23=2*L11 + t0*L9; 

L24=L21+Bt0*L18; 

c1=L22; 

c2=zi1bar*L23+S^2*zi2bar*L24+k1*zi1bar^2*L12 + 
k2*zi2bar^2*(S/R^2)^2*L13+R^2*zi1bar*zi2bar*S*L19; 

LambdaD=c1/(4*c2*Q^2); 
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z=LambdaD; 

 

INTERPRETATION OF VARIBLES 

 

zi1bar =


1 , zi2bar =


2 , alpha1 = 1 , alpha2 = 2 , t0 = 0t , Bt0 = 0T , phi = , Omega = , pi= � , 

LambdaD = D . 
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