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ABSTRACT

This paper determines the dynamic buckling load of a lightly and viscously damped imperfect
spherical cap with a step load. The spherical cap is discretized into a pre-buckling symmetric mode
and a buckling mode that consists of axisymmetric and non-axisymmetric buckling modes. The
imperfection is taken at the shape of the buckling mode. The inherent problem contains a small
parameter which necessitated the adoption of regular perturbation procedures, using asymptotic
technique. The general result is designed to display the contributions of each of the terms in the
governing differential equations. We deduce the results for the respective special cases where the

axisymmetric imperfection parameter, namely &, , and the non-axisymmetric imperfection

parameter &2 , are zeros. We also determine the effects of each of the non-linear terms as well as
the effects of the coupling term.
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1. INTRODUCTION

The subject of dynamic buckling of elastic
structures has been a thriving area of
investigation ever since [1-3] developed the
discipline of dynamic stability of elastic structures
from the original static consideration that was
prevalent before this time. Over the years, many
investigations on dynamic stability of elastic
structures have been added to the original
sketchy and scattered pieces that saw the
genesis of dynamic buckling of elastic structures
as a research interest. Among the many
scholarly investigations that have come to light
include [4,5,6,7,8], who investigated the dynamic
buckling, of two-degree — of freedom systems
with  mode interaction under step loading.
Mention must also be made of relatively recent
investigations which include [9], who investigated
the dynamic buckling of thin cylindrical shells
under axial impact, [10,11], who studied the
nonlinear dynamic buckling of stiffened plates
under in-plane impact load.

But by far, the investigation that concerns us in
this study is that by [12], who investigated the
dynamic buckling loads of imperfection-sensitive
structures from perturbation procedures. His
analysis was predicated primarily on the studies
earlier enunciated by [1-3]. Other Pertinent
investigations include those by [13,14,15,16],
among others.

However, a cursory appraisal of all the
investigations to date reveals that the
phenomenon of damping has been given very
little or no attention at all in the dynamic buckling
process. We are of the strong opinion that since
dynamic buckling process is a time dependent
process, the effect of damping, no matter how
slight, should not be overlooked. In this
investigation, the presence of a small viscous

damping is therefore assumed and given some
level of prominence. Of course, the result
obtained is far more representative of the actual
physical life situation. To this end, we remark that
a few of the many existing investigations that
have tended to incorporate damping include the
studies by [17-20], among others.

The layout of this investigation is as follows:

We shall first write down the mathematical
equations satisfied by the structure investigated.

We shall next develop asymptotic techniques,
using perturbation procedures to solve the
governing equations analytically. We note that
dynamic bucking problems are always non linear
and therefore, closed-form exact solutions are
not always possible. Therefore, regular
perturbation method provides a suitable
alternative to the solution of such problems,
particularly when the problems contain small
parameters in which asymptotic series expansion
can always be invoked.

We shall lastly make pertinent deductions.

There are five sections in this paper. Section two
examines the dynamic buckling load of an
imperfect viscously damped spherical cap
stressed by a step load. Section three introduces
the viscous damping to Danielson’s results.
Section four considers the analysis of results
while section five ends this work with a
conclusion.

2. THE DYNAMIC BUCKLING LOAD

Danielson, had, for simplicity, assumed that the
normal displacement W(x,,T) of the spherical

cap was given as

W (x,,T) = &(TW,(x,»)+ &(T W (x, )+ & (T W, (x, ») (1)

where Wo(x,y) is the pre-buckling mode and Wl(x,y),Wz(x,y) are the axisymmetric and non-

axisymmetiic modes respectively. §0(T),§1(T) and fz(T) are the respective time dependent

amplitudes of the associated modes. Imperfection W was introduced as

W=§1VVI+§2W2
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Where JV,,IW, still have meanings as before and

&,,&, are the imperfect amplitudes assumed to
be small relative to unity. On assuming suitable
forms for W, W,, W,and substituting same into
the compatibility and dynamic equilibrium
equations  and simplifying, using his
assumptions, Danielson obtained the following
coupled differential equations for step loading.

1 d? &,

T +&=2f(T) (3)
LG s\ pe e

o ar Al a) ke kg =64
1.d%, 3 o

T +&(1-&)+EE =66 (5)

£(0)=£/(0)=0;i=1,2.

Here, f(T) is the loading history which in our

investigation, (as in Danielson’s case), is the step
load characterized by

fr)=prs (6)

and, A ,is the load parameter, considered to be
non-dimensionalized and satisfies the inequality
0<A<l.

In our guest for solution, we are to determine a
particular value of A, called the dynamic buckling
load represented by A, and which satisfies the

inequality 0 < A, <1. We define the dynamic

buckling load Ap as the largest load parameter
such that the solution to the damped version of
problems (3)-(6) remains bounded for all time
T>0. As in (3)-(5), we note that ;i =0,1,2are

the circular frequencies of the associated modes

L, deﬁ Y
aar Tagr Tall-g) ke
1d% X _;

o ar Tagr Tel-G)vaG =64

&,»,¢ and &, respectively while &, and £, are
constants considered positive.

3. THE USE OF VISCOUS DAMPING IN
DANIELSON’S RESULTS

The present study is an extension of Danielson’s
problem to the case where a small viscous
damping is present. We however avoid
Danielson’s method (who used Mathieu — type of
instability), for, as noted by [3, page 100],
Mathieu — type of instability is always associated
with many cycles of oscillations as opposed to
just one shot of oscillation that triggers off
dynamic buckling.

For simplicity of analysis, we assume the
existence of damping on the buckling modes.
Since this damping must be only proportional to

the velocity, we add the terms ¢ —2* 6‘ and
s, -
c, T to (4) and (5) respectively and the
formulation now becomes
1 d’¢,
— +& =M(T (7)
1 d*  d ,
e el ke kg =gg @)
1 dzfz d§2 e
— + + = 9)
" H1-&)+ée =64

where ¢,,i=1,2 are the damping constants

and which satisfy the inequality 0 <c, <1.

Using f(T)zl and substituting (6) into (7) we
have

d’g,
dT?

+& =41 (10)

1
2
0

:6;1650
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Now using,
t=w,T,

so that

ar " dt ’ dT?

d()_, 40 &()_ .d'()

Then (10)— (12) become

d§o

+& =

dr
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(13)

ﬁ cla)Oa)l dé, o 1 2 _
dt |: 500 }dt |:a)0} é:l( 50) |:(00} k§1 |:a)0} 262—{ (J &4, (14)

2 2
d* w0 |d ) ®, | -
d_g?-k[#} 52 { } 52( ézo)"'{_z} 5152 :[_2} 52 50 (15)
t ] dt | o, @, @,
Next, we let
¢’ c,w? ) ) o, |
2a,e =99 2g = Z,Qz_l,Rz_z,S{_Z} (16)
@, @, @, @,
where,
2
£= Q" = z[ﬂ} , (an
@,
and
0<a <], 0<a,<1, 0<0<1, 0<R<land 0<e<1
Substituting (16) into (14) and (15) yield
d’ 50 +& = (18)
d? d -
L2000 00 (126K QS HhOE =075, (19)
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&g,
d2

#2009 4 RE(1-6)+ K66 - R 6.6, 20)
£0)=¢/(0)=0si=1,2.
Asin [1 - 3], we neglect the pre-buckling inertia term, so that from (18) we get

S =4 (21)

Here, we assume zero pre-buckling inertia term since the load imparts zero initial displacement and
velocity to the pre-buckling mode.

On simplification, using (21), equations (19) and (20) yield

e, 51

- QG el kO + RO =4 (22)
and
d? -
dlf +2a a,& dgtz +R’ 52 &952 +R2§1§2 =&5 52 (23)
£(0)=&(0)=0;i=1,2
where,

We assume a small time scale 7 such that,

=4 (24a)
and
&l =&, +e, (24b)
gi// = é:i,tt + 28&5[‘,17 + g2é:i,rr;i = 1’2 (240)

We denote our perturbation parameter by € so that
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Substituting (25) and (26) into (22) and (23), using (24b) and (24c), equating terms of the orders of &
we get,

Wi =¢ (27)
s+ 0" = 206" + 5V + Q" -k, 0" - 260 (28)
and
7+ R =8 & (29)
1%+ Ron® =20, + Sp" - 25\ - RV (30)
¢(0,0)=7"0,0)=0,i =1,2 (31)
¢0,0)=7"0,0)=0,i=1,2 (32)
510,00+ 6%(0,0)=71"(0,0)+7(0,0)=0,i =12 (33)

The solution of (27) using (31) and (32) is

¢

¢W(t,7)=a,(r)cos Ot + b, (r)sin Ot + red (34a)
a,(0)= =213 (0)= 0 (34b)
1 Q2 >~
Similarly, the solution of (28) is
n(l)(t, )= a,(z)cos Rt + b,(r)sin Rt + %522 (35a)
a,(0)=— 56, :b,(0)=0 (35b)

R’
Substituting using (34a) and (35a) into (28), we have
g&f) +O Y = —20, [—Qa1 sinQt+ lecoth]+ a, cosQt+ blsithJri

o
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-k, 0’ %[%2 +b;1+a,b, sin2Rt+%[a§ —bj]cosZRt}

-k, Q| + —2(1;5&2 cosRt+ —2b§82é2 sinRt

+k, O B[af +b ]+ alblsinZQt+%[af —bf]cosZQt}

+k O + % cos Qt+ % sinQt| +20 [a'lsin Ot— b'lcoth] (36)

To maintain a uniformly valid asymptotic solution in time scale ¢, we equate the coefficients of cos Ot

and sin Q¢ to zero to get (on the rhs of 36). This ensures a finite at infinite time, i.e. as f tends to

infinity, such terms tends to zero. The terms are called secular terms, we therefore device a way of
eliminating the terms, hence making the solution bounded for all ¢

2ak & 0 _2/0=0

cosQt:- —2a,b0+a, + >

On simplification, we get
b +ab =i[1+2k é}
1 11 2Q 151

b +ab, = a,p (37a)

Similarly,
£ N2
sinQt - 2a,a,0+b, +%+2a1@:0
Simplifying gives

a +aga, :—;—IQ[H%I 9%}

a +aa, =—bg (37b)

where,
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and

1 -
(D=E|:l+2kl §l:|

Simplification of (37a, b) yield

2 /
bl +ab = —qo{bl[w + a—l} L ab }
o] ¢

aZ
b +2ab] + (pb{gp + —1} =0
2

5,(0)=0:5/(0)= -2 (37¢)

2

and

2 /
a +aa =— (o{a{(o + a—l} + %}
® ®

az
a +2aa] + (oal{(0+ —L1=0
2

al(o)z_g;a;(o)zaé_f (37d)

The remaining part of the equation in the substitution into (28) as obtained from (36) is

5+ 0% = g, +kQ?[p(¢)sin20r + p,(¢)eos201]

— k,0*[p,(r)sin2Rt + p,(r)cos2Rt + p,(r)cos Rt + p(r)sin Rt (38a)
c2(0,0)=0:c7(0,0)+c(0,0)=0 (38b)
where,
_& 2 (N 2 . _ l[ 2 _ 2]
4 =7 Tk 1(e)= k0 (ek pole) = abi () =S lar = (38¢)
| 2a,S & 2b,SE
pa(r)=aby; py(r) = E[af b2} p,(e)= “;252 ;ps(r)= ;—252 (38d)
”0(7):% az2 +b22lrl(r)=%[a12 +b12] (38e)
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_2 2
2u(0)=0:1(0) = 212, (0) = 0 0) = 55 o
H 204717 e 2R*
) -2
28%¢, , s
2i(0)= 222 p,0)= 05 0) - ;;4 1(0)=252 (%0
The solution of (38a), using (38b) is
g(z)(t,r) = a,(c)cos Qt + by(7)sin Ot + é - % [p(z)sin201 + p,(r)cos201]
— k,0*[p(z)sin 2Rt + p,(z)cos2Rt + p,,(r)cos Rt + p,,(z)sin Re] (39a)
5 _
a,(0)=&,1,+k, 511+k £, { } 1,:b,(0)= -2 Q; (39b)
where
P DV T P P 2 0
"0 20 60t 2 0 -4R)| RIO-4R)
poe)=ab;p)(c)=ab; p(r)= sz U Lz SAGE sz 3<4L2 (39d)
pol) =24 (0)=-2) )= (399

QZ_RQ; 11 Q Rz’ 11

2

252

5
p6(0)=0;p7(0)=j;p8( = 0; po (0 m,pm = Tio -] (39)

Substituting using (34a) and (35a) into (30) we get,

77,(,,2) + Ry = —2a, [~ Ra, sin Rt + Rb, cos Rt |- 2R[— a, sin Rt + b, cos Rt]+ S

2
{az cos Rt + b, sin Rt + 52}—16—
R’ 2
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[OR] 0’

Now, to ensure a uniformly valid asymptotic
solution in tine scale t, we equate the coefficients
COSRt and sinRt to zero. This will ensure a
finite at infinite time, i.e. as ¢ tends to infinity,
such terms tends to zero thereby making the
solution not to be bounded, hence non-uniform.
Such terms are called secular terms and our aim
is to get rid of them.

£ p2
COSRE = — 20, bR~ 2R+ Sar, ~ 298 _
Implies that,
: o
b2/ + a2b2 = & - ;—2
0
b, + a,b, = a,® (41a)
Similarly,
: b, & R
sinR?:- 2a, a,R +2a,R + Sb, ——2 512 =0
Simplifying gives
b ER?
/
a, +a,a, =—§ S - 0
a, +a,a, = —b,d (41b)

where,

28§, 5, + 20,6, cosRt + LZE“‘lsinRt + 26111{—828“2003 0 t+ Zb;{—szézsm ot

+[a,a, —bb,]cos[ QO — R]t+[a,b, + ba,]sin[ O + R]t

+[a,a, + bb,]cos[ QO — R]t+[ba, —a,b,]sin[ O — R]t

2R o’

1 S—é:IR2 .

Simplification of (41a, b) yield

bl +a,b, = —®[®b, + a,a, |
b +abl = —cp{cpb2 + % b, + aub, ]}
b +2a,b, +b, [CI)2 + %2]2 0

DS ¢,

R2

b,(0)=0;5,(0) =~

(41c)

and

a +a,a), =— ®[®a, — a,b, |
I /_ a, [
a, +a,a, =—0| Da, + Y a, +a,a,

a) +2a,d, +a, [CI)2 + azz]z 0

ng. / azséz
a,(0)=— = ,az(o)z—T (41d)
The remaining part of the equation in the
substitution into (30) as obtained from (40) is
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(5) 4 R = - Rz|:p12(‘r)coth + p13(T)Sin Ot + pm(‘[)COS[Q + R]t } (42a)
g 7 K 2 +p]s(T)Sin[Q+R]t+p16(T)COS[Q_R]t+p17(T)Sin[Q_R]
7°(0.0)=0:7(0.0)+1(0,0)=0 (42)

where,

S2E SEE 20,8 2bSE
q, = R—?_%;plz( ): Cszé;pB( ): ;3252 ;p14(1‘)= aa, — bb, (42c)
plS(T) =bb, + blaZ;plé(T) =aa, + blbz;pn(r) =ba, —ab, (42d)
2SE & SE &
12 (0) = %;pw(o) =0;py, (0) = %;pls(o) =0; (42e)
¢ _
pm(o): %;pn(o): 0 (42f)

The solution of (42a) using (42b) is
plg(z')cosQH plg(z')sinQH
77(2)(t, T) = a4(r)coth +b, (T)sinRt + % —— pzo(z')cos[Q + R]t + pZI(z')sin[Q + R]t + (43a)
pzz(T)COS[Q - R]t + p23(T)Sin[Q - R]t

‘14(0):*92 6;2 Z3+R2S6;1 6;2 l4;b4(0):_% (43b)
where,
;4:{ 1 +l{ -2 L + 1 ﬂ (43c)
[Rof 2| [ROF|R*-0°] O[ROF2R+0] O[ROF[2R-0]
_ _L. _ plZ(T) . _ p13(z') . _ p14(7)

[, = R ﬂplS(T)_ R —Q2 :p19(7)_ e —Q2 :pzo(T)_ Q[ZR N Q] (43d)
_ plS(T) . _ plé(T) . _ p17(7)

le(z—) Q[ZR + Q]apzz('[) Q[ZR ~ Q]apm('[) Q[ZR ~ Q] (43e)
_28EE oy o N SEE

plS(O)_ Qsz Rz _Qz >p19(0)_ O,pZO(O)— Q3R2[2R + Q] (43f)

202



Ozoigbo et al.; PSIJ, 7(3): 192-213, 2015, Article no.PSIJ.2015.086

P2(0)=0;p,,(0)= %;pﬂ(m =0 (43)
Next, using (34a), (39a) and (35a), (43a) we deduce the displacements as

E()=c"t,z)e+ Pt )6 +.. (44a)
and

&) ="t )+ (e,0)e? + ... (44b)

We seek the maximum displacement for both §1(t) and §2(t). To achieve this, we shall first
determine the critical values of fand z for each of §l(t) and §2(t) at their maximum values. The

condition for the maximum displacements of fl (t) and fz (t) is obtain from (24b). hence
St &g, (45a)

égz,z + gégz,r ) (45b)

We know from (44a, b) that
E(t)=c"t,2)e + Pt )6+ (46a)

&)=, )e + 72, 7)e? + ... (46b)

On applying (453, b) to (46a, b), we get

g,t + gg,r = [g(tl)(ta ’Ta )8 + g,(tZ)(ta’ Ta )82 + ]

B

+g [g,(rl)(ta,ra )6‘ + g(z)(ta,ra )52 + ]= 0 (47a)

,T

and
77,1 + 877,1' = [77,([1)(7—;"2.6 )(C,' + U,SZ)(E’TC )82 + ]

te [77,(11)(Tca rc)g + 77(2)(Tca TC)EZ +-..]= 0 (47b)

T

where, (ta,ra) and (TL,,Z'(,) are the values of t and 7 at the maximum displacement of g(t,z') and

n(t, T) respectively.

We now expand (47a, b) in a Taylor series about 7, =1,,7, =0 and 7, =T;,7. =0, and thereafter
equate to zero the terms of the same orders of ¢ to get

g’(tl)(tO,O) =0 (48a)
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0

168 (10,0)+ 1461)(2,0)+ 6 P(20,0) + 61(4,.0)
and

7(1,,0)=0

Tg}) (13:0)+ Tyg ) (73.0)+ 7 (,.0)+ 7(7,,0) = 0
Substituting for ¢! from (34a) in (48a) and simplifying we get

sinQt, =0

A further simplification of (50a) gives

Next, we deduce from (48b) that

= 1 (1) (2) (1)
== 0 0 0
tl g(ti)(toa()) [tOg,tT (t0> )+ g,t (toa )+ g,f (toa )]

Simplification of the following terms are however necessary in this analysis,

g,(tz)(to,O) = & ls+k & - sz2 & l75§,(t1)(t0>0) =&l

g,(r])(thO) = 51 l9§§,(tlz)(t070) = §1§§(])(t0a0) = 251 110

_ 2 2 S 2
§(2)(t0 ’0) =281, +k &1, + kS, |:?:| 113;§,(tl)(t0’0) =0;

where
1 Sin201, O’Sin2Rt,
15 :_2916 = P ARES] PY) 2
0 30 R’|Q* —4R?|
a ] ] 11
gt g g i

204

(48b)

(49a)

(49b)

(50a)

(50b)

(50c)

(51a)

(51b)

(51c)

(51d)

(51e)

(51f)
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| 1 I 2
2|0’ —4R2]+ R*|o? —4R2J_Q [QZ 4RO —R2ﬂ (19)

113: -

On substituting (51, b-d) on (51a), we have

h=als+k 6;1 ls —szé;Z L + ol + 1 (52)
Similarly, deducing from (49b) yields

1
T e L i 0)4 0T
1 77([1[)(];],0)[ o’7n( 070)+77: ( 070)+77 (tO,O)] (53a)

We however note the following simplifications

P10 = a,S & hy+ 5% &, L+ S & & 1Lan'NT,0)= S &, 1, (53b)
(1.0 =57 & 1) (1,.0) == &0 (1,.0) =25 &, (53¢)
72(5,.0)= 52 &, 1, + R*S & & L (1;.,0) = 0; (53d)
where
I, = CO;# I = —RI,sin RT, (53¢)
2sin QT cosQO7T,

R | OR|R* - Q%] [ROF[2R+0]

L -R’ SI,sin RT; — (53f)
2| _[0+Rsin[o+R]r, [0 Rlsin[0- R,
o[rRo2r+0]  O[RO[[2R-0]
O] 1 1 1
L, :E;le = Zé o _F;ZZI ZF;ZZI 2? (539)
1 2co0s Q7T cos[Q + R]Z) cos[Q R]T0

by =| =L+ - 2 2 (53h)

2| R[R -] olroFr+0] " 0lROF2R 0]

On substituting (53, b-d) on (53a), we have

I =ay, + ‘):;1 he +Tohy + 1 (54)
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We, now, determine the maximum values ofg(t)and n(t) say ¢, and 7], respectively by evaluating

(46 a, b) at the critical values namely ¢ =¢,,7=7, and T =1,,7=7,.

G, = g(l)(ta,ra )& + g(z)(ta,ra )e? + ... (55a)

n, =0T,z )e+n(T,z.)e* +... (55b)

Expanding (55 a) in Taylor series using,
t, =ty te +et T, =8, = 8[t0 et +et + ] (56a)
we have

G, = g[g(l)(t0,0)+ g,(,l)(tO,O)[gt1 +E, + ]+ g’(:)(tO,O)g[tO +te + ]]
+c(1,,0)6 +.. (56b)

Regrouping the terms in orders of ¢ yields
¢, =&c(t,.0)+ gz[tlg,gl)(t0,0)+ 1o6"(t,,0) + g(z)(tO,O)]+ (56¢)

On substituting the terms in (56¢) from (51, b-d), we have
_ _ _ 2 2 S 2
So =28 e+ |18 1 +28 1 +k &G 1, + 52{?} 113:|‘92 + (57)

Similarly, expanding (55 b) in Taylor series using,
T =T, +&T, +&°T, +...;Tc:glz,:g[7})+57]+ng2 +] (58a)
we have

7, = eln(1,.0)+ 7 (T.0)eT, + &7, + .+ (T, 0)elT, + &7, +..]
+7(T,,0)e? + ... (58b)

Regrouping the terms in orders of ¢ yields

7, = en"(1,,0)+ &Tn"(T,.0) + Ty (T;,0) + (T, 0)+ .. (58¢)

st T

On substituting the terms in (58c) from (53, b-d), we have

N, =28¢& lzoe+[T0S2 E L+ E L + RS E & 119}92 o (59)
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The net maximum displacement & is

gm = ga +770 = g(ta’ra)+77(7—;’z-c) (60)

Substituting for terms in (60) from (57) and (59) we get

E =Ce+Ce’ +... (61a)
where
_ _ 2 2 S 2 _
Co=1y5C, =& 1+ 87 & by +h G 1, +k, fz[?} L, +R*& 6,81 (61b)
Ly =28 Ly +288, hyslhy = 21 +1lys by = 1 + Ty (61c)

As noted by [1 — 3] and [21] ,the condition for dynamic buckling is

dr_
g,

As in [21,22], applying the method of reversal of series of (61a), we get

0 (62)

e=dé, +d,E+ ... (63)

Substituting for &, from (61a) in (63) and equating powers of orders of &, we get

d=—.d =——2 (64)

1
c’

The maximization in (62) is better done from (63), thus implementing (62) using (63) we have

-2

A
gm( D 2C2

(65)

where, & (/1D) is the value of the net displacement at buckling. In determining the dynamic buckling
load, we evaluate (63) at

A=4,
to yield
&= égm(;tD)[dl + d2§m](l=ﬂn) (66)
On substituting for terms d, and d, from (64) and &, (/1D) from (65) in (66) and simplify to get
C
A, =— 67
e (67)
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The expansion of (67) gives [using (61D, c)]

1 2
o,
Ap =—| —>
" 4{5"1}

Here, (68) gives the formula for evaluating the dynamic buckling load A, ,
R+#(1,2,0201-0,1+Q) and O #(R,2R,1-R]1+R,0,2R 1)

-1

2 2 2
- - - -1 S
- } Sily+ S? &btk &, +k, éz{?} L
(68)

|:2 él 110 + 2S 52 120 ‘

+R* & &S,

and is valid for

4. ANALYSIS OF RESULT

We note that the results display all the imperfection parameters stated in problems (3)-(5).This is
unlike Danielson’s problem in which the axisymmetric imperfection was neglected for easy solution. In
fact, the method is such that we can adequately account for all modal imperfections allowed in the

formulation .The contributions of the quadratic terms k&, k,&; and the coupling term &&, are

respectively given in the denominator of (68) by

kl §1 Znakz f{?

S
}113 2z 2
and R"& & S1,.

Thus if we assume that the axysymmetric imperfections are zero then & =0, and the dynamic

buckling load A, responsible for the buckling in this case is obtained from (68) as

2
/ID = l{&} |:2S ‘fz Izo}
4| o

We note from (69), that, the effects of the
coupling terms £&, , &,&, and the quadratic term

k&’ are zeros. The effect of the quadratic term

k,& is non-zero and it is this term that

dominates the buckling process. Neglecting él is

sufficient to completely nullify the effect of 512
where the converse is not necessarily the case.

However, if the non-axymmetric imperfections

are neglected then 5_2 =0, and the dynamic

buckling load A, following (68) become

2 2 B
Ay = ‘1{%} [2 ¢ llO:l {51 Ly+k & 112} (70)
2

We deduce from (70), that, the effects of the
coupling terms &, , &£,&, and the quadratic term

k,& are again zeros. The effect of the quadratic

-1
_ 2 S 2
|:S2 'fz 124 + kz ‘fz {F} 113}

(69)

term k&7 is non-zero and this singular term is
the only non-linear term that influences the

buckling process. Neglecting &, is sufficient to

completely nullify the effect of §22 where the
converse is not necessarily the case.

The results also confirm that the only condition
under which the effects of the coupling term

&, &, would be felt is if none of the imperfection

parameters in the shape of the mode coupling is
neglected. In other word, is that nether the

imperfection parameter & nor &, should vanish

for post dynamic buckling behavior of the
structures. Once an imperfection is neglected the
coupling effect of the mode that is in the shape of
the neglected imperfection, with any other mode
is neglected.

The graphical view of this phenomenon, we
assume the following values. ki = 0.2, K; = 0.3,
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- - were computed from (68). The plots of dynamic

€, =0.02, £,=0.03, ay=0.01 and az=0.03. By  buckling load against the imperfection parameter
_ - and light viscous damping of the discretized

varying &, and o, while keeping &, constant at  spherical cap are shown in Figs. 1 and 2 below.

0.02 and a4 = 0, the corresponding values of Ap

012 T T T T T T T

0.1

0.08

£ 005

0.04

0.0z

D 1 1 1 | 1 1 1 1
0m 0.0z 003 0.04 0.05 0.06 0.07 008 0.09 01

%

Fig. 1. Dynamic buckling load of a spherical cap against the imperfection parameter

£, (&,=0.02)

00339 T T T T T T T T

0.0338

0.0338

£ 0038

0.0336 ' .

0.0338

00338 1 | 1 | | | | |
oot 002 003 004 005 008 007 008 009 0O

B

Fig. 2. Dynamic buckling load of a spherical cap against the light viscous damping a,(a4 = 0)
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From Fig. 2 above we observe that dynamic
buckling load increases with increased damping.
Also in Fig. 1 dynamic buckling load increases if
the structure is less imperfect, in other word,
dynamic buckling load decreases with increased
imperfection.

5. CONCLUSION

From the above discussions, we note that while

neglecting the imperfection parameters & and

&, automatically implies, among other things,
neglecting the effects of the non-linear terms
k&P and k& respectively. Also, we observe
that the only condition under which the effect of
the coupling term &£, would be felt, is when the

imperfection parameters £ and &, are not equal

to zero. Moreover, our results confirm those
obtained by [23,24]. Finally, we notice that we
can determine the value of the dynamic buckling

load A, for whatever number of modal
imperfections
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APPENDIX

k1=0.2;

k2=0.3;

zi2bar=0.03;

zi1bar=0.02;

alpha1=0.01;

alpha2=0.03;

R=0.1;

Q=0.3;

S=(R/Q)"2;

LO=-1/Q"4;

L1=-1/(2*Q"2) + 1/(6*Q"2);

L2=0.5 + 1/(2*(Q"2-4*R"2))-2/(R*2*(Q"2-4*R"2));

L3=-1/R"4;

L4=1/(R"2*Q)"2 + 0.5*(-2/((R*Q)"2*(R"2-Q"2))-1/(Q*(R*Q)"2*(2*R+Q)) + 1/(Q*(R*Q)"2*(2*R-Q)));
L5=1/Q"2;

t0=pi/Q;

BtO=pi/R;

phi=1/(2*Q)*(1+2*k1*zi1bar);

L6=sin(2*Q*t0)/(3*Q"2);

omega=1/(2*R)*(S-R*2*zi1bar/Q"2);
L7=Q"2*sin(2*R*t0)/(R*3*(Q"2-4*R"2));

L8=phi/Q;

L9=-alpha1/Q"2;

L10=1/Q"2;

L11=1/Q"4;

L12=1/Q"2-1/(3*Q"4);

L13=-1 -1/(2*(Q"2-4*R"2)) + 1/(R"2*(Q"2-4*R"2))-Q"2*(1/(Q"2-4*R"2))+ 2/(Q"*2-R"2);
L14=-cos(R*Bt0)/R"2;

L15=-R*L3*sin(R*Bt0);
L16=-R"3*S*L4*sin(R*Bt0)-(R"2/2)*(2*sin(Q*Bt0)/(Q*R"2*(R"2-Q"2))-
cos(Q*Bt0)/((R*Q)"2*(2*R+Q))-(Q+R)*sin(Q+R)*Bt0/(Q*(R*Q)"2*(2*R+Q))-(Q-R)*sin(Q-
R)*Bt0/(Q*(R*Q)"2*(2*R-Q)));

L17=omega/R;

L18=-alpha2/R"2;

L19=-L4 + 0.5*(2*cos(Q*Bt0)/(Q"2*R"2*(R"2-Q"2)) + cos(Q+R)*Bt0/(Q*(R*Q)"2*(2*R+Q)) +
cos(Q-R)*Bt0/(Q*(R*Q)"2*(2*R-Q)));

L20=1/R"2;

L21=1/RM4;

L22=2*zi1bar*L10 + 2*S*zi2bar*L20;

L23=2*L11 + tO*L9;

L24=L21+Bt0*L18;

c1=L22;

c2=zi1bar*L23+S"2*zi2bar*L24+k1*zi1bar*2*L12 +
k2*zi2barr2*(S/R"2)"2*L13+R*2*zi1bar*zi2bar*S*L19;
LambdaD=c1/(4*c2*Q"2);
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z=LambdaD;

INTERPRETATION OF VARIBLES

zi1bar =.§;1, zi2bar =.§:2, alphal =¢,, alpha2 =¢,, t0 =¢,, BtO =75, phi =¢, Omega =D, pi=m,
LambdaD = 4,
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