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Abstract: We prove that if the frame S is decaying surface non-radiating, in the sense of Definition 1, then
if (p,]) is analytic, either p = 0 and | = 0, or S is non-radiating, in the sense of [1]. In particularly, by the
result there, the charge and current satisfy certain wave equations in all the frames S; connected to S by a real
velocity vector 7, with |7] < c.

Keywords: Special Relativity; Electrodynamics; Wave Equations.

MSC: 35Q40; 35Q60; 83A05.

1. Introduction

T his paper is divided into two parts. In the first part, we begin in Definition 1 with the concept of
surface non-radiating, that is an all inertial frames S/, relative to the base frame S, moving with velocity

7, || < ¢, there exist real electromagnetic solutions (Eg, Eg) to Maxwell’s equations, for the transformed
charge and current (pg, J3), with divg (Ez X By) = 0. The general strategy of the paper is to prove that this
condition implies the existence of a complex solution to Maxwell’s equations, with the Poynting vector E x B =
0. In order to achieve this, we need to consider rotations ¢ of frames, and Lemma 2 shows that Maxwell’s

equations are both preserved for the rotated quantities (pg VI8 ES, §g>, and so is the flux, div (Eg x B® ) =

div8 (Eg X Eg). A similar result is required for the composition of boosts and rotations in Lemma 5, and we
give the representation of the Lorentz group as a product of boosts and rotations in Lemma 3. We have to
move in a triangle ABC from the base frame S. Lemma 4, using potentials, shows that the transformation
of quantities (p, ], E, B), along the sides of the triangle is well defined, that is the transformation along AB
followed by BC, gives the same result as AC.

An essential component of creating triangles with boosts and rotations is the velocity composition formula
of Lemma 6, explained in [2], and, in Lemma 7, we prove that any 2 sides of a triangle AB and AC can
be completed with a third side BC, using boosts and rotations. In Definition 4, we extend the idea of real
boosts and reflections, for velocities 7 with 7] < ¢, to include complex and unbounded velocities, and prove
generalisations of real results in Lemma 8. This allows us to achieve a boost with an infinite velocity to a frame
Seo, Which we define in Lemma 9. We define the stress energy tensor in Definition 5, and use it, in Lemma 10,
to show how the surface non radiating condition can be transformed into a series of equations in a base frame
S, (1). The idea of the proof is to extend the base of the triangle AB to Se, and with the existence of a complex
electromagnetic pair (Eco, Beo), With dives (Eco X Bso) = 0, (2), use Lemma 13 to obtain limit equations at C,
along the infinite parallel side BC, by taking a limit of (1). We then, in the same Lemma, transform these limit
equations back to the base frame S at A, to obtain a set of equations for (E, B) corresponding in S to (Eco, Beo).
Lemmas 15 and 16 are concerned with solving these 40 linear equations in 40 unknowns, corresponding to
the first derivatives of the components of the stress energy tensor. We do this we do by splitting them into 2
groups and using a symmetry lemma, which we prove in Lemma 20, noting that the coefficient matrix A is
not invertible, but still obtaining that the derivatives of the Poynting vector E x B are zero. We exclude the
non-zero constant solution, by imposing a limit condition in Remark 3, which seems physically reasonable,
that the fields vanish at infinity, and summarise the result that E x B = 0, in Lemma 17. In Lemma 18, we
show that this implies E = AB, for some A € C, and p = 0, where the field B # 0. In Lemma 19, we note that
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the surface non-radiating condition is invariant under real boosts with velocity vector 7, |5| < ¢, reflections
and rotations.

The rest of the proof is concerned with deriving the property (2), we do this in Lemma 21, using a
polynomial approximation and 2 parallel boosts with velocities above and below c, and give a more rigorous
explanation, involving the Stone-Weierstrass Theorem, in Lemmas 22 and 23, noting in Lemma 24, that the
errors in this polynomial approximation are vanishing. We conclude, in Lemma 25, that, assuming (p, ) is
analytic, the surface non-radiating condition implies either that p = 0, ] = 0, or the non-radiating condition,
developed in [1]. In the second part, we are concerned with some thermodynamic arguments. We define a
reversed process in Definition 6, noting, in Lemma 26 that the reversed process satisfies Maxwell’s equation
and reverses the flux. We give the classical definition of non radiation in Definition 7, explored extensively in
[3], and use Lemmas 27, 28 to conclude in Lemma 29, that, in thermal equilibrium, classically non-radiating
systems satisfy the surface non-radiating condition, explored in the first part. We make the point, in Remark
4, that atomic systems can reasonably be thought of as classically non-radiating and in thermal equilibrium.

Definition 1. Using notation as in the paper [1], we say that S is decaying surface non-radiating, for a given
smooth real pair (p, J) satisfying the continuity equation if:

1. S is surface non-radiating with respect to (p,]) that is there exist solutions (Ez, Bs) to Maxwell’s
equations for the transformed current and charge (o3, J5) in the frames Sy, connected to S by a real
velocity vector 7, with [7| < ¢, such that divg_ (Ez X Bg) =0

2. The solutions (Eg, By) decay at infinity in the frames Sy, that is for coordinates (x,y,z,t) in Sz, for given
t € R0, we have that lin g oo E (X, t) = limz) B (¥,1) =0

Definition 2. Welet C! (R?, R~) denote the continuously differentiable functions f in the variables (x,v,z,t).
Weletxg = t, xy = x, x = yand x3 = z. Given g € O (3), which defines a coordinate transformation
(x,y,2") = g(x,y,z),and f € C! (R R~), we define f8 by;

f8 (x0, %1, %3, %5) = f (x0,%1,%2,%3) ,
where x{; = xg and g (x1, X2, x3) = (x], x5, x}). Define;
of |

af8| af
ox}) ¥ 7 3xg

X7

afs N .
= = T ; <7 <3
ax | = (Df) Iz (g )*e,, for 1<i<3

We observe, using the matrix representations g;; and (g’l)ij, with 1 <i,j <3, for g and g~ ! respectively,
and the fact that ¢* = ¢!, that (g’l)ji = gij. It follows;

aff i{ ( 1)]1 ax = 281] 1)

l

Given a vector field F, with components (fi, 2, f3), we define F® with components (f], f3, f3) by;
3
fi=Y 8iff, for 1<i<3.
=1
We adopt the convention that if {g1,g2} C O (3), then;
fg182 — (fgz)gl , F82 _ (fgz)&
Lemma 1. Given g € O (3), f € C! (R3, R~0) and vector fields {F, H}, we have that;

2 9F5 _ (9F\$
(I)W— a)

(i) V (f8) = (V ()%
(iii) 7' F® = (. F)3,
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(iv) /' x F® =sign(g) (v x F)3,
(0) (fg x Hg) = sign (g) (F x H)S,

where sign (g) = det (g) and can take values 1 or —1,as g € O (3).

Proof. For the first part, using components (f1, f2, f3) for F, we have, for 1 < i < 3, that;

afg d 3 3 af 8
(m) ::w<2&ﬁ> L (5)
iz j=1 =1

For the second part, we have, using the observation (1) in Definition 2 that;

j=1

3 af{g 3. 9f;
_ ] _ ]|
= LS| = LSig| =
¥ /=1 ¥ ¥

' eg afg ! : g
\V4 (f )i|y/: ox Zgua ZgijV(f) = (V(f))z -
xi x] =1 - X
For the third part, we have that;
3 9(F 3 3 3 3 of8
) f
VFE = gx<)1 =Y 50 (Zgijf]g> =LY 8igy
i=1 i — i=1 """ \j=1 el j=1li=1 e
X
3 3 af] 3 3 . af] 3 3 af].
= 8ij 2, 8ik5— | = 8 ik | = Oik=—
];lzzzl Z/kzzl l axk ¥ ];1 i,k2=1< ) "ox ]Zlkzzl ! axk
3 of _
= Y| = (v-Pf,
=17 |

For the fourth part, we let o be the permutation of (1,2,3), with o (1) = 2,0 (2) = 3 and ¢ (3) = 1. Then,

for1 <i < 3,wehave;

(v’ ng)' )

[AF%

(i) ava(i)

Y/

B 3 3 daf;
- ];gaz Zga( kax Z Zggz (k3 )
3 of; 3

= 0 g ) 2L = O — o

]kZ: (glﬂ( )]glf( i)k T ( ),]g(rz(l)/k) axk _ jrk:lz,j%k (802(,),]&7(1),1( gg(l),]gUZ( ).k )

> df; . > , of;

= _Z (k) cof ()ije gy | = sign(®) 1 TGRS

jk=1,j#k z jk=1,j#k e

~ sign(s i (anZ ) >‘ _ sign (g) igiz (v xF),

= Iy 0Xp2q) =1

x

= sign(g) (VXF)i %

a(F)  ~ 9(F) 3
<ax/)a(z> _ ( />0<1> (a? (Zggz()]f> T <28a< ifi ))

where7(1,3) =71(2,1) =7(3,2) =1land 7(1,2) = 7(2,3) = 7(3,1) = —1, jk denotes the remaining element
in the tuple (1,2,3), cof (g);; is the representation of the cofactor matrix of g, and we have used the fact that

= (81),s = sign (3) (cof (3)"); = sign (3) (cof ()

The proof of the fifth part is similar to the fourth, replacing the components of F with H and those of v/

with F, using the fact that 7/ = /8. O

Lemma 2. Given a tuple (p, ], E, B) satisfying Maxwell’s equations in the rest frame S, and g € O (3), then the tuple

(pg T8, S, sign (g) B® ) also satisfies Maxwell’s equations, and the tuple (pg ,Tg) satisfies the continuity equation in

the rotated or reflected frame S'. Moreover;
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V' (B xsign () B¥) = (v (E < B))* .
In particular;
7 (Eg xsign(g)§g> =0 iff v.(ExB)=0.

Proof. The second claim follows immediately from the first. For the first claim, we check the conditions using
Lemma 1. We have that;

= = g S
LV .E=(v.Ef= (L) =15,
= , = , 5\ 8 9 (sign(g)B*
2. ' x B =sign(g) (v x E)¥ = sign(g) (-3 = et
3. v (sign (g) §g> =sign (g) (v.B)* =08 =0,
H R : . - = T\ — T8
4. 7' x (szgn (8) Bg) = sign (g) sign (g) (V x B)g = (.”0]"‘ Moeo%) = uol* + Hoeoaa%-
For the penultimate claim, using Lemma 1 again, we have that;
v (fg X sign (g)§g> =v. (sign (g)sign (g) (E x E)g) =v'.(ExB)® = (v.(ExB))*.
The final claim follows immediately from the penultimate claim, applied to the transformations gand g~'. O
Lemma 3. Let ¢ € O (3), and let U define a boost, with matrices Rq and By respectively in the Lorentz group, then;
RgBs = By Ry
Moreover, the representation is unique, in the sense that if;
R¢Bs = Ry, By,
for {g,h} C O(3), and {v,w} velocities defining boosts, then § = h and 0 = w.

Proof. We first prove this as a footnote in the case when @ = ey, (1). For the general case, let ¥ be an arbitrary
velocity, and choose g € SO (3) with 7 = g (vey). By the result proved in the footnote, we have that

Bng = Rnggl. 2)
Now let 1 € O (3), then, using (2);
1
RhBE = RhRngE1 Rg ’ (3)
By, is given in coordinates by; (Bew, )gy = (Bo)11 = 7 (0); (Bug;)s = (Ba)sz = 1 (Bug)1p = (Bo)gr = 7%(”); (ngl)l.j =0
otherwise, 0 < i < j < 3 and Ry is given in coordinates by; (Rg)oo =1; (Rg)l.]. =g, 1<i<j<3 (Rg)l.]. = 0 otherwise,

0 <i <j<3where éjlgizj =1,for1<j<3; l_ég,'jg,'k =0,for1 <jk <3,j+# k(%) so that; (Rngpl)OO =7 (Rnggl)Ol = —?,‘
(RgBuey)op = (RgBo)gy = 0; (RgBugy)jg = — =8, for 1 <i <37 (RgBusy )y

1 <i < 3,2 < j < 3. Using the formula in [4] for a general boost with velocity @, using (), we can compute Bgi(izl) = B,vg(a),
obtain; (vag(él))oo = (B,vg(a))()i = Tgn kégﬁl =T, 1<i<3 (vag(?l)> =T, 1<i<3 (B,vg(él))ﬁ =
(r-Dgh+1L1<i<3 (vag(51)>21 = (vag(?l))lz = (v—1)gngu (B—vg(El)):ﬂ = (vag(51)>13 = (v—1)gngs
(B,Z,é,(a))32 = (B,vg@))m = (y—1)g21g3. Finally, using () and the identity 72 (1 - Z—Z) = 1, we compute B_y4;)RgBoz,

= ygn, forl < i <3 (Rnggl),-j = gij, for

to

i0

2

X . . 2 (3 2 2 (3
in coordinates, to obtain; (B,vg@l)RngEl)OO = 92— % (kglg}%) = 1; (B,vg@l)RngEl)Ol = -4+ (kglg}%) =

. 3 2
. _ _ ; . _ (r=1) _ ; .
0; (B,vg@)Rng@l)Oj = (kglgklgkj) = 0(2/23) (BoogeyReBuy ), = & (52— 2 - 500) = 0 (1<i<3);
'yzvz . 3
(B—vg(a)RgBua)“ = gn (7 (r=D+7- CT) = g, (1<i<3); (B_Ug(a)Rnga) = (y—1)gan kglgmgkj +8ij = ijs

(1 <i<3,2<j<3)asrequired

ij
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and the claim that R, By = Bh@ Ry, is equivalent, by (3), to;

RhRnggle’l = By Ry or Rngglel = R, "By Ry - (4)

We have that /1 (v) = hg (vey) and hg € O (3), so it is sufficient, from (4) to prove that;

-1 -1
R¢Byg, Ry ™ =R, Bhg(

2 Ry, or By, = Ry'R; " Byg (o RiRg = R;;Bhg(vgl)Rhg. (5)

vey)

Clearly, the claim (5) or equivalently, Rj¢Bys; = Biig(ve,) Rng follows from the proof in the footnote, as required.
The second claim is noted in [2], and is straightforward to prove. We have that;

R, 'Ry = Ry-1, = ByB, ' = ByB .
The following formula is given in [2] for the boost matrix Bg;

Ywbw 'Yzz bz%

By =1 ,
T T (e 40

where, (2);

(bw)oj = (bw)jp = —w; for 1<j <3,

(bw);; =0 otherwise (0<i,j<3).

It follows that;

B 242 2,2
BoB o, — <1—|— Ywbw + Y% > (I— 7vbﬁ+ Yo% )

¢ c? (Yw+1) ¢ c2 (70 +1)
Yobs | Ywbw . vibs Yol nvebsbw | 1pvebibe
=] — v+ww V"D + w W _vwvw+yzuvw
c c A+l A (retl) c? (10 +1)
V2 vob%by V2,732 b2

3 (7w+1) ct (")’w+1) ('YU+1)‘

Using the fact that we must have;
(thg)m = (BgB_g)g =1 and (Rhflg)oj = (BsB_g)y; =0, (1<j<3),

we obtain the equations;

’)/%Uz ’)/%)?Jz  YoYwlW ')’z%’)%uvzwz _ (6)
2 (ro+1) A (re+1) cz A+ (re+1)
and ToWi Yol
L_L:O(lgjg?)). (7)
c c
It follows from (7) that;
2.2 2
v = ’)/wzu and 7. = Yt )
To Yo
and, substituting into (6), using the relation @ = 'y%l, — 1, we obtain that 7y, = 74, so that, from (7), w = T as
required.
O

2 Ungar’s definition of bz differs by a minus sign, as he relates unprimed to primed coordinates in the definition of the boost matrix,

which seems to go slightly against the usual convention. We have also changed his formula slightly for the case when xy = tc, rather
than xy = ¢.
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Definition 3. Let ¢ € O (3) be a rotation or reflection, then, as in Definition 2, if f € ct (Rg, R>0), we let f$
be defined by;

By, 2)=f(txyz),

where ' = t and (¥, y/,2') = g (x,y,z). For a vector field V with components (v1,v;,v3), we let V* be defined
by (v}, vh,v45) where;
=Y, gi]-vj?', (1<i<3),
1<j<3

and (31'1')1 <ij<3 is the matrix representation of g. For a four vector W with components (wo, w1, Wo, w3), we,

similarly, let W2 be defined by (wj, w}, wh, w}), where;

wy=ws, wi= Y gi]-w;g, and (1<i<3).
1<j<3
We introduce rotated frames S’ relative to a fixed frame S, with coordinates (#,x’,1/,2) linked to the
coordinates (t,x,y,z) in S, by the relations;

' =t and (x/,y/,zl) =g(xy,2),

where ¢ € O (3). We define the Lorentz group as generated by boosts in a given direction 7 and by rotations
defined by ¢ € SO (3). By the augmented Lorentz group, we mean the group generated by boosts and elements
g € O (3). Itis shown in [2] that the composition of boosts is equivalent to a boost followed or preceded by a
rotation, the so called Thomas rotation. It follows that any element L of the (augmented) Lorentz group can be
written (uniquely) as L = R¢Bs = By () Rg, where g € SO (3) (or g € O (3)).

Lemma 4. Given potentials (V, A) in the rest frame S, satisfying the relations;

E=—<V(V)—E§?>,

B=v x4, (8)

T’
Lorentz group, augmented by O (3), when the transformation rules are given by;

I _\¢
(e7)=(57)
c [

when g € O (3) is a rotation or a reflection, and by;

v _, 174 <5,ZH> — V. —
(C,A> - <’)/ <C_C Y (A _sz> +AL s

when T defines a boost, see [4]. Let the frame S’ be defined relative to the base frame S by an element T of the Lorentz

for electric and magnetic fields {E, B}, the four vector (V Z) transforms covariantly with respect to elements of the

group, which is either a reflection, rotation or a boost. Let (f/,ﬁ) be defined by;
(E’,E’) = (ET,sign (1) Er) ,

when T € O (3) is a rotation or a reflection, and by;

(.5 - (g 9 (E. +9%B),B 47 (Bl -2 ><E>) ,

when T defines a boost with velocity v, see [4]. Then with the transformed vector (V/ ,Z/), we still have that;

c
o e
? - (v0-5).
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B=vxA4. )
There exists a well defined transformation of (E, B) for an arbitrary element T of the Lorentz group, augmented by

orthogonal transformations. Moreover, if T is represented by two distinct products of boosts, rotations and reflections,
then the transformation of (E, B) coincides with the two transformations obtained by iteration in these representations.

Proof. The fact that the <¥,Z) transforms covariantly with respect to Lorentz boosts is noted in [4],

alternatively it can be shown by writing the transformation rule in matrix form and comparing it with the
corresponding Lorentz matrix, the details are left to the reader. For rotations or reflections, the result is
immediate from the definition. To check the second claim in the case of a rotation or reflection T € O (3),
we have, using the definitions in the statement of the Lemma, Definition 2 and Lemma 1, that;

- (V’ (V') +aa/:> = - ((v (V)" + (%‘?) ) = ( (V(V)Jr%?)) —E=F,
and, similarly;

V' x A =sign (1) (v xA)" =sign(t)B = B.

We check the second claim in the case of a boost when ¥ = ve;. We have, using the transformation rules
above, the transformation rules for derivatives, see [4], with components {(a1,ay,a3), (a},a}, a})} for {A, A"}
respectively, that;

Cabal) = (yay — TV v N o R A | I A
(a1/a2/a3> - (’Yal CZ ra2/a3)r Vv _r)/V yoai, V - (’y(ax—i_czat, ay/ 9z ’ o =7 at+vax .

Using (8) from the statement of the Lemma, with components {(ey, ez, ¢e3), (b1, b2, b3)} for {E, B} respectively,
we have;

da dV  oa oV  oa 1% da da, da daz da da
(e1,e2,€3) = <—1— 2 77 —3—>, (b1, by, b3) = (3_2 91 9% 2_1) )

We then compute:

oA, B a9 yoV 9 vd
(at,v (V)>1 = - (at +Uax> (’Yﬂlcz> ’Y(aerc%)t) (YV —yoa)
da 2p 0V da 202 9V oV 2p 0V da 202 0a
_ 2% YOOV p,0m  YUTOV. 20V YUOV 2 0M1  TTUOM
= 77 ai,‘Jrc2 o V0% T 2 ox ox & o T 0% T c2 ot
_ OV p0m y%0%0m AV dm
ax ot TT@ ot T ox otV
oA, a9 9 s da, AV o
(—at,—v (V)>2 = —’Y<at+vax)ﬂ2—ay(’YV—’YW1)——’)’at—’YUax—’Yay‘f"Yvay

= e+v%—% = ey — yvb
- '72 r}, ay ax _’72 r}/ 37

and
oA, 9 0 ) a3 day; oV da;
<_E)t’_v(v)>3 = ‘W(at”ax)@‘azw‘”wl)‘”at"wax”aﬁwaz
_ day  daz\
= 7€3+’)’U(az ax)—’Yea‘i"Yszf
so that;
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as required. Similarly;

and

A = (20— 2 (e = TV Cpy - 20 (202 OV 02
(VXA)3_7(8x+c28t>a2 8}/(7[11 cz)_’yb3+c2(at+ay =t 2’

so that;

—/ ve ven =/
V' ) A = (b, b+ 152, 0k - T2

3
’ 7b3 - 2
as required. In the general case of a boost defined by a velocity vector 7, we can find g € SO (3), with

v = g (vey). Then, by Lemma 3, we have that;

By = RgBy, Ry ' = Rg¢Bug, Ry-1 -

By the two cases checked so far, we then have that the property (9), in the statement of the Lemma, holds
by iteration. If T is an arbitrary element of the Lorentz group, it can be written uniquely as the product of

a boost and a rotation or a reflection. By iteration, we can then define a transformation (ET,ET), of (E,B).
. o 4. . . V &
If 7 is represented by two distict products, then by the covariant property of the potential <?, A), the two

transformations, (%, Zl) and <%, Zz) , obtained by iteration in the representations, coincide. In particularly,

we have that V; = V; and A; = A,. Again, iterating the relation (9), we must have that;

- 0A 0A -
El = - <V/ (Vl) =+ at/1> = - <Vl (VZ) + 8t’2> = Ez,

and
Bi=v'xA; =v' xAy =B,
where 17/ and % are differential operators in the new frame S’ and {Ej, E», By, Bo} are again obtained by

iteration in the representations. [

Lemma 5. Let (p,],E,B) be a solution to Maxwell's equations in the rest frame S, let § € O (3), and let
(pg, 78, E8, sign () B® ) in S’ be as given in Lemma 2. Let T be a velocity, with corresponding image W = g (9).
Let S" and S"' be the frames defined by T and W, relative to S and S’ respectively. Then, if (p” ,7/,, f/,,gﬂ) is the
solution to Maxwell’s equations, corresponding to (p, ], E,B) in S” and (p’ " ,7’”,?’”,?’”) is the solution to Maxwell’s
equations, corresponding to (pg, T8, E®, sign (g) §g>, in S", then;

[VN . (EH % E//)]g _ V,,, . (E/// % EIH) '

In particular, we have that;
=

v . (EH X E”) =0 iff v". (E X E’”) =0.

Proof. The final claim follows immediately from the first. By Lemma 3, we have that B,R; = R¢B,, and by
Lemma 4, we have that E = E ¢, B"

shows that;

v,,, i (EW % E///) _ v,,, . (Eﬂg % sign (g) E//g) _ v,,, ) (EN % Eﬂ)g _ [VU . (EH % E//)}g .

= sign (g) B". Thena straightforward calculation, using Lemma 1
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Lemma 6. Let the frame S’ move with velocity u relative to S, and let the frame S" move with velocity T relative to S,
then the velocity of S computed in S is given by;

_ _ u+o UX(Uuxo
u*xv= s T 2 L (ﬁ.ﬁ)'
1+ ¢ (ru+1) 1+

Moreover, there exists ¢ € SO (3) defining a rotation Rg, such that;
BsBy = R¢Buss = BraiRg,
where Rg (11 x 0) = T 1 and the velocity of S computed in S" is — (0 * ).

Proof. The first formula is given in [2]. We use the original formula there for the boost matrix;

%z+1

as it is unnecessary to introduce the variable xo = ct, but see the footnote in Lemma 3. The frame S moves
with velocity — relative to S’ and, using primed coordinates for S, and unprimed for S’ we have, using the
matrix B_g to relate the two frames, that;

dt' = yudt 4+ ¢ 2y undxg + ¢ 2yuundxy + ¢ 2y uzdxs,

2.2 2
Tulg Yul1U2 ’Yu 1U3
dx = yyupdt + | 1+ L2 ) dx; + dx+ dxs,
1o ( T+ D) ) T E )T )

2.2
’Yu 1U2 Yuls ’Yu 2U3
dx}y = updt + 5 Edny o 1 R | dig O B,
=T CARSY < m+1>> 2T ()

2 2,2
dx} = yyuzdt + ﬁ”ulug’ dxq + IY” 213 )dxz + <1 + 'yuu3)> dxs.

e (yu+1) 2 (yu+1 2 (yu+1
Using the facts that v; = dt Jfor1<i<3 L o=1- 02({;311) and the formula @ X (# x 0) =4 (7.0) — 0 (U. %),

we compute;

iy Yutrdt + (1+ 7"”1 )dx1+ L) dxy + it 3 dxs
1

, A(yut1) A(yut1) A(rut1)
VD@ = =
L= gy Yudt + c 2y urdxy + ¢ 2y undxy + ¢ 2y, uzdxs
2.2 2
g + (14 4 ) o + 500 4 80,

Yu + Ciz’)’uulvl + C72'7uu2772 + Ciz')/uu303

'y%ﬁ.ﬁ YylsU uz’yu YulUsU
ot (ot afiry)  prm(raliy)  (-agphn)o | (0 atey) @

'Yu( uv) 1+c72 1+% 1+uv

_mh+o ’Yu((ﬁ-ﬁ)m—uzvl)_ul—i—vl Yu (1 % (1 X D)),

1422 1422 1422 1422

and similarly;
o it o v (X (I X 7D));
fo1+ i 1+
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so the result follows. The first of the second set of formulae is also given in [2], (®). We can deduce the second
formula from the first. We have that;

BuwwB-uB-5 = Rg-1,

and, as this holds for any velocities {7, 7}, making the substitutions —7 for 7 and —1 for 7, and, using the fact
that — (D) = —0 % —1, we can find h € SO (3) with;

B_ @siyBoBu = B_5«—uBsBu = Ry-1,

so that;
BsBy = ByaiRy-1 (10)

By the first part of Lemma 3, and using the first result, we have that;
BsBw = RgBuxo = Br (o) Ry s
and by the uniqueness part of Lemma 3 and (10), we have that;
Ry-1 =Ry and U =Ry (u*70) .

It then follows from (10) that;
BsBi = BpaaiRg,

as well. For the final claim, observe that S’ moves with velocity —7 relative to S” and S moves with velocity
—1 relative to S’. Using the first claim, we have that the velocity of S computed in the frame S" is —7 % - =
— (0% u) as required. O

Remark 1. The presence of the Thomas rotation resolves the so called Mocanu paradox, explained in [5], that
the relative velocities of two frames S and S”, connected by two successive boosts {#,7}, do not differ by a
minus sign, when computed in S and S” respectively. An interesting perspective on the relativistic effects of
rotations is given in [6].

Lemma 7. Given a scalar v € R, with |v| < ¢, and a velocity u, with u < c, there exists a unique velocity W, such that;
B%Bi = RgBu, ,
where ¢ € SO (3). Moreover, if U is fixed and v — oo, when uy # 0 and U # uqe;, we have that;
W — iv (0, uy,uz) .

When, u1 # 0 and u = uqey, we have that;

When u; = 0;

3 In fact Ungar claims that B;B; = B (% 0) Ry, for some h € SO (3). Remembering that the boost matrix we use in this paper, for ¢

coordinates, reverses the signs of #, © and u * 7, we obtain; B/ lBg 1 =B ;B 5 = B,(mg) R, = Bg*lth, so that; ByBy = Rj-1Buss
(%), and we can take ¢ = h~!'. This formula also holds for the boost matrices with xy = ct coordinates, as letting A, be
defined by; (Ac)yy = ¢, (Ac); = 1, for1 < i < 3, (AC)ij = 0, otherwise, for 0 < i,j < 3, we obtain from (x) that;

(AcBsAY) (AcBrAY) = (AcRgA:Y) (AcBrwAc!) = Rg (AcBiwA: 1), and the boost matrices in xg = cf coordinates are given by
{ABzA7!, AcB5A Y, ABiis A1}, The explicit representation of h and, therefore, g is known, and included by Ungar. The formula
is given by; Rg = R-1 = I — c1Q + 002, where; (Q); = 0,1 <i <3, (Q)ij = (—1)i+jw,~j, 1<i<j<s, (Q)ij =—-(Q)
;“/M’Yv(7u+’7v+'hi*v+1) , €= o Qone:

A (vut1)(ro+1) (Yuxo+1) A ru+1) (ro+1) (Yuso+1)

jir
1<j<i<3 w=uUx?v=(w,wyws), 1=
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Proof. By Lemma 6, we have that;
BﬂB—Uél = RgB—'U§1 X1 s

where g € SO (3), and, rearranging;

Buey«—uBir = B_(_yp 4 Bz = BZ,

—vep kU

By = R¢B™). = RyBys,,

—ver
so it is sufficient to take W = ve; *x —u. The uniqueness claim is clear by the second part of Lemma 3. By the
formula in Lemma 6, we have that;

vey — U yo(vey X (vey x W) _ vep—u uv%e) — %

Vel 1—vear\ 1 — Mo :
R0 (582 oo (14)im3)

For the first case, taking the limit as v — oo, keeping u fixed, we obtain;

2

w:

_ e1 Uy _ U _ . - . Uy U3 .
Weo = —37 — —,-€1 + —5,~# = —icvey +icvey +icv | 0,—=, — | =iv (0,up, u3) .
- 1 _—- up Uy
C Cc Cc
In the second case, we obtain the finite limit;
_ e1 . . Czél
Weo = — — lcvey +icvep = ———,
- uy
C
and, in the final case, we obtain;
_ . _ o _ vu iup  iup  iug
Weo = liMy—oo | V61 — U+ = vey, + —=o(l——,——=,——,
c c c

as required. O

Definition 4. We extend the definition of boost matrices in Lemma 3 to include complex vectors 7, with 52 #

c2, where 7% = U% + v% + v%, and 95 = 1 — where we can take either square root, provided we do so

1-%2
2

consistently in the definition. We denote the two complex boost matrices obtained from a complex vector 7 by

Bl and B2. The fact that (B%) o (Biﬁ), for 1 < i < 2, follows easily from the real case and the fact that it
holds generically, noting that (—5)2 = 77, 50 we can take compatible square roots. Similarly, we extend the
definition of % * 7, to include complex vectors # and v, with 2 ¢ {0, cz}, 72 -+ 2, and 1 + ﬁc—f # 0, taking
U .7 to be u1v1 + upvy + u3v3, and noting there are two possibilities, (1 * 7)! and (7 % 7)%, depending on the
choice of square root in ;. We extend the orthogonal group O (3), to consist of complex transformations
Ry in the spatial coordinates with RgRg = ngRg = I, where t denotes transpose. We denote this group by
G (3), noting that it is a group, as RgRy, (RgRy,)" = RgRyR,RY = RgRY = I, and, similarly, (RgRy)' ReRy, = I.
We denote by SG (3) the subgroup of G (3) consisting of complex transformations with det (Rg) = 1. We let
C" (C*) denote the set of analytic functions in the variables (x,y,z,t), and, given f € C* (C*),g € G(3),
define f$ by extension from the real case. Using analytic derivatives, we similarly define the transformation
F® of a complex vector field. We extend the definition of the operator 57 using analytic derivatives. Let the
frame Sz be connected to the base frame S by one of the boost matrices B, 1 < i < 2, for the complex vector
7, with 7% # 2. Given a real valued tuple (p,]), and a complex valued tuple (E,B), such that (p,],E, B)
satisfy Maxwell’s equations in S, we extend the transformation rules, given in [4], for (p,]) and (E, B). We use
the above definitions of # .7 and 7z, for complex vectors {u,7}, with 72 # 2, and use the choice of square
root, determined by i. We can link the coordinates with the boost matrix BZ, and we are only interested in
the coordinates of C* determined by the image of R3 x R >0, under the boost matrix. Similarly, we define the
transformation of derivatives from Sz to S, using the boost matrix (BY) 71, in coordinates (x{, x}, x5, x4) for the

frame Sz, by the rule % = Z;‘lzo ((Blﬁ) _1) :

ji 9%
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Lemma 8. With the notation of Definition 4, we still have that the results of Lemmas 1, 3 and 6 hold. That is, the results

(i) — (v) of Lemma 1 hold, with analytic derivatives, the extension of the <y operator, and taking ¢ € G (3). Moreover,

noting g (%) = T2, s0 we can take compatible square roots;

R¢By = By R, for 1<i<2,

when g € G (3), 9% # ¢2, and we still have uniqueness of representation, that is if;

RyB! = R,B2,

for {g,h} C G (3), and {7,W}, with 3> # c* and W* # c?, then § = h, 0 = W and iy = iy in the sense of taking
o T \2

compatible square roots in v or yg. Finally, for {1,5}, with {u?,5*} N {0,2} = @, 1+ 2 # 0and (1 + %) -

(1 — 2—22) (1 - f—i) # 0, (10), taking;
U.v
Y = Yosu = VYo (1 + c2> , (11)
we have that there exists g;,;, € SG (3), with;

By By = Reiiy Bl(;*ﬁ)lé - Bz%*ﬁ)i5 Riyiy +
and; ‘ ‘
Rg,, ((#+9)%) = (@+7)" ,
where i3 is determined by the choice of iy, i5 is determined by the choice of iy, iy is determined by the formula (11), and
Siyi 18 determined by the choices of iy and i,.
Let the frames Sz and S as in the above definition, be connected by the boost matrices BL and B' . Then, if (p%, 7%)

and (f%, E%) are the transformed quantities, we have that;

N AN — N N
p=(r) T=05)p E=(F) 0 B=(B),-
-7 -7 -0 -0
Let {u, v} satisfy the conditions (10) above, with frames {S,S’,S",5",8""}, such that S' is connected to S by Bg, §"is
connected to S' by B2, S"" is connected to S by Bi*. _. , S"" is connected to S by Ry, . , S" is connected to S"" by R, . ,
v (”*U)i3 8iyin 8iyip
S" is connected to S by Bl(%*ﬁ)z;’ for the appropriate choice of {iy, 13,13, 14,15}, then we have, for the transformations,

corresponding to the pairs (p, J) and (E, B), that;

()2 087) = (o). ,(]za,w)%)gﬁiz) () o), )

ipip

(202 52)7) = (B ), (), ) = (B (B )

Moreover, the transformation of derivatives from S” to S is independent of the path taken, in the sense that for coordinates
{x// y// Z// t/,} in S//,

() ()™ (52) = ()7 () (520) = (k)™ () (52

Proof. For the first part, in (i), we use the complex linearity of the analytic derivatives. For (ii), we still have
the property ( g_l)ﬁ. = gij for the complex entries of ¢ € G (3), the rest follows using the chain rule for analytic

and

functions. For (iii), we again use the properties mentioned to prove (i), (ii). (iv) is similar, using the definition
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of the inverse of a complex matrix A~ = TiA t (co f(A))". (v) is similar to (iv). For the second part, the fact

that g (v) =v%forg € G(3) isasimple calculatlon using the definitions. We first prove the footnote relations;

RgBly, = Bl

veyp

'UE])Rg’ (1 S Z S 2) 7

for any v € C with v?> # c?. These follow, using the properties of ¢ € G (3) and the fact that the identity
75?1 (1 - ZC’—;) = 1 holds for either choice of square root in y,s,. The rest of the proof follows similarly to

Lemma 3. We note that if 72 # 2, then for a choice v € C of the square root of 72, we have that (%)2 = 1.
We can then find ¢ € SG (3) with g (¢1) = 2, by taking a matrix with first column 2, then choosing h, with

.h =0, and k% +h3 + h} = 1 as the second column, and finally taking the complex cross product 2 x I as
the third column Interchanglng the second and third columns if necessary, we can ensure det (§) = 1. Then
¢ (vé;) = Dby linearity and v # 2. For the uniqueness claim, we can compute B’2 B’2 and using the definition
of G (3), obtain the same relations, including;

YoWj = Y5Vj, for (1<j<3), (12)

for the appropriate choices of a square root in 5 and . As in the proof, we conclude that 75 = 75, which
from (12) implies that v = @ and that we have taken compatible square roots i; and ip. For the final part, we
note that, using the real formula for # * 7, the matrices { By, By, Biis, Rg} depend algebraically and rationally
on the parameters {1, 7, vz, 75, Yuss }, where {i,7} are real vectors with max (H2,52) < 2. Tt follows that the
identity;

BsBi = R¢Biss, (13)
amounts to a set of rational algebraic identities R; = 0, 1 < i < 16, involving {%, 7, vz, vz, Yo} as well. As
noted in [2], these identities are still true when we make the substitution

U0
Yavo <1 + c2) , (14)
for yg45. WeletV C C 6 be the open subvariety defined by;
U0 2 2 72
V={(w7) cCt: {w?7*}n{0,*} =0, 1+ =z ;éo (1+> - 1—?2 1_c7 #0},
and C C V x C? be the double cover of V defined by;

1
C={(us,w,w) €V xC?: w% =

Making the substitutions w; for 9 and w, for 75, the closed rational algebraic relations R; (%, 7, w1, wp) = 0
hold generically on C. The conditions on {#,7} are necessary to ensure the denominators in the definitions
of {By, B3, Buss, Rg} are non-zero on C, so, by construction the rational functions R; have no poles. It follows

that the R; are identically zero on C. In particular, the identity (13) holds for all complex vectors {1, 7} with
2

{2,792} N{0,2} =@,1+ %2 £, (1 + @)2 — (1 — 2) (1 — —2) # 0, and choices of square root in {yy, 7z},
C c C C

(*). We need to take v = YiYs (1 + %), and the coefficients {c1,c;} in g; ;,, see the footnote in Lemma

6, must be determined by the choices in (x). Again, formulating the property ¢ € SG(3) as a set of closed

conditions, and using the fact that they holds generically, we obtain that g;,;, € SG (3). Finally, we need to

check that the identity (14) holds up to a minus sign, for any choice of root in {vy, ¥s, Yuss}, and for {u, 7}

satisfying the usual conditions. This follows by verifying the identity given in [2];

2
(@*7)* =

(i +7) l (TXT
(em) “(em)

This is a straightforward calculation involving verifying the identities;
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Ux (Ix7) = .07 -0, (ix0)?* =50 —(0.7)°,

for complex vectors. Then, computing 7y.5 gives the result. We thus obtain the relation;

ip i i
BB} =Rg, B ., (15)

(11x7)'3
for some g;,;, € SG(3). For the rest of the proof, we can follow the argument in Lemma 6. Note that the
conditions in this Lemma on {#, 7} are symmetric, so that making the substitutions, —o for % and — for 7,
observing the choice of root for 5.5 is admissible for y_._3 or Y~ (o), We can use the first part of this lemma,
to conclude that there exists 1 € SG (3) with;
B2B1 = B Ry, (16)

(9+11)'5
where ig is determined by the formula (11) in the statement of the Lemma. Then, we can use the conjugation
N2
result (15), applied to (10), noting that ((ﬁ * 5)13) # c2, by (11), to obtain;

B2pBi — B4 R . .
[T 3:’11'2((7*5)13) 8iyip

N2 SN\ 2
By the uniqueness of representation, noting that ((5 * 5)15) # c? and ( Siviy ((ﬁ * 5)13)> # c?, we conclude
thath = g; ;,, is = is, and g; j, ((ﬁ * 5)i3) = (T ﬂ)iS as required.

The next claim can be seen by following through the computation for real 7, with |5| < c. For the
penultimate claim, we can use the fact that (p, ) transforms as a four-vector, and the components of {E, B}
transform as part of the covariant field tensor, see [3]. Then we can use the result that the identities holds

for generically independent real {#,7}, with |ii| < ¢ and [9] < c. For the last claim, we can just use the
identification of matrices in (12) of the lemma. [

Lemma 9 (Limit Frames). Given a series of frames Sgsy,, where [0] = 1, connected to the base frame S by
the boost matrices By (syy, with lims_eof (s) = oo, f smooth and positive real-valued on R, the boost matrix
limg_,e f(s)£cBf(syo exists, with a given choice of square root, and defines a limit frame Seo. Given a series of

transformations (pf(s)ﬁ,ff(sﬁ) and (ff(sﬁ,ﬁf(sﬁ) of (0,]) and (E,B) from the base frame S, we define the
transformation to Seo by taking the limit as s — oo, of the transformation rules, see [4], for the pairs (pf(s)g, jf(sﬁ)

and (ff(s)ﬁ,gf(sﬁ). If (p,]) is a real pair and (E,B) is a complex valued pair, then the limit exists at the
corresponding coordinates in Seo. Defining the transformation of derivatives from Seo to S in the usual way by

-1
(limsﬁoo,f(S#CBf(sﬁ) , we have that the transformation is given by lim,_,q, £(s)-4c ((Bf(s)v> > In particularly,

the limit definitions are independent of the choice of f with lims_,eo f (s) = 0.

Proof. For the first claim, using the formula for the boost matrix B £(s)o7 given in Lemma 3;

b s)v ’YZszﬁ
By = [+ 2000 1)

c 2 (ys+1)7
where 5 = 1 R We can compute the limit, taking a positive square root;
1- L8
. . 1 . 1
lim (ys+1)=1+ Ilim ——=1+ Ilim =1,
s—o0,f(s)#c s—00,f(s)#C f(s)z s—00,f(s)#c 12 1
1-55 fOVmg —=
lim f(s)ys= lm _fe) = lim _r —ic,
s—00,f(s)#c s—090,f(s)#c f(s)? s—00,f(s)#C 11
1— 2 2
2 f(s) ¢
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2
. 2 s
lim  f(s)°9% = 7]“()2:—02.
s—00,f(s)#c s—oo,f(s)#c q _ f(Sz)
C
_ 2p2,
lim (m) and lim ( ZS fs)o ) exist for 0 <i,j <4,
© i s f(s)Ee \COs ) )

It is then straightforward to see that that
s—oo,f(s)F#c

as required. For the second claim, we have that;
<f(s)9,] > - _ B _
f()>/ and ]f(s)E:'YS (]H,s_f(s) Up) +]L,s-

Pf(sys = Vs (P - 2

We have, for a vector field F and scalar p, that;
_ I3 7 7 _ _
lim FHS = lim < ,f(S)UZ>f(S)U =< ,5>5:FH,
S—00 4 S—00 f (S)
so that;
li F, ,=F-F,,=F
s—>oo}]I‘I(ls)7éc s s
and B B
lim  9sF) s = lim -~ F’f(s)vff(s)v =0
s—roo,f(s)#c T s f(s)
As above, we have that lim 7,0 =0,and
s—oo,f(s)Fc
s—>o§?(ls)7éc% < f(s)o,F >= lim 7sf (s) < o,F >=—ic<7,F >,
T To = —icTp,
&%a;?&)#cvaf(S)vp icvp
so that; '
. 1 _ = . = . =
sﬁol}%)#cpf(s)i T c <7]>, and s%o}n}?(ls)#c ]f(5)5 =icop+ ] .
f(s)v x E>

Similarly, we have that;
Efyo=E|s+7s (ELs + f ()2 x B), and Bg(p = Bj| s+ 7s <B¢,s -

so that, using the above computations again, replacing < 7, F > by 7 x F;
. 5 = L=
lim Bf(Sﬁ:BH—i_E(UXE) .

lim E =E, —ic(vxB), and
im | Erep =By (0% B) LJm
For the penultimate claim we have that [in, ., f(s)£cBf(s)7 is invertible, which can be seen from the inverse
boost matrix, replacing v by —v, and noting the limit exists again. Then, we can use the formula for the inverse

of a matrix, and elementary properties of limits. The last claim is clear from the above calculation.

O
Definition 5. In the context of special relativity, we choose coordinates W=ctxl =x 2= v, ¥ =2z We

have the coordinate relationship for the Lorentz transformation;
V=q Exo - ”?1; :

x
= (2! - # ,
2 =2
L

where v is the velocity of a boost in the x-direction, and ¢y =
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We can encode the transformation with the Lorentz matrix given by A, which is defined by;

(§)00 = (§)11 =7

(ﬁ)m = (ﬁ)m B,

(A)zz = (A)33 =1,

(A),; =0, otherwise, for 0<i,j<3,

ij

where B = 2. We let;

o= (62 + c2b2>
2 4

where e = |E|, b = |B|, and {E, B} are electric and magnetic fields, satisfying Maxwell’s equations, in the rest
frame. We let;

g =(81,82,83) =€ (ExB) .
For1 <i,j <3, welet;
1
2 2 212
Pij = —0 (eiej +c7hibj — 5(5’7 (e cb )> ’

be Maxwell’s stress tensor, where E = (e1,¢e2,e3) and B = (by, by, b3). The stress energy tensor is given by M,
defined by;

(M)go =0,

(M)iozcgi, for 1<i<3,
(M)Oj:cgj, for 1<j<3,
(M)ij:pi]" for 1<4,j<3.

It transforms between inertial frames, using the summation rule, see [7];
, . _
( ) = (A)ii’ (A)]‘j’ (M)ij :

l'/jl -
Lemma 10. Suppose that (p, ]) satisfies the continuity equation and is surface non-radiating in the sense of Definition
2.8 of [1], then there exist 3 real families of electric and magnetic fields, indexed by v € R, (E},, Ezl,) , (Eﬁ, Ei) , (Fi, EZS,) ,
satisfying Maxwell’s equations in the rest frame S and the additional equations;

=~

a0} ogi iy oo} 9 iy (1 1, %

ogy T Bogy" T Yo" T 00 t e+ Gog T+ iudiv <3v> 0o | fiot o) =0,
02 983 ap3 302 g3 ap3 o g3

oG+ Pogyt Vo5t 00 ot + Bogt +div (35) + 00 ( fi, + 5 ) =0, (17)
a3 983 3 a3 983 3 - 983

woGE + Bt + Yot + 0T o+ Comgpt +1odiv (85) +00 ( S5+ 5 ) =0,

) 3 _pA3 211)43 _pA3
where; a, = li“/ By = ((/32+1) 73 —7), 70 = (%ﬁ — 'YT) 0y = C;Y % € = (Frt)re Cz)“r v/év = 7’? S =
7,0, = 77;3 Moreover, we can take a fixed pair (E, B) in the rest frame, with div (E x B) = 0, such that E = E(l) =
E; =Eyand B = By = Bo = Bo.

Proof. Transforming between frames, and corresponding fields (E,, F’) in 8’ and (E},,El,) in S, we have,
dropping the index v throughout the proof, that;

o' = (M) = (A)y (R) (M);; =220 =11 —12Begi + 72 B2pn = 72 (¢ — 2Begy + Bpn)

cg1 = (M/)m = (A)y (A)jo (M) = —72Bo +7*BPeg1 +7v7cg1 — v ppin = 7 (—Po+ (BPc+c) g1 — Bpu)
cgy = (M/)zo = (M) (A) jo (M) ij = 7682~ Thpa
cgs = (M/)ao = (N)ig () (M) = 7egs = vBpsr -

(18)
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The condition that div’ (f/ X E’) = 01in the frame S’ is equivalent to;

V' (81.85.85) = 0. (19)

We have the transformation rule for v//, given in [4];

o _ (d,00y @ _0 @ _2
o~ \ax " c2ar)’ ay 9y’ 97 oz’
Applying this to (18), (19), we obtain;

(e ) = (0 (o (Per )
v o

ox | c2ot
’ L L =0 20
T3 (’r (*ﬂ0+ (ﬁ C+C) grﬁpn)) + ooy (res2 = aBra) + 5 (vegs = vpps) =0, (20)

and, rearranging, we have that;

_ﬁ733£+((/32+1) 73_,)/) 881 + ydiv (3) + <7Cﬁ_'7iﬁ>apn—’yfdiv(7"l)_ﬁ'§vaa

c ox ox ox ot
LB )09 prledpn
c? ot 3 ot =0 1)

where T is the Maxwell stress tensor. We have, see [3], that;
- a
div (T1) + == = —f1,
where f = (fi, f, f3) is the force applied by the fields {E},,E},} relative to the charge and current (p, ) in the

rest frame S.
Rearranging again, we obtain;

—Fr oo (<ﬁ2+1> 73—7) 9381, (Wcﬁ_ 73ﬁ> dpun _ privdc  (B+1)r’0dg  privopn

c  ox ox ¢ ) ox 3 ot c? ot 3 ot

+ dio (3) + 22 (f+ ):0 22)

By symmetry, for boosts with velocity v in the y and z directions, we obtain the relations for (Eﬁ,ﬁi) and

(fi,ﬁ?,) in the rest frame S;

—Wao 2 )3\ %2, (1B B\ opn  prvac (B +1)1%0dg
c ((’B ) 7) Iy T\ c dy T c? ot

B 03P22+,Ydlv( )4 2B (f +9gz) _o,

3 ot

and;

—p7° o0 > 5 N9 (1B 7B\ dps  privoc  (BF+1)7’vags
c 0z +<(’B +1)’Y 7) az+ c c 0z c3 8t+ c2 ot

BT | hio () + 2P (f 1 %8 ) 0,

The final claim is clear by the definition of surface non-radiating. [J

Lemma 11. For (X, to) in the rest frame S, there exists, at (X, to) a polynomial approximation of (El,, El,) from Lemma
10, satisfying Maxwell’s equations, and the additional equations there. Moreover, the conditions are algebraic.
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Proof. Fix (X, to) in the rest frame S and define the vector fields (le,,ﬂzl,) by;

i k 1
Iy = Yosjrktiomet L jgmo (¢ = %0) (v = y0)" (z = 20) (£ —to)",

i k 1
My = Yo<jtktim<t M} i o (X = X0) (¥ = y0)" (z = 20)" (t — to)",

. —1 —1
for1 <i < 3,wherelL, = (l1 l% U,lév), M, = (m% o m% o m% v) and;

1,07

j+k+14m) ,1
a(] )gi v

bjkimp = axayFaztam |(%oto) *
QUitk+1+m)p1
i

M jkimo = axiaykazlam | (Toto) -

Then, for v € R, at (X, tp), (f},,ﬁzl,) satisfy Maxwell’s equations, see the proof in [4], and the first equation
(17) in Lemma 10. The satisfaction of the four Maxwell’s equations at (xo, to), defines 8 linear conditions on

. . l 1 . .
the 30 coefficients li,jklm,v and M, ki, STVEN by;

1 10000 + 13,0100,0 + 300100 — p(?olto) =0,
1301000 — B,0010,0 + M,0001,0 = 0

131000, — 1,0010,0 + M0001,0 = 0.

131000, — 101000 + M3,0001,0 = 0.

1 1000,0 + M3,0100,0 + 300100 = 0

301000 — M,0010,0 — H0€0lt poo1, — Hojr (%o, to)
3 10000 — 1,0010,0 — H0€013,0001,0 — Hoj2 (%o, to)

(i0)m3 1000, — M1,0100,0 — H0€013,0001,0 — H0J3 (%0, fo

0,
0,
)=0,

where | = (j1, 2, j3)- For the first equation (17) in Lemma 10, a simple computation using the product rule and
the formula given in [3];

1 -1 = =1
fv =pE,+] x By,
we obtain that;

o _

1 1 1 1 1 1 2,1 1
X5y = €otto (ll,OOOO,vll,lOOO,v +12,0000,012,1000,0 + 13,000,013, 1000,0  €7711,0000,0"1,1000,0

2,1 1 2,1 1
FC71M3,0000,0"2,1000,0 T € m3,0000,vm3,1000,v) :

9%l 1 1 1 1 1 1 1 1
Poa = €oPo (lz,looo,vms,oooo,v +12,0000,0™3,1000,0 ~ 13,1000,0™2,0000,0 — l3,0000,vm2,1000,v) ’

- 1 1 2,1 1 1 1 1 1
Yoox~ = —€07Tv (ll,OOOO,vll,wOO,v + €711 0000,0"1,1000,0 ~ 2,0000,0%2,1000,0 ~ 13,0000,013,1000,0
2,1 1 2,1 1
—CM3,0000,0™2,1000,0 ~ € mB,OOOO,vm3,1000,v) ’
oy _ 1 1 1 1 1 1 2,1 1
O3 = €00y (ll,OOOO,vll,OOOLU +12,0000,02,0001,0  13,0000,013,0001,0 + €711 0000,0™1,0001,0

2,1 1 2,1 1
FC7M3,0000,02,0001,0 + € m3,0000,vm3,0001,v) ’

91, 1 1 1 1 1 1 1 1 23
€03 = €0€o <12,0001,vm3,0000,v +12,0000,0™3,0001,0 ~ 13,0001,0™2,0000,0 — l3,0000,vm2,0001,v) ’ 23)
Piip 1 1 2,1 1 1 1 1 1
Coar = —€obv (11,0000,1;11,0001,7; + €M 0000,0™1,0001,0 ~ 12,0000,02,0001,0 ~ 13,0000,013,0001,0

=211 0000,0M3,0001,0 sz%,oooo,vm%,oom,v) /

Hodiv (?z];) = €o'o (l%,l()OO,vm%,OOOO,v +13.0000,0™3,1000,0 ~ 13,1000,02,0000,0 ~ 13,0000,0"2,1000,0
+15,0100,0™1,0000, T 13,0000,0™1 0100, — 1,0100,0™3,0000,0 ~ 11,0000,0™3,0100,0 + 11,0010,0"2,0000,0
+l%,0000,vm%,0010,v - l%,OOlO,vm%,OOOO,v - l%,OOOO,vm%,OON,v ,

Oofi, = 0o (P (%0, £0) 11 goon,0 + 72 (X0, to) 13 0000, — /3 (¥o, to) m%,OOOO,v) :

9%, 1 1 1 1 1 1 1 1
005" = €00o (12,0001,vm3,0000,v +15,0000,0"3,0001,0 ~ 13,0001,0™2,0000,0 — lS,OOOO,va,OOOl,v) :
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Combining (17) and (23) we obtain 9 conditions on the coefficients. ~We introduce 30 new variables

{xz‘l,jklm'yzl,jklm}' for1 <i<3and0 < j+k+14+m<

{lil,jklm,v' mzl,jklm,v} in the Egs (10), (22) and (i) — (iv), when v € C \ {—c, ¢}, we obtain algebraic conditions.

1. Substituting the variables for the corresponding

O

Lemma 12 (Limit Equations). We can take a limit as v — oo of the equations (17) in Lemma 10, to obtain the limit

relations;

d (=1 _ 51\ 1 aplZoo ap%:ﬁ,oo
E(E“’XB‘”%_ eo< Ay T )

J (=2 w2\ _ 1 aplZoo P33 00
§<E°°XB°°>2_ eo< ox + 0z ’

d (3 =3\ 1 (e e
8t(E°°XB°°)3_—€< ax T ay )’

for the transferred fields (fio,ﬁio), 1 <1i<3,see Lemma 9.

[=)

Proof. Observe that, taking compatible square roots;

hm’)f—hmocz,fhm‘villm(Svillmé’U*hmnyiO

V—00 V—00
B v i
lim 7, = hmGUZ lim — = lim ——— = 5 lim —(—— 27 :_7,
V—00 V—00 v—00 C V—00 2 02 C4 v—00 o C C
2 ?2

) . Buyr v 1 i

lim €, = lim :11m73:—hm73f 3:7,
V—00 V=0 V—00 4 2\ 3 4 0500 1 1\3 C4l c

¢ (1-%) (#-2)

Taking the limit of the first equation in (17) of Lemma 10, we obtain;

_iaph,oo n iag% i £ agl _ 0
c ox c ot 1,00 ot | 7
which simplifies to;
1 ap%l,oo
Froo =~ ox

Similarly, taking limits of the second and third equations in (17) of Lemma 10, we obtain;

2 _ apz o
{fz,oo— e
op3
3 P33,00
f3,oo_ gg :
Using the definition of p;;, for 1 <i < 3, we can rearrange (24), (25) to obtain;
1 B 1 V2o 20 )P € 9 13\2 2 (p1 )2
flo= (0 ((eda) +(bla)) = 22 ((eb)*+2 (04)7) ) ,
2
[ = eo% (ez/oo) +c?
2 2 2 5
A= (@ ((8e) 42 (1)) - 22 (@72 @)))

N

5]

Using the definition of force density ?, we have, see [3], the formula;

_ 1 2, 1) _ 9
f— 2v<€0E —l—‘uOB> GOat (EX

(24)

(25)

(26)

B) e (V-B)E+ (E-9)E) + - (v-B) B+ (B.v) B),
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and, substituting for the first equation in (26), using the product rule, we obtain;
0 /=1 =1 d 2 1 1 —_—— _
—co5; (Eeo % Bo) =5 (eo (ele) + n (o1 ))—eo(( E)E+(E-9)E);— - ((v-B) B+ (5. v)B),

9 1 \2 1 862 o aeélm 1
=535 <€0 (el,oo> +— 0o bl i~ ( T, | Cle
) o) 1 ab1 ab1 obl
_ 1 - 2,00 3,00 1
€0 (elooa +e Zway +e3ooaz> 1,00 1o < ax ay + Jz bl,oo

1 1 d 1 d 1 d 1
1o (bl © 9y b2,oo ay + b3,oo 9z bl,oo

(A etde) (ehathe)\ 1 [2(blable) o (bLbis)
0 vy T e " v oz /

=—¢€

and, rearranging;

1 1 21,1 1 1 1 21,1 1
d (e 62,00 +c bl,oobz,oo) d (61,0063,00 +c bl,oob3,oo)

1,00

d /=1 =1
ot (Bw xBo) = 3y + 9z ' @7

Similarly, substituting into the second and third equations of (26), we obtain;

9 =2 52 _ d (e%,oo e%,oo +CZ b%,oo h%,oo ) 9 (E%,oo e%,oo +C2 b%,oo b%,oo )
ot (EOO X Boo)z - ox + 0z ’ (28)
B E?, y §3 (9 Bt} 13 ) n (3 3 203 13 )
ot © ® )3 ox ay
Using the definition of the stress tensor, we can write this as;
1 1
) _ 1 [ WPire aplS,oo
of (E x B )1 = y + ’
2 2
) _ 1 (e | i
5 (FoxBa), =-3 T2+ 2=, (29)
3 3
9 (73 53 _ 1 (93 23,00
m(EOOXBOO>3__% Franin a9y

O

Lemma 13. For the construction of (E, B) in the base frame S, transferred from the limit (Eeo, Boo) in the frame Seo, see
Lemmas 21,22,23 and 24, we obtain a set of equations (41), as in the proof of the Lemma, for the quantities {c, gi, pj},
1<i<3,1<j <k <3, valid for u real, with uy # 0, U # uqe1, and with coefficients as defined in the proof of the
Lemma.

Proof. Fixing u real, with 1y # 0 and u # uq2;, choose g € SO (3) with g (&) = ﬁ (0, up, u3), so that,
u3+u3)2

1
forve R, g (iv (u% + u%) 2 el) = iv (0, up, uz). By the result of Lemma 8, we have that;

B -1
Biz;(o,uz,ug) - RgBl (uz+uS) 1Rg '

and, by Lemma 7, there exists a unique @, with @ — iv (0, up, u3), such that;
B#Bi = RyBeg, ,

where h € SG(3). Let (Ez,, ) be fields in the frames S, travelling with velocity ve; relative to S, such
that div (E, x By) = 0, then, in the rotated frames Ry, (S,), we have, by Lemma 8, that div (Ev X BU) =0,
and this property is preserved in the limit frame R;_ (S« ), see Lemma 9 and Lemmas 21,22,23, 24, so that



Open J. Math. Sci. 2022, 6, 205-247 225

div (E’;“ X F’;‘”) = 0 as well. By the same argument, in the rotated frame, Rgfthoo (Sx), we have that

— o1 _o—1
div (E‘go he B, h”) = 0. Following the same argument as above, and taking compatible square roots,

we have;

Iim v = lim &;, = lim B;, = lim J;, = lim &;, = lim »;, =0
r)/ — 00 1w 'U—)OO‘BZU V—00 o Uﬁooélv U%OO”ZU /

v—>00 v
. . . . iv i 1 i i
lim 7, = lim 6;;, = lim L’B: hmiz—zhmiz—zc:f,
V—00 V—00 iv—o0 C V=00 o v2 C< v—00 1 1 C C
c 1+ 2 2 + 2
li = privy® = L —iv® _ i li 1 _Tla_ i
m €, = lim = lm 3= 1 m 3 — 4C— .
V—00 v—o0 ¢ v—r00 2\ 2 c* v—o0 5 C c
4 (142 141
¢ T2 ZTz

Taking the limit again of the first equation (17) of Lemma 10, with iv replacing v, see Lemma 12, we obtain, for
the transformed quantities in the limit frame S’, connected to Re-1Ry,, (Seo) as the limit of boosts with velocity
vector iv (0, up, u3);

i0P11,c0 108100 , @ 081,00\
c ox c ot +c Freo F ot =0,

which simplifies again to;

o apll,oo
fl,oo - 7? . (30)

Following the same argument as Lemma 12, and using Maxwell’s equations, we have;

d = = 1 (0p1e , W13

for the transformed fields (Ews, Bor) in S'. Let S” be the frame connected to S’ by the relation R,-1 (5”) = &,

1 - 1
where Ry1 (0,u,u3) = wey and w = (u5 +u3)?. Let Ry (e1) = §, where u = (uf +u5 +u3)*. By the same
conjugation result, we have that;
RfBuglRf_l = By.

Let S be the frame connected to S” by the relation Ry (") = S, the derivatives on S transform to 5"’ by
the relations;

o (rem) " (3) =57 (8),
%o (ReaRe) () =Re'Re ()
We have that;
((0,u2,143) u) _w? w
w w
Let;

Tz{@:@.uél} =w,

so that, as f € SO (3), 0iu = w, where 6 = (61,6,,0;), and R;le (e1) = 0, with [§] = 1. We have that
)t

Rg (e2) = 7, with @ € (0,up, u3)~ and [9| = 1. Observing that;

(6/ (M], uz, M3)) = 01Uy,

(5%) =0.

Let;

T = {é/ : 9/.1/[?1 = 01u1,§/.§: 0},
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so that, again as f € SO (3), 0ju = vquy, 0/ = %L1, 8 .60=0 and RJZle (82) = 8, where 8 = (67,65,6%) and
0’| =1. As {f,g} € SO(3) and &, x &, = &3, we have that R, 'R (¢3) = 0 = 0 x ¢'. Transforming from S’ to
S"", we have, using (32), that;

9 (F. xBo3s 9 S1W &, 8,\ _ WIg  adg  pIgs
ot ((Em/ x B°°/'61>) = ot (<E°°m X Boorr, 9>) ot (eo u + eOOH_ eO‘B  eou Ot + €y ot + €y ot/ (33)

where § = (¢1,42,93) = €0 (Eaor X Bor), for the transformed fields {Eqn, Bo } in §”,and 6 = (2, a, B).

aah + ey + 835)

_ woiiy 2 ’Y o1&
= 1 -+ ”

)
2 ) e1er + (w + Ululﬁ) e1es + 067@% + (a6 + Bry) eae3 + poe3,

where 8 = (%L1, ,6), Esym = (1,2, €3). Using the same reasoning for By, we have that;

w V1UX wd  vu
P11 + ( T %) p12 + (u + 1u1ﬁ) p1s +aypaz + (a8 + By) p2s + fop3s

€ w20 € 20 €y .20

w D1U o1u
T an ) p12+ (u + 1u1ﬁ> P13 + ayp + (a0 + By) pa3 + Bops3, (34)

as w%l + a7y + BS = 0, where (Pij)
S"". We have that;

1<i<j<s ATe the components of the stress tensor and ¢ is the energy term in

(Ew,21) (Ers5) = (Foor,0) (e, 8x0)
_[(ew Boruq _ 57w YW avii
_(7+eza+e3ﬁ) (e1 (a0 =pr) + ( u u)+€3<u u )>

(oc& By)er + ( (ﬁvlul w) + o (ad — /37)) e1ep + (u (7 Mlul) + B (ad — [37)) e1e3

n < (/302141 5;)) 3+ <0¢ (’Y:U lw;ul) +B (ﬁv1u1 B >>ue e ;‘; ocv;ul) 2.

Again, following the same reasoning as above;

P13 — — (“5 BY) P11 + ( ('Bvlul - (SZU> +a(ad — py) ) P12 + ( (L lwlul) + B (ad — ﬁ’Y)) P13

u u
Boquq _(Siu Yw  aviug ﬁvlul iv _avpi
—i—(a( u u P2t D‘(u u >+‘B u u )p33
L0 s E_i poim  w E_@,zi aoiu1) 20
Zu({w ‘B’Y) 2“( u u)eo Z’B(u )e

(0«5 BY) p1 + (ﬁvl”l 5;”) +a (ad — ﬁ’r)) P+ (

(i‘f
+( (ﬁvlul ;u)) ( av;u1)+ﬁ(ﬁvlu1

(L - wbllm) + B (ad — ﬁ’Y)) P13

u
)) P23 + ,3 zxv;m ) P33,
(35)

%2\%‘
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as ¥ (x6 — By) +a (ﬁLu”l - 5“’) + B (L7 — ¥5) = 0. By (32), we have that;

J J
(@)5/ = vluul ax T 78y +5az ’ (36)
J VU ) o) J
(2), — (@o—pn) &+ (Bam — ) 2 4 (20— 2y 2.

Combining, (31), (33), (34), (35), (36), we obtain the relation in the frame S"/;

w&gl «dgy  Pogs 1 [vug 0 0 d woqllq wy UK
o of e of e ot e 05| (S + (5 + 25 ) e

wé  vu
+ (u + 1u1’3> p13 + aypa + (a6 + By) pas + ﬁ‘sp33>

e (B 5 () 2] S

u oy u u

+ (Z) (187]1”1 5:’) + o (ad — ﬁfy)) P12 + (% (ﬂ _ txvlul) + B (ad— 137)> pis

+ ("‘ (ﬁ?ffll - ?)) P2 + (a (% _ Dw;m) +; <,30;1Z 5w)> — ( ocv;m) P33) @)

Let 5”” be the frame connected to 5" by the relation B, (S"") = §". Using the formula for the boost matrix,

we have that;
J u 9
() g = e (i +23)

= 5 7
ay sm ay (38)

and, using the energy stress tensor;

cg1)gm ( mz‘) (Cvu 7") 81— ( 2) pu,

€82)gm > Yu€g2 — 7? P21,

€g3)gm > ’YuCgs — 1,

(39)

Using the relations (37), (38), (39), we obtain the following relation in §"”;

d J Jd\1 s 2, WL 'yu
eTu%‘ (8t+uax) c(( - )a—i—(cvu—k c 91— P11
o 9 9\1 Yult B 0 0\ 1
+€0u')/u (at+uax> c (')’uCg2 c P21)+€u (at+uax) ('Yu cgs3 P31>
_ _l 01U Yu i Ei ) 3 woiUy i B
Y [ u <ax + c2 ot 7ay —Hsaz 2 Tul\ 2 2ugy + p11
+ (2 + 22 wé | vihp

0 ) Yu (—ug2 + p12) + ( +—

1 d u a vu ow\ 9 yw  aviup\ 0
+(0€5+,5’Y)Pz3+,35}933)—5 |:(“5_/3')’)')’u (ax_'—czat> +(ﬁ; ! —u> @‘f‘(?— ; 1)82}

) Yu (—ug2 + p13) +aypa2
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X (Z: (@6 = B7) 73 (u;a 2“81+P11> (ZJ (ﬁvjlul 5;”) + o (a6 — ﬁv)) u (—1g2 + pr2)
+ (; ( wlul) + B (ad — Bv) ) u(—ugs+pi3) + (“ (ﬁvlllul - 5;)) P22
() e n () s (-5 ) @

where x is multiplication. Let;
Aj = (0] +0/6;) for 1<i<j<3,
wij = (0:6] +0/6;) for 1<i<j<3,
vj = (6j6)+0/6/) for 1<i<j<3.

Then, using Lemma 14, we can rearrange (40), to obtain;

wy -1+ 55
—w3y3 o0 n Wy uviy 87(7 N wyuvys ai N u 222 870

couc? ox €z dy €oc? 0z €oc? ot
3 2 2 2
T (” toa e ) g1 2wy dg1  2wygvizdg1 | Wy (2w —u? + %) 9gy
+ =1_ =1 =iy =l
€oc? 0x € 9y € 0z eouc? ot
u%, (62 — 01012 — 0/ p12) 9go 4 W (—63A12 — ) p12) 982 L W (—03A12 — 03 p12) 990
€0 dx €0 oy €0 0z
2
n Tu (92 MT (B1012 + 6f ”12)) 982 + g (63 — 01A13 — 01p13) 9gs 4 B (—03A13 — 0 p13) 983
€0 ot €0 dx € ay

2 2 2
wy (~0hMs — ) Ogs | T (6 — 15 (B +0m13) ) 5oy M (1= — 1) oy,
+ o2y
€ az €0 ot €eou dx
Y2wvip Op1r | Yiwvizdpn  yaw® dpur | va (—02u® + 201 A1 + c260] u1n) Op1n
+ + - 2.2 + 2
€U 9y €U 0z €gctu? ot c%eq ox

L (05A 10 + 05 12) Op12 L (05A12 + 05 u12) Op1n L Yiu (=62 + 01 A12 + 0 412) Op1o
€ ay € 0z c2eg ot
7% (—03u% + c204 A1z + 207 pa3) 3P13 Yu (05713 + 605 13) Ap13 L (03413 + 05 113) Op13
c2ey 0x € dy € 0z
2u (=03 + 01 A13 + 6] 113) Ip13 n 027uv12 Op22 n 0122 p22 n 0hvp3 Op2n  Bouyy V1 0P
c2eg ot €  Ox € dy € 0z €ocz ot
Yu (6{)\23 + 9{"1/!23) ap23 n (Qéfng -+ 95,]/123) ang " (Gé/\zg, + 9:/,,/}123) ap23 n 'yﬁu (91/\23 + 91’}423) ang
€0 ox € dy €0 0z c2e ot
n 037uv13 Op33 n 03123 Op33 n 03133 Op33 | O3u7y Op33
€  0x € 9y € 0z €oc? ot

+

=0. (A1)
O

Lemma 14. With notation as in the previous Lemma 13, we have that;

2 2
2 o1Uq w
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Proof. By the fact that |#”| = 1, and the definition of 6 x ', we have that;

(a6 — By)* + (W - w5>2+ (ﬂ _ %)2

u u u u

2 2 2 2
= (a6 — By)* + (vluuzl) (1 - 3’2) + % (1 - ”1;’22 ) 25 (o) (@y + B6) = 1. 42)

As 6 and ¢’ are orthogonal, we have that ay + 6 4+ =4 = 0. Substituting into (42), we obtain that;

2 2

w U102 w wouq

uz<1‘ 2 )‘2u<”1”1> (=)
(U1u1)2 w

2

w

0o+ o (1- 5 ) +

O

Lemma 15. With notation as in Lemmas 12 and 13, for the equations (41), we must have that;

o0 _d0 _ 981 _ 982 _9g2 _ 982 _ 983 _ 983 _ 983 _ 9p1n _ 9p13

dy 9z ox 9y oz ot dy 0oz ot  ox ox

_ 92 _9pm _9pn _9pxn _ dpxn _ Ops _ 9pm 9
dy oz ot dy oz dy 0z ot '

Proof. Note that as u — o0, 7, ~ 5. We let % = x and Z—? = A, with u; # 0, so that w = su, with

i’

1
s = (%) *. The Egs (41) in Lemma 12 hold for all u with 0 < u < ¢, and are algebraic, so letting u — oo,

we obtain that;

—V12S ai . @870' %& _ ic (—9&)\12 — 9&’]/[12) @ _ ic (—93)\12 — 9:/3/}{12) @

€ oy € 0z €9 0x € ay € 0z
N (01A12 +07'H12) 9gy  ic (—0pA13 — 65 13) g3 ic (—63A13 — 05 pa3) 983 N (01M13 +607'113) 983
€0 ot €0 ay € 0z € ot
020p1 | 030p13 | Gavop Opoy | Bova3 dpzn  i6av1p Opan | (0yA23 + 65 pa3) Ipas
200 | BEP + ~ +
€y 0Xx € Ox € Jy € 0z €c Ot €0 oy
n (03423 + 03 123) Ip23 4 05V 0pss | Osvssdpss i dpss _ 43)
€ 0z € 9y € 0z €gc ot !
where; 6, = 5, 00 = w, 03 = B, 0] = 1“3:’—1,(2, 0, = 79,05 =6, 0/ = ab—py, 0 = sfﬁ@ — 50,
eé’ =57 — \/sfﬁ(z' Ay = sy + /sfﬁ(z' Mz = 56 + \/sfjiﬂ’ Ay = ad + Py, pi2 =5 (\/Sfj:c? B S(S) (@ = py),

— _ _sau _ _ __savg spuy _ v%s2 _ 2
T B
vy = XL + (ad — B7) ( sbor_ _ S(S), 3 = <29 4 (a8 — By) (s'y — j%), v = Y2+ ( por__ 55> ,

]

1+x2 1+x2 1+x2 1+x2

2
V3 = Y0 + ( Sf ﬁcZ - SJ) (s'y - j%), V33 = 0% + (s'y - Sfile) and, by the orthonormality relations

between § and 6’ ;

S+at+pr=1,

11%;(2 +92 462 =1, @)
\/%—i-uc'wa/%é:O,

o] <1.

Now, take x = 0,77 = 0,0 <s < 1,7 = (1 —52)%, a = tcos (0), B = tsin(0), v = —sin (), 5 = cos (),
0 < 6 < 27, then it is easily verified that the conditions of (44) are satisfied. Substituting into the Eqs (43),
and taking the power series expansions of the functions involving 6, we can equate coefficients in {1,6,6%}
respectively, to obtain the following set of equations;
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o 2T o | sic 981 szc(r —s ) 982 ( ) 3gz sic 983 T Op12 | 2t Opx | ist? apzz T 9p23 i dpsz _

(i) € dy ' € sz z ;3 oy ( Eo ) + € Bz(+ eo)ax + 6o oy ceo( )+ € 0z _(ceo ?t =0.

o\ $2T 90 ics(14+(7*=s%) ) agy ics (14(7%—s? ) 383 3g3 T 9p13 a1722 apzs

(ll) ?0& - €0 2z €0 + €0 + €0 ox + + €0 +
a2
€0 oz )

(i) serae o (@) o w(P) oy sic(H(Po2) 9y x oo 2rStdOpm s opm
2¢p 9y €0 ay 2¢ ot €0 Jz 2¢y ox 2¢p  dy cey ot

(260 1) ast + ( 1) 3!’;3 0.

Using 72 = 1 — 52, we can simplify (i) to obtain;

5.6277(80+8p22> sic <%+%> _sic(l—Zsz)@+T(l—252)@
0

ay  dy ox 0z €0 ay €0 ot
T (Op2  Opxs)\ | is(1—5*)dpm i dps; _
< x ez )T T e ot cey ot =0 (#5)

We can write (45) in the form 2{ 1 Aipi = 0, where; g = ( + apzz) Mo = aa% + a(—f;, Uz = aaé’; Mg = &if,
ps = iz O o 0, — 905 sing Newton's expansion of;

1 2 4
(1_2) g s s
=(1-9)" =1-5 8 16+O()’

and equating coefficients up to s® to zero, we obtain the following equations;

o+ s — ém =0,(1) (46)
ic (p2 +p3) + é#e =0,(s) 47)
w1 — gm — s =0,(s%) (48)
ey — L =0, () (49)
%1%1 + gm - é]"S =0,(s (50)
S e = 0.(°) 6

Using (48), (50), (51), and solving the three simultaneous equations, we obtain that y; = 4 = s = 0. From
(46), we then obtain that y7 = 0. Using (47), (49) and eliminating u, we obtain pp = u3 and ug = —2c?u3, s0
we obtain;

o _ _ Opxn

dy —  dy ’

dp12 _ _ 9pas

ax dz /

dpn 298

e (52)
9% _ Odpsz _ 0,

of T ot T

981 4 983 _ 982

ox Jz — dy °

Using 72 = 1 — s? again, we can simplify (ii) to obtain;

2T d0  ics (2 —2s?) <agz+%)+r(12s2) <ag3_apz3>

€ 0z €o oz | oy € ot ay

T (dp1z  Ip33 i (s> —1) dpx _0
ox 0z € 0z ’

We can write (53) in the form

5
Z )\i‘ui = 0, (54)
i=1
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. ) 0, 9 9 J J d J
where;yu; = a—‘;,yzz %—l—%;,yg,: %—%,mz %—%,% = %,where)\1+)\3+)\5 = 0 and

A1 — Ay — A5 = 0. Using the first relation in (52), we can write (54) in the form;

At (B — ps) + Aopiz + Az (p3 — pis) + Aapg = 0. (55)

Using the second relation in (52), we have that 2A; = A4 — A3, so that multiplying (55) by 2, and substituting,
we obtain the relation;

2Aopo + A3 (2 (p3 — ps) — (p1 — ps)) + Ag (2pg + (g1 — ps)) = 0. (56)

1
By taking a power series expansion of (1 —s?)? or otherwise, it is easily checked that varying the coefficients
(2A2,A3,A4), with 0 < s < 1, gives that;

po =2 (p3 — ps) — (p1— ps) = 2pg + (p1 — ps) =0,

so we obtain;

9% _ _ 98
oz~ dy’
o _ 5 (98 _ 9 _m:_@(m_m)_m)
dz ot Iy 0z ox oz daz )’ 57)
m (% 22 ) (- o) (
oz~ \ ot ay ox az )’
do _ (98 _ 9p ap ap
E=(B-%)- (%)
Using 72 = 1 — s again, we can simplify (iii) to obtain;
—s’td0  sic(2-25%) (3gp 9gs _T(1-2%) 3z T Ipn
2eg dy €0 ay 0z 2¢€0 Jt  2¢y Ox
27 — 37529 si(1—s)d T (45> —1) 9 T(s*=1)09
N pr _si(1-8%)dpn  TMAC -1 s  T(*-1)dps _ (58)
2¢ ay ceo ot 2€0 0z €0 ay
We can write (58) in the form
8
Y Aipi =0, (59)
i=1
9 9 ) ) ) ) ) )
where; i = 7, 4o = 52— 2, 13 = B pa = F2 s = B2 e = B2, py = B2, pg = B2, where

4M —4Ay4 + 218 = 0,6A1 —4Ay4 — 245 = 0,4A1 — Ay + A7 = 0 and 2A; + A3 — A4 = 0. Using the first relation
of (57), we can write (59) in the form;

3 7
M (1 —2p8) + Y Aigti + Ag (pa + 2p8) + ) Aigti = 0.
i=2 i=5
Then, using the second relation of (57), we can write (59) in the form;

3 7
A (1 +3ps —2ug) + Y Aipti + Ag (s — 215+ 2ug) + Y, Aipti = 0.
=2 i=6

1

Using the third relation of (57), we obtain;

3
A1 (i1 +3ps — 4y — 2pg) + Y Aipti 4 Ag (s — 2p5 + p7 + p7 + pg) + Aspis = 0,
=2

and, using the fourth relation of (57), we obtain;

A1 (1 — 2u3 + 3ps — 4uy — 2ug) + Aopin + Ag (U3 + pa — 2us + p7 + ps) + Agpe = 0.
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Using Newton’s expansion of T again, and equating coefficients up to s?, we obtain the equations;

-5 =0,(1) (60)

2icdy — 2'56 =0,(s) (61)
01, 0y 2

*?4‘1—0,(5) (62)

where &y = 1 — 2p3 + 35 — 4j7 — 2pg, 62 = Ho, 04 = Y3 + pa — 245 + p7 + pig, 06 = 6. From (61), we obtain
that pyp = iﬂé, so that;
@ﬁ . ag3 . 1 apzz

i 63
dy 0z 22 ot 63)
From the rearrangement of (i), we had that ap Z — —262%2, so that, using (63), we obtain;
o
Y Z y
2% _ dn (64)
ay dz *

It follows by symmetry that Zag3 = agz , so that by (64), ﬁlag2 = aagyz and, using (63) and the second equation in
(52) that
982 _ 983 _ Opm _ , 981 _
S oo V= ©
as well.
From (60) and (62), we obtain that §; = 64 = 0, so that yq — 2u3 + 3us — 4uy — 2ug = 0 and p3 + ps —
2us + p7 + pug = 0. It follows that;

aa 382 +33P22 _ a1023 _ 235723 -0
]/ 7

dy
382 + a1712 _ 23P22 + ast aIf723 —0. (66)
From the third and fourth equations in (57), we have;
083 _ Op» | 9pm _ a11713 3!’33
P = oz T oy + 5z
il _@,M,BPBJFBM
_3@4_81722_3;713_1_3@_8@_@4_8?33
CE ay ay ox 0z
aPls aIﬂzz aPzz apzs 9p33
=-2-2+ + - +252,
and, from (66), second equation of (52), we have that;
9% _ 31!712 Opx _ Opas _ Ipx
o= T2 oy T e
=0,
g; _ 2@ _ a71722 +43P23 +23P;3 (68)
9 ( E)Plz _i_z@ _ 35# . ag%) 381922 +48P23 +28P23
a1012 alﬂzz 9p23
=200 T t2%

We also note, from the fact that gf = 01in (52), that 8g3 = 0 by symmetry. Rewriting the equations (43) of this
lemma in terms of the stress tensor, using the above relations, we obtain;
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—vi2s (9P 0P | ,0P23)\ VS ( ,0p13 9P | Opn 9P ,9p3
€0 (28x 78]/ +Zaz €0 ax+8y+az ay +282
ic (—9{)’/\12 - Gé/]llz) @ _ ic (—9£A13 - 95/]/[13) —agz

€0 0z €0 0z
62 dp12 n 03 dp13 " 02120 Op22 | Bav23 Ip22 n (03423 + 65 1123) Op23

+

€ Ox €y 0X € 9y € 0z €0 ay
o (03725 +605423) —Op1p | Bsvas Opss | Oavzs ps _ 69)
€0 dx € Jy € 0z
with;
_9pn dpn  Opy3 M
3P12+27Pzz ayalﬂza 3_Pz(2) (70)
2 ox - 7 + 2 - _W 7
by (68) and the fact that 3—‘; = 8552 in (52), and the additional relations;
d I’} I’} d d I’}
_2 P13+ P22+ Pzz_ P23+2 P33 :_%,
(71)

aP13 aP33 3}’23 a1023 _

which we obtain by symmetry, see Lemma 20, 92 = 857;3 , from % = — %2

Jy — dy
ap 2 — (. Eliminating {ag}f , ag%, ag%, ag% }, from (70), (71), we obtain the equations;

, and from —85’12 +237ﬂ _ 35% .

op2 _ 1 —3P33 aPzz 9p23

ox =12 + 8%y )

o3 _ 1 1931733 +53P22 _ 49 ,

ox 12 0z ay 72)
dpr 1 dpss aPzz 8p23

ay ~— 12 2 oz +4 ’

ops _ 1 (r9p33 aPzz ast

oz 12 5 0z 55 +4

Substituting into (69), we obtain;
ic (03A12 + 0312 — 0313 — 03 p13) 980 | B3v23 Op33
€0 0z € Oy
(S 4vps— B+ 80+ SR Blp oy fam g
6 13 3V33 9p33

€0 0z

_l’_

€ 0z
—21/125 _ % _ 973 29:’3/\23 29&’.”23 921/22 / 1
( 3 o3t Ty Ty R A 0OAn ) gp)y

€0 ay

1
Takingx = 0,03 =0,s =0, 7= (1—s*)2 =1, & = tcos (0), B = tsin (0), v = —sin (), 6 = cos (9), for €

{0, %, 3f , 5 } respectively, noting that the first coefficient in %92 is zero, we obtain the coefficient matrix (A)l-]-,
for1 <i < j < 4for the remaining 4 variables {8553, aggs, aggz, agf} where; ;7 = 0,a10 = 0,413 = 0,414 = %,

dy = —2— a227713 a2:7’7a: = azp = —F=—,033 = —F= —;13
21 2v2e’ 6v2¢” 23 12v2¢,” 24 6ﬁeo’ 2ﬁeo’ 3 V2eo” 33 12v/2¢, 34 6v2¢”

ag1 = 0,a40 = %,a@, =0,a44 = %01 By a straightforward calculation, we have that det (A) = 72 4 # 0, so

that;
Opss _ 9ps3 _ 9pm _ 9px3 _ 0
dy oz oz dy '

By (72), we have that;
Op12 _ 9p13 _ 92 _ 9P _
ox ox ay oz )
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By 68, we obtain that;

ag2 ar

== =_—=0.

ot  Jdy
By (67), we have;

9 oo

% =5 =0. (73)
By (65), we have;

92 _ 983 _ 931 _ 9pn _
dy  Jz  ox ot '

Substituting these values into (69) and using the relation;

%) 9

TR (74)
we obtain;

; / i / i
ic (03A12 + 0312 — O5A13 — 05 113) agﬁ —0. (75)
€0 z
1 2

Lets = 3, 7= (1-5°)? = @,vl =1L14+12=3,p= (1_1ilt<2> - %/ A% = 3+43k% a = teos (),
B = tsin (§), v = pcos (§),6 = —psin (§), then ad — fy = —% and \2&7 = % It is easily verified that
the conditions of (53) in the Lemma are met. Calculating the coefficient in (75), we obtain that;

—3icdgy 0

80y 9z

so that, using (74), % = aa% = 0. This proves the Lemma. [J

Lemma 16. Using the notation of Lemma 13, we have that;

dr | ,0pu1 _ 981, 9pu1 _ 9p12 5982 _ Op13 5983 _ . Opa3 | 9pa3
ax Oox ot Tax ot Cax ot Coax Cax ot
_ 981 _ 981 _9pn _9piz _Opis _ 9p13s _ 9pn 9z _

dy 0z Oy 0z dy 0z ox ox

Proof. Using the result of Lemma 15, multiplying the Eqs (41) in Lemma 13 by u, taking the limit as u — oo,
and again noting that the Egs (41) in Lemma 13 hold for all u with 0 < u < ¢, and are algebraic, we obtain that;

—ics o0 N 2c%v1ps g1 N 2c%1q3s 931 N sic (2% — 1) 931 c2 (62 — 01 A12 — 0] p12) ag»

€ Ox € oy € 0z €0 ot €0 ox
B c? (93 — 91/\13 — 91/]113) @ﬁ B S (52 + 1) ci ap11 _ ic (Gé)tlz + 9&’}[12) aplZ B ic (Gé)\u + 6&’;{12) apu
€0 dx €0 dx €0 ay €0 0z
B (—92 + 91/\12 + 91’]112) P12 B ic (%Alg, + 95}113) P13 B ic (9&)\13 + 9&’]/!13) P13 B (—93 + 91)\13 + 93/]413) ap13
€0 ot € oy € 0z € ot
_ icByv1p apzz B ic (93)\23 + 91’;,{23) ap23 _ (93)\23 + 93"”23) ap23 _ icO3v13 ap33 —0
€ Ox € ox € ot € Ox '

Rearranging, we can write this as;

—ics® (80 +38p11> N 2c?v1ps 981 N 2c?v135 981 N sic (25 — 1) (E)gl N 8;911)

€0 dx dx € Jy € 0z €0 ot dx
ic(0pMp + 605 H1) Opry e (B5A1a + 05 p1n) Ap1y (62 + 01 A2 + 0 p12) (Op1n 2982
€0 ay €0 0z €0 ot dx
B ic (9&)\13 + %/]/113) P13 B ic (9&)\13 + 9&’}!13) P13 B (—93 + 91/\13 + 95’]113) op13 B Czaﬁ
€ ay € 0z € ot dx
B icBpyv1p P B (9{/\23 + 91’]423) icap23 " op23 _ icO3v13 0p33 _o0. (76)
€ Ox €0 dx ot € Ox
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Now follow the method of the proof in Lemma 15 to obtain the result. [J

Lemma 17. Let S be surface non-radiating, for real charge and current (p, ] ), then there exists a complex solution (E, B)
to Maxwell’s equations with E X B = 0.

Proof. By Lemma 15, there exists a complex solution (E E) to Maxwell’s equations, with, in components,
ExB= e% (g1, 92, 83), such that;

9g1 _ 9% 9% 0% 083 _ 983 _
ox oy 0z ot oy 0z ot

983 _ 983 _ 98 _

By Lemma 16, we also have that;

981 _ 981 _9p2 _ 2982 _9p13s _ 208 _ 981 dpm _
dy 0z ot dx ot dx ot dx '

It follows that g is independent of X € R3. By the boundary condition that ! iMg| 0081 (X, 1) = 0, see Remarks
3, for t € R>(, we have that gy = 0. Similarly, g, is independent of the coordinates (y, z, t), and we have that;

92 _ 1 0pp

9x 2 ot
By Lemma 15, we have that ag% = 0. It follows that ag% is independent of x, and, therefore, g, is constant.
Again, using the boundary condition that lin 5,82 (¥, 1) = 0, for t € R>o, we have that g = 0. Finally, g5 is
again independent of the coordinates (y, z, ), and we have that;

983 _ 1 0pis
ox % ot
Again, by Lemma 15, we have that ag% = 0. By the same argument, g3 is constant, and, using the boundary

condition, that g3 = 0. O

Lemma 18. Let (E, B) be a complex solution to Maxwell’s equations for a real pair (p, ]), with E x B = 0, then on the
open set U C R*, for which B # 0, we have that E = AB, and p|U = 0.

Proof. Writing E and B in components (ey, ez, e3) and (by, by, b3), the condition that E x B = 0 amounts to the
equations;
exby =esby,  esby =e1bs, ey = eoby.

Without loss of generality, we can assume that {by, by, b3} are non-vanishing on U, to obtain that;

€2 63)\
a

by by
€1 o €3 o
by
a_a_,
by by ’
and, clearly then, A = y = v, so that
E = AB. (77)

We have that the pairs (Re (E),Re (B)) and (Im (E),Im (B)) satisfy Maxwell’s equations for the pair (p,]),
and in free space. In particularly,
div (Re (B)) = div (Im (B)) = 0. (78)
From (77), we have that;
Re (E) = fRe (B) +gIm (B) ,
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and, from (78) and the previous equation;

e% = div (Re (E)) = grad (f) « Re (B) + grad (g) . Im (B) . (79)

Let 7y be a level surface for f, with interior U, then by the divergence theorem;

/uwpdx*/ydw (Re (E dx—/Re /(fRe()+gIm( )).dS
—f/Re dS+/gIm dS:LgIm(B).dE
—/ div (gIm (B ))dx—/uwgmd(g).lm (B) dx.

By continuity of f, we can cover U with open sets of the form U, contained within any ball B (xo, €) of radius
€ > 0, so that we conclude;

eﬁ = grad (g).Im (B) . (80)
0
Similarly, we can conclude that;
eﬁ = grad (f).Re (B) . (81)
0

From (79), (80), (81), we have thatp =0on U. O

Lemma 19. Let the frame S be surface non-radiating in the sense of [11, for charge and current (p, ] ), then in any inertial
frame S’ connected to S by a boost with velocity vector T, with |0| < c, we have that S’ is surface non-radiating, for the

transformed current and charge (p’ ,7’). Moreover, if the frame S is surface non-radiating for charge and current (p,]),

then for any g € O (3), if (pg , fg) , are the transformed current and charge in the rotated or reflected frame S', then S’ is
surface non-radiating.

Proof. Let S” be a frame connected to S’ by a velocity vector @. By Lemma 6, we have that ByzB; = RgBgug,
where ¢ € SO (3). Let S" be connected to S by the velocity vector T * W, then as S is surface non-radiating,

there exist (EW,EW) satisfying Maxwell’s equations in §"” for the transformed charge and current (p’ "] W)

with div"”’ (Em X EIH) = 0. By Lemma 2, we have that in S, (E ,B ) satisfy Maxwell’s equations for the

transformed current and charge (p” , 7//) with div (EN X EU) = 0, where E' = E"® and B' = B, As
(p, 7) transforms as a 4-vector between inertial frames, and using the result of Lemma 4, we have verified
the surface non-radiating condition for S’, with the transformed current (p’ ,7’). For the last part, let s

be a frame connected to S’ by a velocity vector 7 and let @ = ¢~ ! (@). In the frame S" connected to S

by the velocity vector w, by the definition of surface non radiating, there exist fields (E"’ B" ) satisfying

Maxwell’s equations in S”, with /" (Pm X E’”) = 0. Using Lemmas 2, 4 and 5, if (EI B ) are the fields in
S” corresponding to (Eg, sign (g) B ) , where (E, B) are the fields in S corresponding to (E Bm) in §”, then
v . (EN X gﬁ) = 0. Moreover, (p’ 7' E'B ) satisfy Maxwell’s equations in §” for the current and charge
(p” ,7”) in §” corresponding to (pg, jg) O

Lemma 20. Let T be a permutation of (1,2,3), and let (p,],E,B) satisfy Maxwell’s equations in S. Let
(fT, sign (7) ET) be the corresponding fields in the reflected frame S'. Let {hi, hi}, for 1. < i < 3, {pj, pi;}, for

1 < i <j <3 and{c,0'} be the components of the Poynting vector, stress tensor and energies for (E,B) and
(Er, sign (T) ET) respectively, then;

o =0T Hi=htg P = P
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Let hypotheses be as in Lemma 13, with the assumption that S is surface non-radiating, for charge and current
(0,]), and (Eco, Boo) are the fields constructed in the limit frame Seo, then the conclusion is satisfied by ( EZ —BT23>

in the reflected frame So3° for charge and current (pT23,] 23). Moreover, for the permutation T3 of (1,2,3,4), if, in the
context of Lemmas 15 and 16, we derive a relation of the form;

o 0g; Ipij
tpm— + Biks_— + Yijk5— =0, (82)
13%4 O 1§z§§§k§4 " o 1515]523;1954 7 o
where {ay, Bix, ’)’ijk} C C, then we can derive the relation;
o og 0P g (i) oon (i
Z oy i Z Bit axTza() Z yi w3 () T3(j) _ 0. (83)

j
155e4 (k) 1<i<hi<k<d w3(k)  1<i<j<31<k<4 0y k)

Proof. For the first claim, it is sufficient to prove the result for the elementary permutation 1,3. We have that,
in components, (e}, ¢}, ¢5) = (e;2, 62, e52) and (b, bh, b)) = (—b;®, —b3®, —by?). Then, by a straightforward
calculation;

2 6/12 +e/22 n egz _ (6;23)2 + (8§23)2 + (6523)2 _ (ez)rzs /
3

b2 = b b2 4+ b7 = (=b[2) + (=0 + (—b3)* = (87) 7,

) < () )) o
hll = (L’zbg — 63b2)T23 = hirzs,

hlz = (€1b2 - €2b1)T23 = h§23,
hy = (esby — erbs)™ = h?,

P;j - & (ege; + Czb;b;) +5ij‘7/ — e (erzs ' 3T23(j) + 2 (_b':;i(i» (_bgz(j))) +5i]-gTz3

23(1) T2
— 3 LT3 21023 3 T3 — 4,23
-9 (eTzs( ) (j) T sza( )) sza(]) o) ()? = P (iyms ()’
For the second claim, we have by both parts of Lemma 19, that the reflected frame S’ corresponding
to S is surface non-radiating for the transformed current and charge ( p’TB,f’m)/ where (p’ ,7’) correspond
o (0,]) in S. Let {E,, B,} be the fields constructed in Lemma 21, with corresponding fields {E,*, —B,*} in
the reflected frames S, corresponding to S/, then /" ( E® x BTB) = 0 by Lemma 2 and, as 13 fixes 3,
S/'™3 is connected to S” by the velocity vectors —re;. Moreover, in the notation of Lemma 13, % is fixed, so that
when we construct (E;,?;o) from the fields {E,?, —B,”}, it is clear, using the fact that the transformations
connecting the frames {S,5’,S/} with S are the same as those between {ST23,S’T23,S;/TZ3} and S3, that
E,, = E.2 and By, = —B.2. For the final claim, let (p,],E, B), be the tuple, satisfying Maxwell’s equations
in the base frame S, for which we derive the relation (82), then (pTB,TTB,fTB, —ETB) satisfies Maxwell’s
equations in the reflected frame S™3, and, by Lemma 19, $™3 is surface non-radiating for the reflected charge
and current (pT23,7T23). Using the fact that (E, B) corresponds to the fields (Eco, Bo) in the limit frame Seo,
by the proof of the second claim, we have that (ETB -B 23) corresponds to the fields ( EZ2,-B, 23) in the
reflected frame SZ°. We can then follow the proof of Lemma 12, to obtain the same relation (82) for the
s / / / : T3 _ [ .
quantities {0’ , (gi)lgz‘gs , (pi]-)1<i<j<3}, corresponding to (E ,—B ) By the first part of the lemma, we

obtain the relation;

o™ 98 P eni
Y a + Bi an() Vijk 7123(;);23(] ) 0.
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Using the chain rule, we then obtain that;

Jdr

9813 (i) P 033 (i) 123 j)
+ Bi ») | Yiik 1()ml) _
12h2s Oy (k) 1<i<321;<k<4 T X0 1) 1<i<j<Zs,:1<k<4 T O, k)

as required. O
Lemma 21. We can construct limit fields (Eco, Boo), in the limit frame Seo, with dives (Eco X Eco) = 0.

Proof. Lete > 0,5 < 0, and let S’ travel with velocity vector 1 = (c — €) ¢y, relative to S, and let S” travel with

velocity vector @ = (—% - 5) e relative to S’. By Lemma 6, there exists g € SO (3) with;

BwBi = RyBusw,

and
2 _ 2
depo BT Ly Ex(ix®)  @4® ((C—e)—ffe—5)€1 CZ((C—e)—ffe—‘S)E
= — — = —_— T pu 1.
T+5 0 A(r+l) 1452 1452 —d(ee) —6(c—e)
(84)

By inspection of (84), for given 0 < € < ¢, we can see that, as § — 0 from below, # x W — oo along the
direction ¢;. By Lemma 19, we can assume that S’ is surface non radiating, and there exist a family of electric
and magnetic fields {E,, B;}, with 0 < r < ¢, such that div (E; x B,) = 0 in the inertial frames S/, travelling
at velocity —re; relative to S’. Assume that there exists a uniform polynomial approximation {E,, B, }, with
error term 7y > 0, to the fields, transferred back to the base frame S. By continuity, for sufficiently small 4,
we can find a polynomial family {EZI,EZ/}, for 0 < r < |w|, with error term 7/, and 0 < 9/ < 27, such
that |dive (E; X B;) | < /. In the limit frame Se,, using Lemma 1, Lemma 6 and Definition 4, we obtain that
|div (Eco X Boo) | < aswell. [

Remark 2. A more rigorous proof of the final claim in the previous lemma is given below.

Lemma 22. Let S be a frame with bounded current (p, ]) and let Si. be connected to S by the velocity vector (c — €) e,
for 0 < e < c,and S ; be connected to S¢. by the velocity vector (—c + ) 1, where 6 = (1+ 7)€, for;

aIN

1 c -5
|T|§§§ < c

S s

7

then the transfers (pes, . 5) to SY 5 are uniformly bounded in the frames S” ;. Moreover, we can assume there exists a
constant F independent of €, and, for any given €, a family of tuples (0 s, I 5, Ee,6, Be,s ), satisfying Maxwell’s equations,
with div (E¢ s X Bes) = 0 in the frame S!! 5, and max (|Ec 5], |Ec 5]) < F.

Proof. We have that S/ ; is connected to S by the boost matrix Bg.; where &l = (c —€) 1,7 = (—c+J) e and;

L o o 5
x| = ! +ﬁvﬁ T3 u L (u;;U) - +HUE - (6+e E):Jl
e(@—1)e (0—1)e

—_

A straightforward calculation using the transfer rules for (p,]) to frames Sz, connected to S by a velocity
vector w, with [@w| < 1, shows that the transfers (Pe,zije,{s) are uniformly bounded. For the last part, we can,
using the conjecture (ii) in Remark 3, assume there exists a family (Eg,, Bsz,) on the frames Sg,, connected

to S by the velocity vector sey, for [s| < 1, with divg, (Ess, X Bsg,) = 0, such that the transfers (E;E1,§;E1> to

S form a smooth family on B (0,79) x (0, tp). By continuity, the transfers are bounded by some constant F as
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required.
O

Lemma 23 (Polynomial Approximation). For any v > 0, with F as in Lemma 22, there exists a sequence of pairs
(En,e0r Bnyoo) for n > n., in the limit frame Seo, with divg_ | (Eneo X Bpeo) | < v and max (|Epeol, [Bueo|) < F+1
on some B (0, 700) X (0, too).

Proof. Let S.. be as in Lemma 22, and let {E;‘;,Eler(;} be the transfers of the fields {E, 5, B. s}, guaranteed by
Lemma 22, to S.. By the proof of Lemma 22, restricted to some B (5, rg) x (0,t¢), they form a smooth bounded
family on S.indexed by —c +6 € (—c+5,—c+ 376) By the Stone-Weierstrass approximation theorem,
there exists a uniformly convergent sequence of polynomial approximations {E;,€’5,§;,€,5} to {Eé,(;,gleﬁ}. By
choosing the approximating polynomials in the frames Sg;, from the previous Lemma, using continuity, the
fact that the transfer of polynomial fields are polynomial, and formulating the fact that dl'US// (E’ 5 X E’e 5) 0
algebraically in the base frame S, see Lemma 11, we can assume that, for any v > 0, there exists {11,,€,},
such that |de/E/y (En,ery X Bnﬁ,y) | < v, for —c+6 € (—c—§,—c), and n > n,, restricted to some

B (0,7¢5) % (0,t¢,5), where S” ;, is connected to Se by the velocity vector (—c 4 ¢') ¢;. Taking the limitas e — 0,
using Lemma 21, the constant F from Lemma 22, we obtain a sequence of pairs (Ej,co, By,eo) in the limit frame
Seo, With divs_ | (Eneo X Bneo) | < v and max (|Epeol, [Bneo|) < F+1onsome B (0,70) X (0, teo)-

O

Lemma 24. Choose a sequence of error terms vy, > 0 with limy_eoym = 0, and pairs (Enm,w,Bnm ), satisfying
the conclusion of Lemma 23. Then, as m — oo the sequence (Ep,, c0, Bu,y0) converges to a pair (Ee, Boo) satisfying
Maxwell’s equations in Seo for the transferred charge and current (peo, J o) With dives (Eco X Boo) = 0. Moreover, we
obtain the conclusion of Lemma 17 for the transfer (E, B) back to the base frame S.

Proof. By the construction of Lemma 23, we have that the sequence (Ey,, co, Bn,y,00) is Cauchy and uniformly

—7 — —\/
bounded, and converges to a bounded limit on Se.. If (p’ ,J,E,B ) is a tuple, satisfying Maxwell’s equations

in a base frame S, then, by the proof in [4], (p’ r T’,EI’,EII) satisfies Maxwell’s equations at corresponding

points of S”, connected to S by a real velocity vector 7, with
9] <¢, (85)

By the generalisation of the rules for transforming derivatives, the algebraic formulation of the connecting
relations at corresponding points, complex linearity of the transformed derivative, and the generic formulation

of (85), (p’ n 7" E” 7’”) satisfies Maxwell’s equations at corresponding points of S, connected to S by a

complex velocity vector 7, with 7 # c2. Taking limits, this also holds for a transformation to a limit frame
Seo, if the limit exists. It follows that the transformation of the fields (Ee s, Bes) to fields (Ec 500, Be o) in the
limit frame So. satisfy Maxwell’s equations. and so the transformations (En,e,()’,oo/ B, o' 00) to the limit frame
Seo satisfy Maxwell’s equations up to a constant € (1), which converges to 0 as 1 — 0, s0 that (Ey,,c0, By 00)
satisfy Maxwell’s equations up to a constant €’ (1,,,), which again converges to zero as m — oo, both in Seo
and the frame S, 5, for sufficiently small {€,6'}. In particularly, (E, Bo) satisfying Maxwell’s equations in
Seo for the transferred charge and current (peo, /o), and, so does the transfer (E, B) of (Ew, Boo) back to the
base frame S, for the original current and charge (p,]). The claim that dive (Ec X Beo) = 0 follows from
the transformation rules for derivatives, back to the frames S, 5, the fact that the polynomial approximations
(Eness Bues) converge to smooth fields ((E. 5, Bes)) in the frame S, 5, interchanging limits with derivatives
in S, 5 and the construction that |dives (Enm,oo X Bnm,oo) | < ym, with v, — 0, as m — oo. For the final claim,
we can approximate the fields (Ee, Beo) by the polynomial fields (Ej,, o, By,e0), in Seo, and follow through
the argument of Lemma 13, to obtain the conclusion of Lemma 17 for the fields (Ey,,, By, ) transferred back to
the base frame S, up to a constant €” (1,,,), which converges to 0 as m — oo. As the fields (Ey,,, By, ) and their
derivatives converge to (E, B) in the base frame S, we obtain the conclusion of Lemma 17 for (E,B). O
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Remark 3. In the definition of surface non-radiating, for the frame S, with charge and current (p, 7), we can
impose the additional requirement, that, for any given velocity 7, with |5| = 1, there exist pairs { Es5, B }, with
0 <'s < ¢, such that the condition of surface non-radiating is fulfilled, and the series is smooth and decaying
at infinity, that is the fields { Ess, Bsz } are smooth and ;

(i) limpy_ |00 max (|Eszl, |Bss]) = 0 in the coordinates (¥s,ts) of the frame Sg. With these extra
assumptions, we conjecture, using polynomial approximations, that it possible to choose { Es5, Bsz } such
that the above conditions hold, and also;

(ii) The families defined by;
E(xts)=Es(%t), B(Tts) =By (Tt

are smooth on R3 x R>o % (0,c). In particularly, for finite {to,79,co} C R, with 0 < ¢y < ¢,

— —, -
02?20 (|E55|B(5,r0) % (O,t0) l, |B55|B(6,’r‘0) x(O,tg)‘ < Gy ty,co for some constant Gy ¢,,c, € R>0, where {Eg, Bz }

are the fields transferred back to the base frame S.

Lemma 25. If the frame S is decaying surface non-radiating, in the sense of Definition 1, then if (p,]) is real analytic,
either p = 0 and | = 0, or S is non-radiating, in the sense of [1].

Proof. The transfers of (p,]) to any frame S3, connected to S by a velocity vector ¥ with || < c is also real
analytic. By the proof of Lemma 19, the frames S; are also decaying surface non-radiating. By Lemma 18,
and using continuity, in each frame S, either the transfers p; are identically zero or there exists a real solution
(E3, Bs) to Maxwell’s equations with By = 0. If S is not non-radiating, then, without loss of generality, we can
assume that p = 0 in the base frame S. By the transformation rules for (p, 7) , we have that;

<7,]> - - -
Pz = —%/ and Jz=7J|5+ /13-
As ] is analytic, {7 :< 7,] >= 0} includes 0 and, if infinite, is both open and closed inside the ball BWI <cr SO
that TH,E = 0, for every U € B, with 7 # 0, in particular, J = 0. We can, therefore assume that p5 # 0 in all
but finitely many frames Sz, and there exist real solutions (fg, Eg) to Maxwell’s equations with Bz = 0. Now,
we can use the proof of Lemma 2.7 in [1], to derive the equation;

_ 19] —

valid for all but finitely many 7 € Bjg| .. Using continuity, we can conclude that (86) holds for all 7 € Byg|,
and that;

(v <p>+;§l) =0.

Then follow through the rest of the proof of Lemma 2.7 in [1] to conclude that [J? (p) = 0 and [J? (E) = 0. Now

use the proof of Lemma 2.4 in [1] to get 02 (7) =0, and Lemma 2.5 in [1] to conclude that S is non-radiating.
O

2. Some Thermodynamic arguments

Definition 6. Given (p, ], E, B) satisfying Maxwell’s equations, and ty € R~(, we define the reversed process
(p’,f’,fl,gl) on R? x (0,to) by;

prx ) =p (X to—t),
TE@)=-TEt-1),
Ext)=E(xtg—1),
B (x,t) = —-B(Tty—1) .

Lemma 26. For the reversed process, (p’ ,7’,?’,?’), we have that (p’,fl satisfies the continuity equation and
=

(p’,f/,f/,ﬁ/) satisfies Maxwell’s equations on R® x (0,tg). Moreover div (E X EI) = —div (E x B).
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Proof. For the first part, we have, using the chain rule, the definitions and the continuity equation for (p, 7),
that;

_ 9%

a0’
Ny (@) _g

ot to—t) = —10 (]) |z 1y 1) = div (7/) @)

For the second part, we have, using the chain rule again, the definitions, and Maxwell’s equations for
(0,],E, B), that;

() div (') lisp) = div (E) | gpr) = &
(@) (v E) len = (V% E) gy =
(iii) div (E/) ) = —div (B) 0y =0,
(iv) (V XEI)(W) = (VX=B)gry = —(€])l@h-t — (Voeo%) \®to—t) = (607/) @ +

(Voeoaajt/)

(xt)/
as required. The last claim follows easily from the definitions of {E,B'}. [

_ P
(®ho—t) = (@1
—/

_9B
ot

_9B _
of (xt)r

(xto—t)

Definition 7. Given a solution (p, ], E, B) to Maxwell’s equation, we say that (E, B) is classically non-radiating
if, uniformly in f € R+, we have that;

lim div (Et X Et) dx =0.

r—oo B(O,T)

Lemma 27. Given a smooth solution (p, ], E, B) to Maxwell’s equations, and ty € R~q with div (E x B) |, # 0 and
(E, ) |t, # O, there exists a smooth volume S C R3 and € > 0, with;

/Sdiv(ExEde;éO, /S'(E,it)dy#o, for  te(to—ety+e).

Proof. Choose {X, %1} C R, with div (E x B) (Xo,t9) # 0and (E,]) (¥1,t9) # 0. As div (E x B) and (E,])
are smooth, there exist disjoint balls B (X, rp) and B (X, r1 ) with;

/ div (Ey, % By,)d% #0,  and / (Bt T, ) 4% # 0.
B(Y(],ro) . B(fllrl)
Shrinking the ball B (X, r¢) if necessary to avoid cancelations, we can assume that;

div (i, x Byy) d¥ £0  and (Ero, Toy) 4% # 0.

/B(YO,TO)UB(YLH) /B(YOJO)UB(YLH)

As div (Ey, x By,) and (Etojto) are smooth, they are bounded on a ball B (0,7) with B (0,7) D B (X, ro) and

B(0,7) D B(x,r1). Choosing a sufficiently small strip S’ connecting the balls B (X, ) and B (¥X1,71), and
letting S = B (X, 79) U B (¥1,71) U S’ be a smooth volume, we can assume that;

[ dio (B, x By)dx £0,  and [ (Ei ) dE £ 0.

Using smoothness again, we can assume that there exists € > 0 such that;
/ div (B, x B)dx #0,  and / (E,T,) d% #0,
S S

fort € (to —€,ty +€), as required. [J
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Lemma 28. Given (p, ], E, B), with (E, B) classically non-radiating, such that the hypotheses of Lemma 27 are satisfied.
Let T be the surface boundary of S, then for any x > 0, there exists volumes {S,Sc} with SNS, = @, T C Sy,

{T, T/,TN} outward normals to the volumes {S, S, B (0, rx) }, such that;

/T(Etxﬁt).dT:_/T(Etxﬁt).ﬁ,
/5 div (B¢ x By) dT 0,

/S (E.,T,) dx #0,

/JB( (E < By) .dT"| < x,

0,7

fort e (ty—€,ty+e€).

Proof. By the definition of classically non-radiating, for any x > 0, there exists 7, > 0, with S C B (6, rK) such

that;

<K,

/B (0 0 (B < B

0,7«

fort € (tg—€,tg+e€). Let Sc = BY (0,7¢) \ S, then, as T reverses the direction of T;
/ (E; x By) .dT+/ (E; x By) .dT’ =0,
T T

and by (87) and the divergence theorem;

E E.dT”:/ div (E; x B,) d¥| < «,
/63(0,7K)( t X Br) B(0r) v (E¢ x Br) d¥| <

as required. [

(87)

Lemma 29. Let notation be as above, then, assuming thermal equilibrium for electrons, we cannot have, in a classically

non radiating system, that;
/ div (B, x B)dx >0,  and / (B, T,) d% < 0,
S S
fort e (to—eto+e€).

Proof. Suppose that;
/S div (B x By)d¥ >0,  and /5 (B, T,) dx < 0,

fort e (to—€,tg+e€).
Shrinking the interval (¢ — €, ty + €) if necessary, we can assume that;

/Sdiv (B xBi)dx>6>0, and /S(Ejt) d¥ < —5 <0,

fort € (ty —€,tp+€),and some § > 0.
Choose k¥ > 0 with k¥ < J, so that;

x < min ( [ dio (B x B) .~ [ (BT, dx) ,

(88)

(89)

(90)

o1
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for t € (to —€,tg+€), and {ry, Sy, B (0,7¢) }, such that the conclusion of Lemma 28 holds. Using Lemmas 27
and 28, we claim that;

/ (E,,J,) d% > min (_ / (E,J,)d%,  and / div (E; x By) dx) , (92)
Sk S s
uniformly for t € (ty — €, fp + €). Suppose not, then, for some t1 € (tg —€,tg + €);

/S (B, T,,) d% < — /S (En, To,) d%, /S (B, T,,) d% < /s div (s,  By,) d%,

and, by continuity, we can assume that;

| ET)dx<— [(EJ)ax,  and [ (E])dx< [ dio(E B d,
fort € () — &, t1 + ') with (t; — &', 1 +6') C (tg — €, +€).
Let {Es,, Es, Esel, Es, 1, Es fields Es,, fieta} denote the total energies in {S, S}, the energies stored in the
electrons contained in {S, Sc} and the electromagnetic energies restricted to {S, Sx}, see [3]. By Poynting’s
theorem and the divergence theorem;

(@) Essat), « —sa)
(i) Sl < (Js (B x By).dT),,
fort € (t; =98, +6).

By (89), (91), there is an energy flux from the electrons in S to the total energies in S, not all of which can
leak from the boundary 6B (0, r,). By (i) and Poynting’s Theorem, there is some energy transferred into the
electromagnetic energy of Sy. By (ii), not all the energy transferred from the electrons in S is transferred to the
energy of the electrons in S. It follows that some of the energy flux from the electrons in S is transferred into
the electromagnetic energy of Si. By the last claim in Lemma 26, the process is reversible, which contradicts
Kelvin’s formulation of the second law of thermodynamics, see [8], that it is impossible to devise an engine
which, working in a cycle, shall produce no effect other than the extraction of heat from a reservoir and the
performance of an equal amount of mechanical work. Given that (92) holds, we have;

/S (BT dx /S (E,];)d%,  and /S (E,T,) dz > /S div (E x By) d¥,

K

uniformly in t € (g — €, fp + €), so that;

_ dES,el ‘
a1t

(Js (Et x Bt) . dT),,

uniformly in t € (fg — €, fg + €). By (iii), and (90), we have that Eg_, is increasing. Without loss of generality,
we have 2 cases;

Case 1. fB(ﬁ,rK) div (Ey X By)dx > 0, for t € (ty —¢€,tg+€). Then, by (iv), the energy in the field from Sy
is constant or decreasing and transferring to the electrons in Sy, (87). As there is a net energy flux from S to
Sk, and using (90) again, there is an energy transfer from electrons in S to electrons in Sy. Assuming thermal
equilibrium and raising the temperature of the electrons in Sx by a small amount, see [8], noting again that
the process is reversible, this contradicts Clausius’s formulation of the second law of thermodynamics; that it
is impossible to devise an engine which, working in a cycle, shall produce no effect other than the transfer of
heat from a colder to a hotter body.

Case 2. [, (0 div (Ey x B) dx < 0, for t € (tg —€,tg +€). If (87) holds, repeat the argument, otherwise, as

...y dE
(i)~ e

. dE
(iv) dst’f"” ¢

>
>

there is a net energy flux from S to Sy, and none of the energy is leaking through the boundary 6B (0, 7« ), either
there is an energy transfer from electrons in S to electrons in S, from which we obtain the same contradiction
as in Case 1, or there is an energy transfer from electrons in S to the electromagnetic energy in Sy, in which
case we can use the previous argument, based on Kelvin’s formulation.

O
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Remark 4. We can assume that an atomic system is classically non-radiating in all inertial frames, as,
otherwise, by Rutherford’s observation, the system would lose energy and collapse. Thermal equilibrium
for electrons in all frames also seems a reasonable criterion for such systems, though there are difficulties in
finding the correct definition of temperature in electromagnetism. We leave as a conjecture whether the above
lemma holds with just the assumption that;

/Sdiv (B xB)dx #0, and /S (BT, dx #£0,

fort € (to—€,to+¢€).
Given this, we can probably obtain the conclusion, from Lemma 27, that either;

div (E; x By) =0,

in all frames, or;
(Eti ]t) - 0/

in all frames. In which case, we can either use the main result of the paper to conclude that the system is
non-radiating and, by [1], that the charge and current p, ] obey certain wave equations, or classify the case
where (E,J) = 0in all frames. This is done in the final section.

3. Force invariance

Definition 8. Suppose that in the base frame S, (p, ], E, B), satisfy Maxwell’s equations and Sy is an inertial

frame, with velocity vector 7, [7| < c. Let (pg, J5 Es Bs) be the transformed quantities. We define the
associated force;

f" = psEs + J; x Be.
We say that (p,

E, B) is electric current orthogonal in S if for every inertial frame S, we have that (Eg, ;) = 0.
We say that (p, ], E,

T,
], E, B) is electromagnetic orthogonal in S if (E, B) = 0.

Lemma 30. If (p, ], E, B) is electromagnetic orthogonal in S, then for every inertial frame Sz, we have that (Ez, J5) = 0.

Proof. This is well known.
O

Lemma 31. Suppose that in the base frame S, the tuple (p, ], E, B), satisfying Maxwell’s equations, is electric current
orthogonal, then, for every Sz, 70 =0.

Proof. We have that;

Eﬁ = EHE + 7 (Elrﬁ + 70U X E) ’ and Iﬁ =7 (7”,5 - PE) + TJ_,EI
s0, using the fact that;
(Eio715) = (ELa+9xBsJy5—p7) =0,
we have;
(Es, J5) = (Em +95 (ELs+7xB),7s (7“,5 - 95) + h,@)

=77 (EH,?/7H,5> — 790 (E5:%) + 75 (ELa T 15) + 79 (0% Bs, J 1 5) =0,



Open J. Math. Sci. 2022, 6, 205-247 245

so that;

(EioT5) — 0 (B5,®) + (Ero Tis) + (0% Ba T s)

E
(BjoTiio) =0 (Bo) + (5% Bo,T10) = (BoTyjo) — (B To)
(

As 7, with || < c is arbitrary, we conclude that;

By X J3— pEg = —J3 X Bg —pE5 =0,

so that f = 0. By symmetry, we can conclude that ?ﬁ = 0 in any inertial frame Sz as required.
O

Lemma 32. Suppose that in the base frame S, the tuple (p, ], E, B), is electric current orthogonal, but not electromagnetic

orthogonal, with {p, ], E, B} real analytic, then p = 0, ] = 0.

Proof. By Lemma 31, Lemma 30 and symmetry, we have that fﬁ = 0and (Eg, By) # 0, in every inertial frame
Sﬁ, with
5] < c. (93)

It follows , using the transformation rules, and Lemma 30 again, that;

() o ) = e o~ B2 ) € 5) =0, o9
for every inertial frame Sz, with [7| < ¢, and, identifying coordinates, (94) holds in S, for every 7, with
7] < c. (95)
From (93), (95), taking 7 = 0, in the base frame S, we have that p (E, B) = 0, and
(E,B) #0. (96)
As {E, B} are analytic, we have that (E, B) is analytic, so that, by (96), there exists an open set U C R> x R,

for which (E, B) |y # 0. From (96) again, we obtain that p|;; = 0, and, as p is analytic, that p = 0, (). From
(94), (95), (E, B) analytic, and (89), we obtain that;

(P— (Uczj)> lu=-— (i/zj) lu=0,

for every 7, with [7| < c. It follows that J|;; = 0, and, as ] is analytic, that ] = 0, as required.
O

Lemma 33. Suppose that in the base frame S, the tuple (p, ], E, B), is electric current orthogonal and electromagnetic
orthogonal, with {p, ], E, B} real analytic, then we can obtain a complete classification of cases except when in the base
frame S, we have that p > 0, and E = —% (J x B), for which Remark 5 is relevant.

Proof. By Definition 8 and Lemma 30, we have that in every inertial frame Sz, with 7| < ¢;

Eﬁ X (75 X Eﬁ) =Jo (Eﬁl 75) - Eﬁ (Eﬁl jﬁ) = 6 .
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In particularly, in the base frame S, E x (J x B) = 0. As {E, B, ]} are analytic, it follows that, on an open subset
UcR3x R <o, either;
(i) Elu=0, _

(ii) J x Blu =0,

(iii) There exists an analytic A on U, with E|; = A (] x B) |U.
In case (i), we have, as E is analytic, that E = 0, and using Maxwell’s equations and the continuity equation,
that p = 0, B is time independent, | = % (v x B) is time independent and ¥7. ] = 7. B = 0. In case (ii), we
can assume, without loss of generality, that, either;

(i) Blu=0,

@) Jlu =0, -
(iii)” There exists an analytic A on U, with B|y = AJ.

In case (i), we have, as B is analytic, that B = 0. In case (ii)’, we have, as ] is analytic, that | = 0, and, using
the continuity equation, that p is time independent. In case (iii)’, we have, using the divergence theorem,
Maxwell’s equations, and integrating over the level surfaces {Sx : K € R} for A, that;

/ v.EdBK:/ E.dﬁ:/’ Af.dsj:A/ 7.d57:A/ . JdBx =0,
J By Sk Sk J Sk J By

so that 7. J|y = 0, and, as /. ] is analytic, that /. ] = 0. By the continuity equation, we obtain that
9% _ _

# = —v.J] = 0,so that p is time independent.
In case (iii), using the fact that f = pE + ] x B = 0, we have that;
(E.0E+7  B) u = (o[EP| + (ET < B) ) lu
= (pIEP|+ (A (T < B),] < B)) |u
= (pIEP|+ AT x BI?) lu =0, ©7)

(i)” It is not the case that p|y; < 0, then, shrinking U if necessary to W, and using continuity, we can assume
that p|w > 0.

(i)”(a) Itis not the case that Al < 0, then, again shrinking W if necessary to V, and using continuity, we
can assume that A|y > 0. By (97), we obtain that E|y = (J x B) |y = 0. As {E, ], B} are analytic, we
have that E = ] x B = 0. We then have the following cases, similarly to the above;

(1)”(a)(i E:E 0, so that p ] =0 as well. _
(1)”(@)1) E = L:J) so that is time independent, V. B =0, 7 x B = 0.
(1)”(a)(aii E = |V/ = )\]ﬁ// for some analytic Alyr, VI'C R3 x >0 open. Combining cases (i) and

(iii)’, we obtain that p = 0, {B, ]} are time independent, ] = % (VxB),v.]=0.
(ii)”(b) Alw < 0. As p|w > 0, we must have that ()\ + %) (J x B) = 0, then either | x B|y = 0, and reduce

to case (ii), or, using continuity, we can find W’ C W, W” open, with (A + 1) lwr = 0.

)" plu < 0. If ply = 0, then, as p is analytic, p = 0, otherwise, shrinking U to W/, we can assume that
plwr < 0, then consider the tuple, (— ,—J',—E,B ) , for which (89) holds with A’ = —A, and reduce to

case (i)”.
O

Remark 5. The case (ii)’(b) requires further investigation to obtain a complete classification. As p|w > 0 and
p is analytic, p > 0 and is supported on W. We have that f = 0, so a test particle in this field would move in
a straight line at constant velocity. The electric and magnetic fields of such a particle are known, see [3], but
are not defined at the position of the particle. However, it seems reasonable to assert that the force exerted
on the particle by its own field is zero. Moreover, removing a particle from the ensemble of moving charges
would not significantly effect the total field. One might, therefore conjecture that the description of (p, ]) can
be found by consideration of diffusions for the continuity equation, using the intuitive idea that | = po.
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