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1 INTRODUCTION
The Delay Differential Equations (DDE) are
a class of infinite dimension systems, widely
used for modeling and analysis of phenomenon
transmission and propagation (of matter, energy
or information). They are still used in the
modeling of processes encountered in physics,
mechanics, economics, chemistry, biology,
dynamics of populations, ecology, physiology
and epidemiology [1] [2] [3] [4] [5]. Neutral
Delay Differential Equations (NDDEs) is a natural
generalization of DDE and, also there is a wide
classes of Partial Differential Equations witch can
be transformed as a NDDEs (for example [6]
and the references therein). For some ordinary
differential equations, delay differential equations
and integro-differential delay equations, it has
been proved that some classical numerical
methods can preserve the stability. However,
to the best of our knowledge, this is not the case
for NDDEs ( for example [7]).

In this paper, we consider the following delay
differential equation of neutral type

x′(t)− cx′(t− τ) = ax(t) + bx(t− τ) (1.1)

in which τ > 0 is the delay parameter, c, a and b
are real scalars.

From the exact stability conditions, using the
relevant result [7] (Theorem 2.1) we may
conclude that Equation (1.1) is asymptotically
stable if and only if:

a ≤ b < −a, |c| < 1, (1)

a+ |b| < 0, |c| = 1, (2)

|a|+ b < 0, |c| < 1, τ < τ0, (3)

where τ0 = arccos(a−bc
ac−b

)/( b
2−a2

1−c2
)
1
2 .

The numerical stability by θ-method of Equation
(1.1) was firstly studied by Huan Su et al (2013)
[8]. Based on the conditions given in [9] (
a ≤ b < −a and |c| < 1), it is shown in [8]
that Equation (1.1) is numerically asymptotically
stable for any τ > 0, θ ∈ [ 1

2
, 1] and m = τ

h

or for any τ < τ∗, θ ∈ [0, 1
2
[ and m positive

integer, where h is the stepsize of discretization
and τ∗ = min( 2m(1−c)

(a+b)(2θ−1)
, 2m(1+c)
(a−b)(2θ−1)

), Theorem
(4) in [8].

By Euler’s method (corresponding to θ = 0),
Jana Hrabalova (2013), [10] studied a numerical
stability region in the case a = 0. Using
Proposition (2.1) given by Jan Cermak et al [11],
it is shown that Equation (1.1) is asymptotically
stable if and only if,

b < 0, |bh− 2c| < 2, τ < τ0, (1.2)

with τ0 =
h arccos 2c−bh

2

arccos(
2(1−c2)+2bch−b2h2

2(1−c2+bch)
)
.

In (2014), Jan Cermak and Jana Hrabalova [7]
have extended the paper [10] to the case a ̸= 0
and θ = 1

2
.

The object in this paper is to extend the numerical
results of [7]. By θ - method discretization for
θ ∈ [0, 1], we derive a necessary and sufficient
optimal conditions on the parameters a, b, c and
τ , in order to preserve the asymptotic stability
conditions (1), (2) and (3) of Equation (1.1).

The paper is organized as follows. In Section 2
we provide the θ-method discretization of (1.1)
and derive a necessary and sufficient conditions
for its asymptotic stability. Discussion and
conclusions are given in Section 3. Lastly, we
give a numerical examples in Section 4.

2 THE θ -METHOD DISCRETI-
ZATION

In this section, we discretize Equation (1.1) by θ-
method. Let us consider a mesh tn = nh, n =
0, 1, 2, ..., where h > 0 is a stepsize of the method
and let m ≥ 1 an integer. The parameters τ ,
m and h are related by m = τ

h
. The θ-method

discretization for a delay differential equation

x′(t) = f(t, x(t), x(t− τ)) (2.1)

is a formula of the form

2
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xn+1 − xn = hθf(tn+1, xn+1, xn−m+1) + h(1− θ)f(tn, xn, xn−m). (2.2)

The application of the θ-method discretizotion to (1.1) is the corresponding formula,

xn+1 − xn − c(xn−m+1 − xn−m) =
τθ

m
(axn+1 + bxn−m+1) +

τ(θ − 1)

m
(axn − bxn−m), (2.3)

where xn = x(tn) is an approximation of the solution x of Equation (1.1).
Then Equation (2.3) becomes

xn+1 + αxn + βxn−m+1 + γxn−m = 0 (2.4)

where

α = −m+aτ(1−θ)
m−aτθ

, β = −mc+bτθ
m−aτθ

, γ = − bτ(1−θ)−mc
m−aτθ

(*)

Recall that Equation (2.4) is asymptotically stable if limn→∞ xn = 0 for any solution xn of (2.4). It is
well known that Equation (2.4) is asymptotically stable if and only if all the roots of its characteristic
polynomial

λm+1 + αλm + βλ+ γ = 0, (2.5)

are located inside the open unit - disk [12].

The following proposition gives necessary and sufficient conditions for all the roots of (2.5) lie within
the open unit - disk.

2.1 Proposition [11]
Let α, β and γ be real constants and m be a positive integer. Then all the roots of (2.5), lie inside the
unit disk if and only if one of the following conditions holds:

(C1)

{
1 + α+ β + γ > 0, 1 + α− β − γ > 0,
1− α+ β − γ > 0, 1− α− β + γ > 0,

(C2)

{
1 + α+ β + γ > 0, 1 + α− β − γ = 0,
1− α+ β − γ > 0, 1− α− β + γ > 0,

(C3)

{
1 + α+ β + γ > 0, 1 + α− β − γ > 0,
1− α+ β − γ = 0, 1− α− β + γ > 0

and m is any positive odd integer,

(C4)

{
1 + α+ β + γ > 0, 1 + α− β − γ > 0,
1− α+ β − γ > 0, 1− α− β + γ = 0

and m is any positive even integer,

(C5)

{
1 + α+ β + γ > 0, 1 + α− β − γ < 0,
1− α+ β − γ > 0, 1− α− β + γ > 0

and m is any positive integer such that,

m < arccos
α2 − β2 + γ2 − 1

2|αγ − β| / arccos
α2 − β2 − γ2 + 1

2|α− γβ| , (2.6)

(C6)

{
1 + α+ β + γ > 0, 1 + α− β − γ > 0,
1− α+ β − γ < 0, 1− α− β + γ > 0

and m is any positive odd integer such that (2.6)

holds ,

3
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(C7)

{
1 + α+ β + γ > 0, 1 + α− β − γ > 0,
1− α+ β − γ > 0, 1− α− β + γ < 0

and m is any positive even integer such that (2.6)

holds.

Denote by

τ(m) =
tank 1

2m
arccos[ 2m(a−bc)+τ(a2+b2)(1−2θ)

2|m(b−ac)+abτ(1−2θ)| ]

[ b2−a2

4m2(1−c2)+4mτ(a+bc)(1−2θ)+τ2(a2−b2)(1−2θ)2
]
1
2

, with k = sign(1− |c|), (2.7)

τ1 = τ1(m) = 2m(1−c)
(a+b)(2θ−1)

, τ2 = τ2(m) = 2m(1+c)
(a−b)(2θ−1)

,
τ∗ = τ∗(m) = min(τ1, τ2), τ∗ = τ∗(m) = max(τ1, τ2)

τ1 = τ1(m) = 2m(1+(−1)mc)

(a+(−1)m+1b)(2θ−1)
, τ2 = τ2(m) = 2m(1+(−1)m+1c)

(a+(−1)mb)(2θ−1)
.

For m sufficiently large, we have m− aθτ > 0.

By replacing α, β and γ by their respective values, conditions (C1) to (C7) give us:

2.2 Theorem

Equation (2.4) is asymptotically stable if and only if one of the following conditions hold:

(C
′
1)


a ≤ b < −a,
2m(1− c) + (a+ b)(1− 2θ)τ > 0,
2m(1 + c) + (a− b)(1− 2θ)τ > 0,

(C
′
2)


a < b < −a,
2m(1− c) + (a+ b)(1− 2θ)τ = 0,
2m(1 + c) + (a− b)(1− 2θ)τ > 0

and m is any positive odd integer,

(C
′
3)


a < b < −a,
2m(1− c) + (a+ b)(1− 2θ)τ > 0,
2m(1 + c) + (a− b)(1− 2θ)τ = 0

and m is any positive even integer,

(C
′
4)


b < a < −b,
2m(1− c) + (a+ b)(1− 2θ)τ > 0,
2m(1 + c) + (a− b)(1− 2θ)τ > 0

and τ < τ(m),

(C
′
5)


a < b < −a,
(−1)m[2m(1− c) + (a+ b)(1− 2θ)τ ] > 0,
(−1)m+1[2m(1 + c) + (a− b)(1− 2θ)τ ] > 0

and τ < τ(m).

Proof. By Proposition [11], we have to analyse conditions (C1) -(C7). By simple calculation we
found.

1 + α + β + γ = −(a+b)τ
m−aτθ

, 1 + α − β − γ = −(a−b)τ
m−aτθ

, 1 − α + β − γ = 2m(1−c)+(a+b)τ(1−2θ)
m−aτθ

and 1− α− β + γ = 2m(1+c)+(a−b)τ(1−2θ)
m−aτθ

.

So, the conditions (C1), (C2) become
a ≤ b < −a,

2m(1− c) + (a+ b)(1− 2θ)τ > 0,

4
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2m(1 + c) + (a− b)(1− 2θ)τ > 0.

This justifies (C
′
1). Similarly conditions (C3), (C4) and (C5) give respectively (C

′
2), (C

′
3) and (C

′
4)

and conditions (C6) and (C7) give (C
′
5).

The application of the previous Theorem gives us the following results:

2.3 Corollary 1
For θ ∈ [0, 1

2
[, Equation (2.4) is asymptotically stable if and only if one of the following conditions

holds:
a ≤ b < −a, |c| < 1, τ < τ∗, (2.8)

a < b < −a, (−1)m+1c = 1, τ < τ2, τ < τ(m) (2.9)

a < b < −a, |c| < 1, (−1)m(ac+ b) > 0, τ = τ1, (2.10)

a < b < −a, |c| < 1, (−1)m(ac+ b) > 0, τ1 < τ < τ2, τ < τ(m), (2.11)

a < b < −a, (−1)m+1c > 1, τ < τ2, τ > τ(m), (2.12)

b < a < −b, |c| < 1, τ < τ1, τ < τ(m), (2.13)

b < a < −b, c ≤ −1, b+ ac < 0, τ2 < τ < τ1, τ > τ(m). (2.14)

Proof. For θ ∈ [0, 1
2
[, conditions (C

′
1) give a ≤ b < −a, |c| < 1 and τ < τ∗. Similarly, conditions

(C
′
2) and (C

′
3) become respectively (a < b < −a, τ = 2m(1−c)

(a+b)(2θ−1)
, τ < 2m(1+c)

(a−b)(2θ−1)
for m is odd

integer) and (a < b < −a, τ = 2m(1+c)
(a−b)(2θ−1)

, τ < 2m(1−c)
(a+b)(2θ−1)

for m is even integer), this justifies

(2.10). Conditions (C
′
4) and (C

′
5) already contain the restriction on m. Conditions (C

′
4) give (

b < a < −b, τ < 2m(1−c)
(a+b)(2θ−1)

, τ > 2m(1+c)
(a−b)(2θ−1)

, and m is such that (2.6) holds.

Now we discuss the form of (2.6). Using (*) we can rewrite it as

m arccos(
2m2(1− c2) + τ2(a2 − b2)(2θ2 − 2θ + 1) + 2mτ(a+ bc)(1− 2θ)

2|m2(1− c2) + τ2(b2 − a2)θ(1− θ) +mτ(a+ bc)(1− 2θ)| )

< arccos(
2m(a− bc) + τ(a2 + b2)(1− 2θ)

2|m(b− ac) + abτ(1− 2θ)| ) (∗∗)

The left-hand side of (**) can be treated by use of the relation,

arccosx = 2arctan
(1− x2)

1
2

1 + x
− 1 ≤ x ≤ 1,

which results either in

2m arctan[τ(
b2 − a2

4m2(1− c2) + 4mτ(a+ bc)(1− 2θ) + τ2(a2 − b2)(2θ − 1)
)
1
2 ]

if
m2(1− c2) + τ2(b2 − a2)θ(1− θ) +mτ(a+ bc)(1− 2θ) > 0

or in

2m arccot[τ(
b2 − a2

4m2(1− c2) + 4mτ(a+ bc)(1− 2θ) + τ2(a2 − b2)(2θ − 1)
)
1
2 ]

if
m2(1− c2) + τ2(b2 − a2)θ(1− θ) +mτ(a+ bc)(1− 2θ) < 0.

5
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Obviously, (2.6) becomes τ < τ(m) if the first condition holds, or τ > τ(m) if the second holds.

Then conditions (C
′
4) yields (2.13) and (2.14). Similarly, conditions (C

′
5) yield (2.9), (2.11) and

(2.12).

Remark 1. Let θ ∈ [0. 1
2
[. Comparing Corollary 1 and Theorem 2.1 in [7], we see that the θ-method

could retain the asymptotical stability for sufficiently large m in the case of conditions (2.8) or (2.13).
The conditions ((2.9)-(2.12)) depend on the parity of m and in (2.14) the condition c ≤ −1 is not
necessary. We note that (2.8) is same as the sufficient condition of Theorem 4 in Huan Su et al [8],
for θ ∈ [0, 1

2
[ and (2.13) is analogous to the formula (20) in Theorem 3.2 in J. Cermak [7] if θ = 1

2
and

τ(m) converges to τ0.

2.4 Corollary 2
For θ ∈] 1

2
, 1], Equation (2.4) is asymptotically stable if and only if one of the following conditions holds:

a ≤ b < −a, |c| < 1, (2.15)

a < b < −a, |c| = 1, (2.16)

a ≤ b < −a, |c| ≥ 1, τ > τ∗, (2.17)

a < b < −a, (−1)m+1c ≥ 1, τ = τ1, (2.18)

a < b < −a, (−1)m+1c > 1, τ < τ1, τ > τ(m), (2.19)

b < a < −b, |c| < 1, τ < τ2, τ < τ(m), (2.20)

b < a < −b, c ≥ 1, ac+ b < 0, τ1 < τ < τ2, τ > τ(m). (2.21)

Proof. For θ ∈] 1
2
, 1], conditions (C

′
1) give (a ≤ b < −a, τ > 2m(1−c)

(a+b)(2θ−1)
, and τ > 2m(1+c)

(a−b)(2θ−1)
),

which can be written jointly as (2.15), (2.16) and (2.17). Similarly, conditions (C
′
2) and (C

′
3) become

respectively (a < b < −a, τ = 2m(1−c)
(a+b)(2θ−1)

τ > 2m(1+c)
(a−b)(2θ−1)

in the case m is odd integer) and

(a < b < −a, τ = 2m(1+c)
(a−b)(2θ−1)

τ > 2m(1−c)
(a+b)(2θ−1)

in the case m is even integer). Then this check

(2.18). Conditions (C
′
4) give ( b < a < −b, τ > 2m(1−c)

(a+b)(2θ−1)
, τ < 2m(1+c)

(a−b)(2θ−1)
and m is such that

(2.6 ) holds. This justify (2.20) and (2.21). (2.19) is analogous to (C
′
5).

Remark 2. Let θ ∈] 1
2
, 1]. By making a comparison between Corollary 2 and Theorem 2.1 in [7] and

from a same arguments as for Remark 1, we see that the θ-method could retain the asymptotical
stability for sufficiently large m only in the case of conditions (2.15) or (2.16) or (2.20) if τ(m)
converges to τ0 in decreasing.

2.5 Corollary 3
For θ = 1

2
, Equation (2.4) is asymptotically stable if and only if one of the following conditions holds:

a ≤ b < −a, |c| < 1, (2.22)

a < b < −a, (−1)m+1c = 1, (2.23)

b < a < −b, |c| < 1, τ < τ(m), (2.24)

b < a < −b, (−1)m+1c > 1, τ > τ(m), (2.25)

Proof. By replacing θ by 1
2

in the previous Theorem, conditions (C
′
1), (C

′
4) and (C

′
5) become

6
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respectively (2.22), (2.24) and (2.25). Similarly, conditions (C
′
2) and (C

′
3) yield (2.23).

Note that Corollary 3 is analogous to Theorem 3.2 in [7].

Denote by Στ (m) the region of numerical stability by θ-method and by Σ∗
τ the region of the theoretical

stability,
Στ (m) = {(a, b, c) satisfying the conditions of corollary 1 or 2 or 3},

Σ∗
τ = {(a, b, c) satisfying the conditions of Theorem 2.2}.

2.6 Corollary 4
Let θ ∈ [ 1

2
, 1] and m1 < m2 be arbitrary positive integers. Then

Στ (m2) ⊂ Στ (m1) and ∩m∈N∗Στ (m) ⊃ Σ∗
τ

Proof. If θ = 1
2
, the proof is already done ( J. Cermak et al [7]). Let θ ∈] 1

2
, 1] and m1 < m2 two

arbitrary positive integers and let’s show that Στ (m2) ⊂ Στ (m1).

Since the condition (2.15) and (2.16) in Corollary 2 are independent of m, it is enough to consider the
delay-dependent part of Στ (m) in (2.20) and to show that τ(m) converges to τ0 in decreasing ( also
J. Cermak et al [7]).

Due to the fact that: sign (m(b− ac) + abτ(1− 2θ)) = sign (m(b− ac), for m sufficiently large and as
b− ac < 0 from the condition (2.20); (2.7) becames

τ(m) =
tan 1

2m
arccos[ 2m(a−bc)+τ(a2+b2)(1−2θ)

2m(ac−b)−2abτ(1−2θ)
]

[ b2−a2

4m2(1−c2)+4mτ(a+bc)(1−2θ)+τ2(a2−b2)(1−2θ)2
]
1
2

,

of the form:

fθ(x) =
tan 1

2x
arccos[Ax+B

Cx+D
]

[ K
Ex2+Gx+H

]
1
2

with:
A = (a− bc), B = τ(a2 + b2)(1− 2θ), C = 2(ac− b), D = −2abτ(1− 2θ),
E = 4(1− c2) G = 4τ(a+ bc)(1− 2θ), H = τ2(a2 − b2)(1− 2θ), K = b2 − a2

Note that, for θ = 1
2
, f 1

2
(x) = 2x tan r

2x
, with r ∈]0, π[. It’s not difficult to see that f 1

2
is decreasing for

x ∈]2,+∞[ ( J. Cermak et al [7]). We cleam that fθ is as f 1
2

, decreasing for x sufficiently large.

In fact,

f ′
θ(x) = [− 1

2x2
arccos(

Ax+B

Cx+D
)]×[1+tan2(

1

2x
arccos(

Ax+B

Cx+D
))]×(

K

Ex2 +Gx+H
)
1
2 /(

K

Ex2 +Gx+H
)

−[(
K

Ex2 +Gx+H
)
1
2 ]′ × [tan[

1

2x
arccos(

Ax+B

Cx+D
)]/(

K

Ex2 +Gx+H
)

+
1

2x
[arccos(

Ax+B

Cx+D
)]′ × [1 + tan2(

1

2x
arccos(

Ax+B

Cx+D
))]× (

K

Ex2 +Gx+H
)
1
2 /(

K

Ex2 +Gx+H
)

It’s clear that the sign of the first expression of f ′
θ(x) (lines 1,2) is same as sign (f ′

1
2
(x)) negative and

sign of the second one (line 3) is same as sign ([arccos(Ax+B
Cx+D

)]′).

By simple calculation we found, sign ([arccos(Ax+B
Cx+D

)]′) = sign(BC −AD) < 0.

Consequently, fθ is decreasing

7
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3 DISCUSSION AND
CONCLUSIONS

The stability of many numerical methods for
linear NDDEs and DDEs has been extensively
studied [13] [14] [15] [16] [17] [18] [19] [20]
[21] and the references therein. Recently the
problem of necessary and sufficient numerical
stability conditions by θ-method discretization for
the NDDEs (1.1) is considered in the following
situations: θ = 0 and a = 0 by J. Hrabalova [10]
and θ = 1

2
by Jan Cermak et al [7].

In the cas θ ∈ [0, 1], Huan Su et al [8] considered
only a necessary condition. If the following
theoretical asymptotic stability conditions (a ≤
b < −a and |c| < 1) hold; then, one has also
numerical stability [8].

In this paper we can consider that the conditions
on the parameters obtained in corollaries 1-3 and
the ones obtained by H. I. Freedman et al in
[22], permitted a good comparison between the
numerical θ-methods stability for θ ∈ [0, 1] and
the theoretical stability, for the NDDEs (1.1).

Note that Theorem 7.3 in [23] shows that the θ-
methods are NGP-stable if and only if θ ∈ [ 1

2
, 1].

Here, with the help of Corollary 4, we can confirm
that in the case θ ∈ [ 1

2
, 1], the conditions of

corollaries 2 and 3 are optimal to preserve the
theoretical asymptotic stability.

4 SOME NUMERICAL
SIMULATIONS

In this section, some numerical examples are
provided to support our main results in corollaries
1-3. We take a = −2, b = −1 as an example and
the two cases: |c| < 1, θ ∈ [0, 1] and |c| = 1,
θ ∈] 1

2
, 1].

For the former case, for |c| < 1, θ ∈
[0, 1] condition (2.8), (2.15) and (2.22) are
satisfied. Therefore, by Corollary 1, the origin is
asymptotically stable if θ ∈ [0, 1

2
[ any τ < τ∗. And

by corollaries 2, 3, the origin is asymptotically
stable for θ ∈ [ 1

2
, 1] and for any τ > 0. This is

shown respectively in Fig. 1 (for c = 0.5, θ = 0 )
and Fig. 2 (for c = 0.5, θ = 1

2
, and c = 0.5, θ = 1

).

For the second case, for c = 1 or c = −1,
conditions (2.16) are satisfied, and by Corollary
2 the origin is asymptotically stable for any τ >
0, and θ ∈] 1

2
, 1]. This is shown in Fig. 3 (

respectively Fig.4), for θ = 1 and τ = 1 or τ = 5 (
respectively for θ = 1, or θ = 3

4
and τ = 1).

Fig. 1. Stable solutions of (2.4) for τ = 2, m = 10 and τ = 4, m = 15.
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Fig. 2. Stable solutions of (2.4) for θ = 0.5, τ = 1, m = 10 and θ = 1, τ = 2, m = 10, when c = 0.5.

Fig. 3. Stable solutions of (2.4) for θ = 1, τ = 1, and τ = 5 , when c = 1.

Fig. 4. Stable solutions of (2.4) for θ = 1, τ = 5 and θ = 3
4

, τ = 1, when c = −1.
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