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ABSTRACT 
 
Root growth of bedding plants in small pots is usually restricted and evidently influenced by 
substrate quality and fertilization routine. Two pre-transplant 50- and 288-plug cells tray-1 were 
used. Plants were grown in two growing media and fertilized with liquid feeding and pre-transplant 
supply of calcium cyanamide (CC). CC-fertilized plants showed higher fresh-dry weight, glucose 
content and nitrogen content. The higher dry weight accumulation in CC-fertilized plants was 
supported by the increase in the relative rate of leaf area expansion (RLAE) and the increase in the 
rate of leaf appearance (RLA). The changes in leaf area were associated with increase in both leaf 
number and leaf size. CC-fertilized plants also showed a higher relative growth rate (RGR), mainly 
associated with higher net assimilation rates (NAR) and a change in photo assimilate partitioning 
that favoured shoots and specifically stems. From a grower’s point of view, the use of calcium 
cyanamide to fertilize I. wallerana plants in substitution of the traditional liquid fertilization system 
would increase crop productivity. Calcium cyanamide would be a better alternative than other 
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coated products used as controlled-release fertilizer, especially under a global temperature 
increase or low environmental greenhouse facilities. 
 

 
Keywords: Transplants; plug size; growing media. 
 

1. INTRODUCTION 
 
The marketability of potted plants is greatly 
influenced by the conditions during their 
production; include the quality of the substrate [1] 
and the fertilization program [2,3]. 
 
Nutrients for container-grown plants are usually 
applied by injecting fertilizers into the irrigation 
systems (liquid feeding) or added to growing 
media before transplant (controlled-release 
fertilizer). Container crop production requires 
frequent irrigation and high fertilization rates, 
which can result in contamination of both ground 
and surface water [4]. Nitrate pollution of 
groundwater is a serious global problem for most 
countries. It has been indicated that the response 
to changes in the fertilization routine is a complex 
phenomenon that depends on many internal           
and external factors, including soil nitrogen 
availability, nitrogen uptake and assimilation, 
photosynthetic carbon and reductant supply, 
carbon–nitrogen flux, nitrate signalling and 
regulation by light and hormones [5,6]. 

 
The nutrient requirements of container-grown 
ornamental plants are also influenced by the 
composition of the medium. Soilless media have 
a wide range of cation-exchange capacities 
depending on the ratios and types of 
components in the mix [1]. The use of controlled-
release fertilizers improve the fertilizer nitrogen 
use efficiency in plants [7,8].  
 
Nitrogen release from coated products may 
dependent on soil moisture, soil temperature, 
microbial activity, coating thickness and/or the 
orifice size in the coating [9,10]. However, the 
availability of nitrogen from calcium cyanamide is 
not related to these environmental constraints.  
 
Polymer-coated products are very widely used in 
bedding plants, including I. wallerana, because 
their release is highly predictable and dependent 
on temperature and moisture level. In developed 
countries, both factors can be controlled through 
a high technology investment but, in developing 
countries, the increase in temperature related to 
a changing global environment can limit the use 
of polymer-coated products.  
 
Calcium cyanamide was the first artificial 
nitrogen fertilizer to be manufactured industrially. 

This fertilizer contains approximately 20% 
nitrogen and 50% calcium and is an 
environmentally benign way of providing these 
nutrients to protected crops independently of the 
greenhouse air temperature. The properties of 
calcium cyanamide include a gradual release of 
nitrogen and low leaching and demineralization 
rates, mainly in acid growing media; 
consequently, if calcium cyanamide is used as a 
fertilizer, nitrate pollution is limited and soil health 
is improved because of the increase in microbial 
diversity [11]. Calcium cyanamide is essentially 
insoluble in water, but undergoes a partial 
hydrolysis to calcium hydrogen cyanamide, a 
source of cyanamide ions [12]. When applied to 
soil calcium cyanamide undergoes hydrolysis to 
cyanamide, then urea and then ammonium. 
Before hydrolysis is complete, higher rates of the 
cyanamide anion may be toxic to higher plants 
[13]; however, at the commonly suggested rates, 
calcium cyanamide did not toxic to I. wallerana 
plants (unpublished data) or soil microbial 
community [14]. 
 
Bedding plant producers have progressively 
adopted containers of reduced size, which have 
a limited soil volume available for the root 
system. This choice allows an increase in plant 
density, but has the disadvantage of root 
restriction in a limited volume, followed by 
considerable changes in plant growth and 
physiology. Root restriction stress related to a 
small pot volume could limit biomass 
accumulation and negatively interact with the 
growing media and fertilization [15,16].   
 
The aim of this research was to characterize the 
effect of two fertilization routines, two pre-
transplant plug cell volume and two post-
transplant growing media on Impatiens wallerana 
growth and to describe the physiological 
mechanisms involved. 
 
2. MATERIALS AND METHODS 
 
The experiments were carried out in a 
greenhouse at the Faculty of Agronomy, 
University of Buenos Aires, Argentina (34° 35’ 
59’’S, 58° 22’ 23’’W), from October 15 th 2013 to 
March 29th 2014 and from October 20th 2014 to 
March 26th 2015. 
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Impatiens wallerana ‘Xtreme White’ seeds 
(Goldsmith Inc., NY, USA) were germinated and 
grown in 50- and 288-plastic plug trays (55.70 
and 6.18 cm3 cell-1 respectively) in a Klasmann 
411 medium (Klasmann-Deilmann, GmbH, 
Germany) during 35-30 d for the two experiments 
respectively. When seedlings reached the 
transplant stage, they were transplanted into 
1,200 cm3 pots filled with two different growing 
media as follows:  

 
1) Klasmann 411 medium: Canadian 

Sphagnum peat moss-perlite-vermiculite 
(70/20/10 v/v/v) (K). At the beginning of the 
experiments total porosity (%), air-filled 
porosity (%), container capacity (%) and 
bulk density (g cm-3) were 85.72, 20.94, 
22.78 and 0.14 respectively. 

2) Sphagnum maguellanicum-river waste-
perlite (40-40-20, v/v/v) medium (SR) [17]. 
At the beginning of the experiments total 
porosity (%), air-filled porosity (%), 
container capacity (%) and bulk density (g 
cm-3) were 63.50, 17.06, 10.06 and 0.35 
respectively. 

 
The two growing media tested were chosen with 
the aim to compare a based-Canadian peat and 
an alternative growing medium previously tested 
in I. wallerana and other bedding pot plants.  
River waste or ‘temperate peat’ is the result of 
the accumulation of plants residues under an 
anaerobic environment, which is dredged from 
river or lake banks. The sedimentary organic 
matter is derived from the delta plain vegetation 
and is highly dominated by phytoplasts (plant 
debris). The result is a fine-grained, black, oozy 
sediment deposited in the bottom of the coasts 
[18]. 
 
Different calcium cyanamide (CC) concentrations 
(0, 1.0, 1.5 and 2.0 kg m-3) (0, 1.2, 1.8 and 2.4 g 
pot-1) (Perlka®, AlzChem, Trostberg, Germany) 
were added at transplanting. A weekly ferti-
irrigated control (F) of 1.0: 0.05: 1.0: 0.5 (v/v/v/v) 
N: P: K: Ca (nitric acid, phosphorus acid, 
potassium nitrate, and calcium nitrate; 
Agroquímica Larocca S.R.L., Buenos Aires, 
Argentina) through to the overhead irrigation 
water (150 mg L–1 N) according to Styer and 
Koranski [19] was included. This fertilizer 
combination and nitrogen concentration, 
neutralized at pH= 5.8, optimize I. wallerana 
growth. Additional phosphorus and potassium 
was added to calcium cyanamide treatments 
through overhead irrigation water to avoid 
deficiencies in these nutrients. 

Daily mean temperatures (21.06 to 26.96°C) and 
daily photosynthetic active radiation (5.51 to 7.14 
mol photons m–2 day–1) for the two experiments 
were recorded with a HOBO sensor (H08-004-
02) (Onset Computer Corporation, MA, USA) 
connected to HOBO H8 data logger. The plants 
were arranged at a density of 25 plants m-2, 
which avoided mutual shading.  
 
Samples of each growing medium were collected 
at the beginning of the pot experiments (before 
transplant to the 1,200 cm3 pots) and total 
porosity, air-filled porosity, bulk density and 
container capacity were determined according to 
Fonteno [20].   
 
Plants were harvested at the transplant stage 
and at 15, 30, 45, 60 and 90 days after 
transplanting. Roots were washed and root, 
stem, leaf and flower fresh weights (FW) were 
recorded. Dry weights (DW) were obtained after 
drying roots, stems and leaves to constant 
weight at 80°C for 96 h. The number of leaves 
was recorded, and each leaf area was 
determined using a LI-COR 3000A automatic leaf 
area meter (LI-COR, Inc., Lincoln, NE, USA).  
 
The relative rate of leaf area expansion (RLAE) 
was calculated as the slope of the regression of 
the natural logarithm (ln) of total leaf area versus 
time (in days). The rate of leaf appearance (RLA) 
was calculated as the slope of the number of fully 
expanded leaves versus time (in weeks). The 
relative growth rate (RGR) was calculated as the 
slope of the regression of the natural logarithm 
(ln) of whole plant DW versus time (in days). The 
mean net assimilation rate (NAR) and leaf area 
ratio (LAR) were calculated according to 
Gandolfo et al. [21]. The specific leaf area (SLA) 
and the leaf weight ratio (LWR) were calculated 
as the leaf area: leaf DW ratio and the leaf DW: 
total DW ratio respectively between the 
transplant stage and the end of the experiments. 
 
The allometric coefficients between roots and 
shoots and between leaf blades and the petioles-
stems fraction were calculated as the slope (β) of 
the straight-line regression of ln root DW versus 
ln shoot DW (ln root DW = a + b x ln shoot DW), 
and between ln leaf blade DW versus ln (petiole-
stem) DW (ln leaf blade DW = a + b x ln petiole-
stem DW), respectively. 
 
Glucose and nitrogen concentration were 
analysed on each plant organ (roots, shoots and 
leaves) at the final sampling of the pot 
experiments using the Nelson-Somogyi method 
and the Kjeldahl method respectively. 
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The experimental design was a randomized 
factorial with three blocks of five single-pot 
replications of each treatment combination (plug 
cell volume × growing medium × CC 
concentration). Since there were no significant 
differences between the two experiments, they 
were considered together (n = 30). Data were 
subjected to three-way analysis of variance 
(ANOVA). STATISTICA 8 (StatSoft) software 
was used and the assumptions of ANOVA were 
checked. Least significant differences (LSD) 
values were calculated. Means were separated 
by Tukey’s tests (P ≤ 0.05). Slopes from    
straight-line regressions of RLA, RLAE, RGR, 
NAR, LAR, SLA, LWR and allometric              
values were tested using the SMATR package 
[22].  
 
3. RESULTS 
 
FW (90 days from transplanting) showed no 
significant differences between control plants 
grown in 50-plug cell trays and those grown in 
288-plug cell trays with the K growing medium. In 
contrast, when plants were grown in SR growing 
medium, the FW of plants grown in 50-plug cell 
trays was higher than that of plants grown in 288-
cell trays. The use of CC significantly increase 

FW over controls although the best responses 
were found when the lowest CC concentration            
(1 Kg m-3) was used (Fig. 1A). A positive 
relationship between shoot and root FW was 
found (r2 = 0.688) with higher values in CC-
fertilized plants (Fig. 1B). The experiments 
showed highly significant differences (P < 0.001) 
for the single CC effect and significant 
differences (P < 0.01) for the rest of double or 
triple effects.  
 
The higher total and individual leaf area, the 
number of leaves and the plant height were 
mainly related to the use of CC as a fertilizer (the 
best results were those with 1.0 kg m-3 CC) and 
the quality of growing medium (Table 1). 
 
The use of CC as a controlled-release fertilizer 
increased RLAE and RLA in both growing 
medium and cell volumes tested with little 
differences between them. On the other hand, 
neither SLA nor LWR showed significant 
differences (Table 2).  
 
The CC fertilization treatment increased RGR, 
NAR, LAR and LAP with changes related to the 
growing medium or the pre-transplant cell 
volume used (Table 3). 

 
 

 ANOVA 
Cell volume (A) ** 

** 
*** 
** 
** 
** 
** 

Growing media (B) 
Calcium cyanamide (C)  
A x B 
A x C 
B x C 
A x B x C 

Significance *** p < 0.001; p < ** 0.01  
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Fig. 1. Mean fresh weight at the end of the experim ents from roots, stem, leaves and flowers in 

Impatiens wallerana  plants grown in two pre-transplant plug cell size ( 50- and 288-cell tray -1) 
but grown in two post-transplant growing media (K a nd SR) and fertilized with four calcium 

cyanamide fertilizer concentrations (0; 1.0; 1.5 an d 2.0 Kg m -3) (A) (n = 30). The standard errors 
over each bar and the significance of interactions (ANOVA) have been indicated. Shoot-root 

fresh weight relationships has been showed as well (B). Linear regression equation are: Shoot 
fresh weight = 10.79 Root fresh weight + 9.67 (r 2 = 0.688, P < 0.001). The probability of the 

slope being zero was P <  0.001. K: ◊-□; SR: ○-∆; 50-cells trait: ◊-○; 288-cells trait: □-∆. Empty or 
full symbols indicated both controls and CC-fertili zed plants respectively 

 

Table 1. Changes in both total and individual leaf area, the number of expanded leaves and plant 
height in Impatiens wallerana  plants from two pre-transplant plug cell size (50-  and 288-cell 

tray -1), grown in  two post-transplant growing media (K a nd SR) and fertilized with four calcium 
cyanamide concentrations (0; 1.0; 1.5 and 2.0 Kg m -3) (n = 30). Different lower-case letters 

indicate significant differences (P <  0.05) between CC-fertilized plants while different capital 
letters indicate significant differences (P <  0.05) between different pre-transplant cell volume s. 

The significance of interactions (ANOVA) has been i ndicated 
 

Calcium 
cyanamide 
(kg m -3) 

Leaf area  
(cm2 plant -1) 

Leaf area  
(cm2 leaf -1) 

Number of leaves  
(leaves plant -1) 

Plant height  
(cm plant -1) 

K SR K  SR K SR K SR 
50-cells  
0 
1.0 
1.5 
2.0 

 
67.16cA 
235.81aA 
172.30bA 
73.24cB 

 
79.37dA 
177.35cA 
225.68aA 
195.39bA 

 
0.97bA 
1.55aA 
1.41aA 
0.93bB 

 
0.91bA 
1.97aA 
2.10aA 
1.99aA 

 
69.00cB 
152.00aA 
122.00bA 
78.75cB 

 
87.25bA 
90.25bB 
107.25aA 
98.25aA 

 
16.35bA 
26.75aB 
27.63aB 
26.08aA 

 
14.80cA 
24.48bA 
26.58bB 
34.00aA 

288-cells  
0 
1.0 
1.5 
2.0 

 
70.67cB 
176.20aB 
159.76bB 
150.99bA 

 
37.50cB 
172.84aA 
126.15bB 
133.54bB 

 
0.79bA 
1.40aA 
1.56aA 
1.53aA 

 
0.78dA 
1.42cB 
2.13aA 
1.85bA 

 
90.00cA 
125.75aB 
102.25bB 
98.75bA 

 
48.00cB 
121.50aA 
59.25bB 
72.25bB 

 
13.48cA 
30.78aA 
30.83aA 
25.23bA 

 
11.05cB 
21.63bB 
36.30aA 
23.68bB 

 
ANOVA Total leaf area  

 
Individual leaf 
area 

Number of 
leaves 

Plant 
height 

Cell volume (A) ** 
** 
*** 
* 
** 
** 
** 

* ** ** 
Growing media (B) * ** ** 
Calcium cyanamide (C)  *** *** *** 
A x B * * * 
A x C ** ** ** 
B x C ** ** ** 
A x B x C ** ** ** 

Significance *** 0.001 ** 0.01 * 0.05 ‘ns’ No significant 
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Table 2. Changes in the relative expansion rate (RL AE), the rate of leaf appearance (RLA), the 
specific leaf area (SLA) and the relative leaf weig ht (LWR) from Impatiens wallerana  plants from 
two pre-transplant plug cell size (50- and 288-cell tray -1), grown in two post-transplant growing 
media (K and SR) and fertilized with four calcium cy anamide fertilizer concentrations (0; 1.0; 

1.5 and 2.0 K m -3) (n = 30). Different lower-case letters indicate s ignificant differences (P <  0.05) 
between CC-fertilized plants while different capita l letters indicate significant differences (P <  

0.05) between different pre-transplant cell volumes . The probability of the slope being zero 
was P <  0.001 for all growth parameters 

 
 Calcium 
cyanamide 
(kg m -3) 

RLAE 
(cm2 cm -2 day -1) 

RLA 
(leaves week -1) 

SLA 
(cm2 g-1) 

LWR 
(g g -1) 

K SR K  SR K  SR K  SR 
50-cells  
0 
1.0 
1.5 
2.0 

 
0.0457dB 
0.0647aB 
0.0583bB 
0.0489cB 

 
0.0573cA 
0.0683bA 
0.0715aA 
0.0686bA 

 
0.913dB 
1.482aB 
1.274bA 
1.018cA 

 
1.125cA 
1.060dB 
1.232bA 
1.274aA 

 
195.04aA 
173.88bA 
185.41aA 
189.59aA 

 
150.23bA 
176.45aA 
177.32aB 
168.76aB 

 
0.313cB 
0.437bA 
0.477aA 
0.319cB 

 
0.379cA 
0.438aA 
0.405bA 
0.364cB 

288-cells  
0 
1.0 
1.5 
2.0 

 
0.0515cA 
0.0661aA 
0.0634bA 
0.0617bA 

 
0.0401cB 
0.0630aB 
0.0548bB 
0.0551bB 

 
1.000dA 
1.586aA 
1.205bB 
1.020cA 

 
0.587dB 
1.172aA 
0.619cB 
0.815bB 

 
202.07aA 
175.62cA 
184.07bA 
192.65aA 

 
159.67cA 
174.20bA 
217.50aA 
203.19aA 

 
0.352bA 
0.337cB 
0.352bB 
0.398aA 

 
0.379cA 
0.449bA 
0.361cB 
0.496aA 

 
Table 3. Changes in the relative growth rate (RGR),  the net assimilation rate (NAR), the leaf 

area ratio (LAR) and the coefficient of leaf partit ioning (LAP) estimated from Impatiens 
wallerana  plants grown in two pre-transplant plug cell size (50- and 288-cell tray -1), grown in 

two post-transplant growing media (K and SR) and fe rtilized with four calcium cyanamide 
fertilizer concentrations (0; 1.0; 1.5 and 2.0 Kg m -3) (n = 30). Different lower-case letters 

indicate significant differences (P <  0.05) between CC-fertilized plants while different capital 
letters indicate significant differences (P <  0.05) between different pre-transplant cell volume s. 

The probability of the slope being zero was P <  0.001 for all growth parameters 
 

Calcium 
cyanamide 
(kg m -3) 

RGR 
(g g -1 day -1) 

NAR 
(g cm -2 day -1) 

(x 10-5) 

LAR 
(cm2 g-1) 

LAP  
cm 2 day -1 

g day -1 
K SR K SR K SR K SR 

50-cells  
0 
1.0 
1.5 
2.0 

 
0.0699dB 
0.0927aA 
0.0749bB 
0.0724cB 

 
0.0928cA 
0.0979bA 
0.1030aA 
0.1041aA 

 
50.04cB 
53.30aB 
50.19bB 
50.21bA 

 
45.87cA 
47.96aB 
46.15bA 
47.48aA 

 
139.69cB 
155.15aB 
149.23bB 
144.19bB 

 
202.29bA 
204.14bA 
223.18aA 
219.27aB 

 
  91.33dB 
121.38aA 
116.16bB 
  97.38cB 

 
124.91cA 
142.42bA 
154.93aA 
144.49bB 

288-cells  
0 
1.0 
1.5 
2.0 

 
0.0782dA 
0.0899aB 
0.0874bA 
0.0845cA 

 
0.0700cB 
0.0891aB 
0.0823bB 
0.0832bB 

 
54.04aA 
55.67aA 
51.36bA 
49.53bA 

 
42.23bB 
51.29aA 
39.19cB 
33.47dB 

 
144.71bA 
167.50aA 
170.90aA 
170.61aA 

 
165.77dB 
188.42cB 
210.02bB 
248.59aA 

 
  95.30bA 
123.16aA 
123.45aA 
124.58aA 

 
  94.96cB 
133.23bB 
139.84bB 
164.63aA 

 
Glucose concentrations were higher in both stems 
and roots than leaves in control plants. CC-
fertilization significantly increased glucose 
concentration. The growing medium had higher 
effects than the pre-transplant cell volume (Fig. 
2A). On the other hand, nitrogen distribution was 
almost the same in the different plant organs 
(roots, shoots and leaves). Although there were 
only little differences related to the growing 
medium or pre-transplant cell volume used, CC-

fertilized plants showed higher nitrogen 
accumulation than control ones (Fig. 2B). 
 
In control plants, the allometries between roots 
and shoots showed a balanced DW partitioning, 
although the higher the cell volume the higher 
the DW partitioning to shoots. The use of CC               
as a controlled-release fertilizer significantly 
increased DW in favour of shoots. On the other 
hand, the stem-leaf allometries of control plants 
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did not show a clearly defined response pattern 
when both growing medium and pre-transplant 
plug cell volumes were tested. However, a higher 
DW partitioning to stems was found in CC-
fertilized plants (Table 4). 
 
Positive relationships between RLAE (Fig. 3A), 
RLA (Fig. 3B), RGR (Fig. 3C), NAR (Fig. 3D), 
glucose concentration (Fig. 3F), nitrogen 
concentration (Fig. 3G) and root DW (r2 = 0.599, 
0.690, 0.511, 0.570, 0.668 and 0.675 respectively; 
P < 0.001 for all relationships) were found at the 
end of the experiment. The higher control values 
belonged to plants grown in the K growing 
medium and transplanted from 50-cell trays. The 

higher responses were found when plants were 
CC-fertilized. A negative relationship between 
SLA and root DW was found as well (r2 = 0.754;    
P ≤ 0.001) (Fig. 3E). 
 
4. DISCUSSION 
 
Impatiens wallerana bedding plant productivity 
was associated with both aerial biomass 
expansion and shoot FW (Fig. 1A); the latter was 
mainly determined by the root system size (Fig. 
1B) in agreement with previous reports [4,15,16]. 
Growth response differences between the two 
growing media tested would be associated to 
their both physical and chemical properties [23]. 

 

 
Fig. 2. Glucose (A) and nitrogen (B) contents at th e end of the experiments in different plant 
organs of Impatiens wallerana  plants from two pre-transplant plug cell size (50- and 288-cell 

tray -1), grown in  two post-transplant growing media (K a nd SR) and fertilized with four calcium 
cyanamide fertilizer concentrations (0; 1.0; 1.5 an d 2.0 Kg m -3) (n = 3). Vertical lines indicate 

least significant differences (LSD) 
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The growth of plants and their quality are mainly 
a function of the availability of nutrients. Data 
from Fig. 1A agree with this general point. 
Therefore, it is very important to improve the use 
of fertilizer nutrients; one method of reducing 
fertilizer nutrient losses involves the use of slow- 
or controlled-release fertilizers [24,25]. In this 
way, calcium cyanamide offer a gradual release 
of nitrogen regardless of the temperature [11], a 
very important matter that make difficult 
greenhouse acclimatization associated with the 
changing global environment which, could be 
limit the use of polymer-coated products. 
Although the effects of manipulating nutrient 
supply on plant growth and development                 
have long been known, these effects consist of 
more than simply relieving nutrient-limited 
growth. It is now well documented that             
several nutrients and metabolites act as 
signalling molecules in multiple pathways that co-
ordinately regulate patterns of gene expression 
[26]. 
 
Plant organs interact with each other to optimize 
both metabolic and developmental processes to 
allow the organism to accommodate to the 
environment. For these mutual interactions, local 
and long-distance communication among cells 
and organs are essential [27]. Molecular genetics 
evidences have demonstrated that roots sense 
and respond to local and global concentrations of 
inorganic nitrate, in a fashion that depends on 

the shoot nutrient status [28]. Nitrate availability 
and distribution affect the nitrate control of the 
root system architecture [29]. It has been 
suggested [3,4,30] that the nitrogen signalling 
associated with cytokinin synthesis by roots 
would be involved in the adaptation of                             
I. wallerana plants to different growing media. 
The same response would be involved when a 
root restriction related to the pre-transplant plug 
cell volume is imposed [15]. All abiotic stresses 
reduce plant growth and yield [31]. 
 
A key concept underpinning the current 
understanding of the carbon/nitrogen interaction 
in plants is that the capacity for nitrogen 
assimilation is related to nutrient availability and 
requirements by the integrated perception of 
signals from hormones, nitrate and sugars [32]. 
Studies on the nature and integration of these 
signals have revealed a complex network, which 
interplays with carbon and nitrogen signals 
[27,33,34]. These controls not only act to 
orchestrate the relative rates of carbon and 
nitrogen assimilation and carbohydrate 
production, but also have a significant influence 
on plant development. The signal transduction 
network that coordinates information from 
carbohydrate metabolism and nitrogen 
assimilation is under phytohormone regulation 
[35-37]. In this way, our results showed that CC-
fertilized plants significantly increased glucose 
concentration (Fig. 2A).  

 
Table 4. Changes in allometric relationships betwee n roots and shoots or between stems and 

leaves for Impatiens wallerana  plants using a straight-line regression analysis b etween the 
natural logarithm of root, shoot and leaves dry wei ght. Treatments included two pre-transplant 
plug cell size (50- and 288-cell tray -1), two post-transplant growing media (K and SR) and  four 

calcium cyanamide fertilization concentrations (0; 1 .0; 1.5 and 2.0 Kg m -3) (n = 30). The 
straight-line regression slopes ( ββββ) and the coefficients of determination r 2 are indicated. 

Different lower-case letters indicate significant d ifferences (P <  0.05) between CC-fertilized 
plants while different capital letters indicate sig nificant differences (P <  0.05) between different 

pre-transplant cell volumes. The probability of the  slope being zero was P <  0.001 for all 
allometric relationships 

 
Calcium 
cyanamide 
(kg m -3) 

Roots vs. Shoots  Stems vs. Leaves  
       K         SR        K         SR 
ββββ r2 ββββ r2 ββββ r2 ββββ r2 

50-cells  
0 
1.0 
1.5 
2.0 

 

 
0.825aB 
0.649dB 
0.689cB 
0.746bA 

 
0.759 
0.882 
0.805 
0.824 

 
0.698aB 
0.632bB 
0.545cB 
0.569cB 

 
0.897 
0.880 
0.896 
0.872 

 
0.630cB 
0.775bA 
0.847aA 
0.624cB 

 
0.876 
0.856 
0.898 
0.854 

 
0.991bA 
1.012aA 
0.982bA 
0.993bA 

 
0.856 
0.837 
0.859 
0.863 

288-cells  
0 
1.0 
1.5 
2.0 

 

 
0.985aA 
0.768bA 
0.767bA 
0.744cA 

 
0.924 
0.891 
0.854 
0.845 

 
0.813aA 
0.777bA 
0.630dA 
0.689cA 

 
0.852 
0.871 
0.718 
0.561 

 
0.743cA 
0.728dB 
0.813aB 
0.769bA 

 
0.949 
0.955 
0.911 
0.924 

 
0.814cB 
0.898aB 
0.740dB 
0.842bB 

 
0.751 
0.877 
0.822 
0.769 
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Fig. 3. Relationships between the relative leaf exp ansion rate (RLAE) (A), the rate of leaf 
appearance (RLA) (B), the relative growth rate (RGR ) (C), the net assimilation rate (NAR) (D), 
the specific leaf area (SLA) (E), the glucose conte nt (F), the nitrogen content (G) and the root 
dry weight (RDW). Treatments included Impatiens wallerana  plants from two pre-transplant 

plug cell size (50- and 288-cell tray -1), grown in two post-transplant growing media (K an d SR) 
and fertilized with four calcium cyanamide fertilize r concentrations (0; 1.0; 1.5 and 2.0 Kg m -3). 
Linear regression equations are: RLAE = 0.10 RDW + 0.038 (r2 = 0.699; P < 0.001); RLA = 3.722 
RDW + 0.31 (r2 = 0.690; P < 0.001); RGR = 0.146 RDW + 0.06 (r2 = 0.711; P < 0.001); NAR = 65.13 

RDW + 34.05 (r2 = 0.770; P < 0.001); SLA = - 210.23 RDW + 228.37 (r 2 = 0.754; P < 0.001); 
Glucose content = 1,637.80 RDW + 184.68 (r 2 = 0.668; P < 0.001); Nitrogen content = 135.67 
RDW + 52.39 (r2 = 0.675; P < 0.001). K: ◊-ϒϒϒϒ; SR: ○-∆; 50-cells trait: ◊-○; 288-cells trait: ϒϒϒϒ-∆. 

Empty or full symbols indicated both controls and C C-fertilized plants respectively 
 
Several reports have suggested that the 
accumulation of cytokinins is closely correlated 
with the nitrogen status of the plants and 
suggested that cytokinin metabolism and 
translocation could be modulated by the nitrogen 
nutritional status [38]. Namely, cytokinin 
accumulation and translocation occurred after 
sensing a change in nitrogen availability. Pagani 
et al. [3] have recently shown that there is a 
close relationship between I. wallerana DW 
accumulation and nitrogen content. Since these 
authors found that the alternative growing 
medium tested (mainly the Sphagnum 
maguellanicum- and the Carex sp.-based one) 
changed the proportion of nitrogen in the shoots 
they hypothesized that the decrease in shoot 
growth would be associated with this 
endogenous signal.  
 
A bedding pot plant can be sold only when it 
accumulates a FW between 30 and 70 grams 
[39]. In the present study, the I. wallerana plants 
that received liquid fertilization (control plants) 
reached the sale stage 90 days after 
transplanting. However, the CC-fertilized plants 
showed an increase in both FW (Fig. 1A) and DW 

(data not shown) at the end of the experiments. It 
would be speculate that the same result would be 
achieved  increasing the water-soluble fertilizer 
rate, however, this alternative can result in 
contamination of both ground and surface water 
in a high quality peat-based media or increase 
the electrical conductivity and pH in alternative 
growing media [4,30]. 
 
The higher the plant weight the higher the total 
leaf area because of a higher leaf number and a 
higher individual leaf area (Table 1). Therefore, 
the use of CC as a controlled-release fertilizer 
increased both RLAE and RLA, which suggest 
deep changes in the vegetative apex of the 
plants (Table 2). The phytohormone cytokinin 
interacts with other systemic signals and is a key 
regulator of meristem size and functions [40].  
 
Some authors have claimed that the plastochron 
(i.e. the time between successive leaf initiation 
events) may be altered in transgenic plants with 
reduced cytokinin levels [41,42]. However, the 
possibility that exogenous application of 
cytokinins may affect the plastochron has 
attracted little attention. Cytokinins have a strong 
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influence on many aspects of shoot development 
and metabolism, including leaf initiation [43]. On 
the other hand, the possibility that the rate at 
which leaves appear in a vegetative meristem 
could be regulated by exogenous application of 
6, benzyl aminopurine (BAP) has been explored 
only recently [44-48]. Plants need nutrient to 
grow and plant cells need nutrient to divide; 
however, the extent to which nutrient sensing 
might be operating in meristems has not been 
well described [49]. Nitrate addition up-regulates 
cytokinin levels in part by inducing expression of 
cytokinin biosynthetic genes [50]. A decrease in 
the plastochron needs an increase in apex size 
[39] and the presence of non-limiting sugar 
availability [51,52]. A higher glucose content in 
stems of CC-fertilized plants (Fig. 2A) and a 
higher DW partitioning to stems from the stem-leaf 
allometries (Table 4) are in agreement with these 
previous assumptions and support RLA changes 
(Table 2). In addition, the final size of plant 
organs such as leaves is tightly controlled by 
environmental and genetic factors that spatially 
and temporally co-ordinate cell expansion and 
cell cycle activity [53-55]. It has been suggested 
that cytokinins are involved in the maintenance of 
the vegetative apex and in cell differentiation 
[56,57]. Cytokinins can promote leaf unfolding 
and expansion in whole plants of several 
species, including ornamentals [16,44-47,58]. 
Any perturbation in one of these processes by 
modifications in the expression of specific KNOX 
genes [43] might affect the final leaf area [59]. 
 
Theoretical plant growth models postulate that 
the relative rates of shoot and root growth are 
largely modulated by signals related to the 
carbon and nitrogen status of the plant. Both 
whole-plant biomass accumulation and carbon 
and nitrogen contents, are highly responsive to 
light and nitrogen availability. Some aspect of the 
plant carbon controls root-to-shoot biomass 
partitioning and nitrogen balance [60]. Since in 
the present study we found no significant 
differences in the DW content of control and CC-
fertilized plants (data not shown), it is possible to 
describe the photo assimilate acquisition and 
partitioning rates on a DW base. The higher 
biomass accumulation in CC-fertilized plants was 
a result of higher RGR and NAR (Table 3). 
Besides, the decrease in SLA in CC-fertilized 
plants (Table 3) suggests an increase in leaf 
thickness. The negative relationship between 
RGR and SLA (data not shown) would explain 
part of the NAR increases [21]. It has been 
indicated that leaf thickness may be correlated 
with nutrient availability [61] as well. 

Plants constantly sense the changes in their 
environment; when mineral elements are scarce, 
they often allocate a greater proportion of their 
biomass to the root system [36]. Root: shoot 
partitioning has been extensively studied, and 
several types of models and partitioning 
mechanisms in which partitioning is governed by 
the relative levels of carbon and nitrogen in the 
storage pools have been developed [62]. 
Adjustments in root and shoot growth are             
often assumed to be a fundamental facet of a 
plant’s phenotypic plasticity in response to its 
environment [63,64]. The changes in LAR and 
LAP (Table 3) and the allometries between roots 
and shoots (Table 4) showed a higher DW 
partition in CC-fertilized plants and are in 
agreement with previous reports.   
 
The environment of plants is composed of a 
complex set of both abiotic and biotic stresses; 
plant responses to these stresses are equally 
complex [65]. Although the root system 
architecture is known to be highly plastic and 
strongly affected by environmental conditions, 
little is known about the underlying mechanisms 
controlling root system development. Hess and 
Kroon [66] and Puig et al. [67] have concluded 
that plants can sense the volume of the available 
rooting space, and a limited number of studies on 
individual roots have shown that plant roots may 
sense the identity of neighbouring roots and 
respond accordingly. Intrinsic, hormone-
mediated pathways that perceive and respond to 
external, environmental signals modulate root 
architecture [68]. Cytokinins are root-synthesized 
molecules, which are transported via the xylem 
to the shoot [69-71]. 
 
The root restriction related to a low pre-transplant 
cell volume [15,16], growing medium quality 
[3,4,23,72] and fertilization routine [30] in 
bedding ornamental plants has been recently 
explored. On the other hand, Ouma [73] showed 
that the interaction between container volume 
and nitrogen fertilizer levels was significant for 
both roots and shoots weight and for whole 
plants. In the present study, increasing nitrogen 
fertilizer levels increased the growth parameters 
as the container volumes increased.  
 
Although the higher the root system the higher 
the zeatin ribosides [74], it is no easy to show 
quantitative changes in endogenous cytokinin 
concentration [75] because plants synthesize 
different cytokinin-ribosides and not all have 
biological activity. Nevertheless, in the present 
study, when the root system increased positive 
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relationships with RLAE (Fig. 3A), RLA (Fig. 3B), 
RGR (Fig. 3C), NAR (Fig. 3D), glucose content 
(Fig. 3F) and nitrogen content (Fig. 3G) were 
found (r2 = 0.699; 0.690; 0.711; 0.770; 0.668 and 
0.675 respectively). At the same time, SLA (a 
growth parameter that allows estimating leaf 
thickness) showed a negative relationship with 
an increase in root DW (Fig. 3E).  
 
The level of nitrate available to the plant 
regulates the endogenous concentration of 
cytokinins. Plants grown on low levels of nitrogen 
show reduced levels of cytokinin, and the 
addition of nitrate leads to an increase in the 
levels of various cytokinin species. Nitrate 
addition up-regulates cytokinin levels in part by 
inducing expression of cytokinin biosynthetic 
genes. The balance of different cytokinin 
species, perceived by two-component elements, 
would signal the availability of nitrate forms, and 
would ultimately lead to the expression of 
cytokinin-responsive and, potentially, also nitrate-
responsive genes to regulate nitrogen 
metabolism in the plant [59,76]. It has been 
indicated that the fertilizer source, the rate, and 
the soil type [6] or growing medium [2,3,77] 
significantly influence the accumulation of 
nitrogen in shoots. Results from Fig. 3B showed 
an increase in nitrogen content in CC-fertilized 
plants, although with a similar accumulation in 
roots, stems and leaves.  
 
The percentage of the fertilizer dose recovered 
by plants when applied in conventional forms 
may amount up to only 30 to 50%; but when 
slow-release fertilizers are used, the nitrogen 
losses are lower [78]. Calcium cyanamide, which 
contains both nitrogen and calcium, plays a role 
as an important signalling molecule as well. The 
use of calcium cyanamide is set into the context 
of needs to increase plant growth, reduce the 
intensity with which resources are used, enhance 
natural biodiversity and provide for environmental 
sustainability [79]. In agreement with that found 
by Puig et al. [67], our results showed that I. 
wallerana plants adjust their development in 
relation to the availability of nitrogen.  
 
5. CONCLUSIONS 
 
We considered growing medium, cell volume or 
nutrient supply as a plant signalling for which, 
this paper containing new information on the 
physiological mechanisms involved. From a 
grower’s point of view, the use of calcium 
cyanamide to fertilize I. wallerana plants in 

substitution of the traditional liquid fertilization 
system would increase crop productivity. Calcium 
cyanamide would be a better alternative than 
other coated products used as controlled-release 
fertilizer (with lower cost), especially under a 
global temperature increase or low 
environmental greenhouse facilities. From an 
eco-physiological perspective, changes in these 
technological supplies would be seen as a 
stimulus, which develop different endogenous 
signalling in the plant; this approach is extremely 
new and although it is supported by many 
previous reports in different plants, the 
information in ornamentals is scarce. On the 
other hand, this eco-physiological approach let to 
point many futures research lines.  
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