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ABSTRACT 
 

Many publications have demonstrated the huge potential of NGS methods in terms of new species 
discovery, environment monitoring, ecological studies, etc. [24,35,92,97,103]. Undoubtedly, NGS 
will become one the major tools for species identification and for routine diagnostic use. While read 
lengths are still quite short for most existing systems ranging between 50 bp and 800 bp, they are 
likely to improve soon. This will enable easier, faster, and more reliable contig assembly and 
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subsequent matching against reference databases. When data generation is no longer a 
bottleneck, the storage, speed of analysis, and interpretation of DNA sequence data are becoming 
the major challenges. Also, the integration or the use of data originating from diverse datasets and 
a variety of data providers are serious issues that need to be addressed. Poor sequence record 
annotations and species name assignments are known problems that should be instantly 
addressed and would allow the creation of reference databases used for routine diagnostics based 
on NGS. Samples with huge amounts of short DNA fragments need to be analyzed and compared 
against reference databases in an efficient and fast way.  Although a number of solutions have 
been proposed by Industry; offering commercial software, there still remain hurdles to take. One of 
the challenges that we need to address is data upload from client’s computers to central or 
distributed data storage and analysis services. Another one is the efficient parallelization of 
analyses using cloud or grid solutions. The reliability and up-time of storage and analyses facilities 
is another important problem that need to be addressed if one wants to use it for routine 
diagnostics. Finally, the management, reporting and visualization of the analyses results are among 
the last issues, but not the least challenging ones. Considering the constant growth of 
computational power and storage capacity needed by different bioinformatics applications, working 
with single or a limited number of servers is no longer realistic. Using a cloud environment and grid 
computing is becoming a must. Even single cloud service provider can be restrictive for 
bioinformatics applications and working with more than one cloud can make the workflow more 
robust in the face of failures and always growing capacity needs. In this white paper we review the 
current state of the art in this field. We discuss the main limitations and challenges that we need to 
address such as; data upload from client’s computers to central or distributed data storage and 
analysis services; efficient parallelization of analyses using grid solutions; reliability and up-time of 
storage and analyses facilities for routine diagnostics; management, retrieving and visualization of 
the analyses results. 
 

 
Keywords: DNA; next generation sequencing; bioinformatics; clinical approaches, limitations. 
 

1. INTRODUCTION 
 
Bioinformatics is a catalyzer of today’s life 
sciences research. Its development and impact 
in life sciences is fundamental to understand the 
scientific progress of the last decades. 
Biomedical research includes large files of 
molecular imaging modalities (like MRI, SPECT, 
PET and opticals), microarray and proteomics 
data; and nowadays massive sequencing data 
which became rapidly available from the 
worldwide web. Bioinformatics fosters the 
development of computational solutions that 
facilitate a qualitative and quantitative 
understanding of life; it supports the 
interpretation of data coming from life sciences 
experiments. It is a multidisciplinary area which 
requires a collaborative effort. Considering that 
microbial life dominates the world, still many 
species remain undetectable using conventional 
culturing assays and make them impossible or 
difficult to study. By DNA sequencing directly 
from the environment (metagenomics), culture 
independent approaches are then possible. More 
recently, metagenomics present significant new 
challenges in data analysis. Metagenomic 
datasets are large collections of sequencing 
reads from anonymous species within particular 

environments. Computational metagenomics are 
extremely time consuming, and there are often 
many novel sequences in these metagenomes 
that are not fully utilized yet. Recent 
technological advances that become available 
allow faster and cheaper DNA sequencing are 
now driving biological and medical research. The 
past years have seen the arrival of high 
throughput sequencing (HTS) also known as 
Next Generation Sequencing (NGS) [1-3]. These 
technologies drastically lowered sequencing 
costs and increased sequencing throughput       
[4-6]. They radically changed molecular biology 
and computational biology, as data generation is 
no longer the bottleneck. In fact, nowadays a 
major challenge is the analysis and interpretation 
of huge amount of available sequencing data [7, 
8]. But new knowledge of collected data needs to 
be discovered as well. The way of thinking has a 
strong impact on how we deal with statistical, 
methodological and theoretical studies. New 
insights need to be discovered and tools need to 
be developed. Interestingly, most sources 
created by a variety of companies or research 
laboratories are open. The use of public or 
private tools and services provided by multiple 
institutions that easily aggregate to the federated 
cloud [7,9-15] or Bio Torrents [16] could be a 
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strategy for scheduling services. To improve the 
efficiency a cloud provider could execute the job. 
The executing time is strongly affected by the file 
transfer and storage services. Unfortunate, the 
lack of automated, integrated data and 
management tools [17], poor links to 
laboratories, clinical and epidemiological data 
during infectious outbreaks can still inhibit an 
effective and adequate response to combat 
diseases. Genomic sequence annotation 
requires an up to date comprehensive database 
of DNA sequence information for a given 
organism, preferentially those including the 
whole life cycle of mammals, vertebrates, 
invertebrates and microorganisms. Benefits of 
databases accepted by the web include 
questions such as; how to deal with secured data 
access, increased capacity for data sharing and 
jurisdictions between different companies 
(privacy policies), how to increase efficiency and 
how to speed up the analysis processes.   
 
In general, data refers to a collection of results 
and is available in a common format but 
commonly research institutes or organizations 
worldwide store data in their own format. This 
diversity of data sources caused by lack of 
collaboration includes; lack of universally 
accepted genetic loci, lack of reference 
genomes, limitations on identification using DNA 
sequence analysis, non-negligible proportion of 
compromised sequences (GenBank [18], EMBL 
[19], DDBJ [20]); separate names for different 
sexual stages and differences in taxonomy, 
sequences with wrong designations, differences 
between phylogenetically based annotations and 
BLASTn annotation, reliability of sequences in 
public databases and important morphological 
characters by overlapping between species [21-
26]. Today there is still not an efficient way to 
assemble sequence data and the use of a 
standard set of validated tools available for 
epidemiological studies. An infection or 
contamination is a serious threat that is 
accompanied by great uncertainty and requires 
in most cases an urgent action by diseases such 
as bird flu or MERS. There are warning signs, 
but they are not seen or too late. Today’s 
systems are very complex, they need to be 
continually updated and connected with the 
different authorities. A crisis is unavoidable, and 
could lead to an increase of insecurity. 
Furthermore most current systems are time 
consuming; it takes more than 48 hours in case 
an infection is detected. Spread of the disease is 
already a fact. By efficient collaboration [27], 
gaps can be bridged by implementing new 

technologies and geographic coordination. It is 
common for researchers to refer to one database 
in order to pursue the analysis of their data. 
Exploring biological pathways collected from 
different databases at the same time, may 
contain conflicting information and this may affect 
providing identical information for a certain 
pathway analysis. Many sequences containing 
unintentional mistakes as a result of 
experimental errors, misidentification of the 
species or by exchange of cultures and have 
limited taxonomic coverage. Reliability, data 
collected by evidence or by experimental design 
and after publication in peer-reviewed journals 
play a crucial role in decision of interpretation of 
the analysis and interest of researchers. Raw 
data produced to produce new data sets are 
analyzed using standard programs and do not 
reveal details of the entire collection, sources 
and processing data are mostly derived from 
different sources. Researchers usually select 
data from a single data source and commercially 
rapid available systems to perform functional 
analysis using a single data source; a pathway 
approach that emphasizes mapping and 
relationship inference based on data acquired 
from multiple data sources. Fact is that they still 
think in frameworks of single experiments with 
small to average amounts of samples. One 
solution for this is described into the thesis from 
de Vries, (2013) (http://hdl.handle.net/11245/ 
1.385755). Today, one of the major challenges in 
research is how to integrate biological data and 
how to understand the inner working of the cell 
and coherency defined by complex interaction 
networks. It’s important to identify the evidence 
of data derived from an earlier non updated 
existing data source. To be included as a 
candidate for integration, the data source should 
be represented by the evidence code. In most 
data integration algorithms, the user does not 
contribute thus leading to an integrated data 
source without any effective utility towards 
analysis (Luyf et al, 2011). The concept of data 
handling and analysis still follows the traditional 
concept of one singular analysis regarding the 
actual hypothesis, followed by raw data storage 
for archiving. Most researchers commonly do not 
think about alleged insignificant steps like fast 
data upload strategies, efficient storage and 
interim results or making data accessible for fast 
query and linkage and affiliation with third party 
data types and sources. Usually one or few 
connected steps in the analyze pipeline are 
investigated and compared. Reflected in the 
ongoing discussion about upcoming demands for 
improvement and acceleration of data analysis, 
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several academic institutes discussed the need 
for improvement of a whole information 
organization [28,29] moving away from 
organization based on individual preferences and 
needs to an established wide data organization.   
 

2. NEED ASSESSMENT 
 
With the growing demand for data analysis 
capacities, feasible also for non-
bioinformaticians, user friendly web-based 
platforms are needed. Platforms who provide the 
infrastructure for the whole workflow of rapid data 
starting from raw data to storage, management, 
analyzing and interpreting the huge amount of 
NGS data up to visualization of the results. Rapid 
developments within the field of high throughput 
sequencing, driven by frequent updates and 
price drops on sequencing tools will increase in 
exponential data output for the next years. A few 
years ago, this wasn’t a big issue, as the amount 
of data and types of analysis were easily handled 
by local bioinformatics. Nowadays geneticits 
perform single experiments routinely that identify 
up to millions of variant sites in a single individual 

[30]. A full run on an Illumina HiSeq 2000 
sequencer [31] makes it possible to sequence 
more than 5 human genomes at -30x coverage 
simultaneously, up to 192 gene expression 
samples in a single run (that generates 
approximately 600 GB of large data files). 
Companies who perform these facilities send 
data to their customers on Terabyte scale hard 
disc drives (Fig. 1). Such data volumes are not 
suitable for uploads to data analysis servers [32] 
and most publicly available databases are not 
useful for these large sequencing datasets either. 
Accelerating processing time and using new 
scientific workflows for analysis pipeline by 
offering GRID solutions could be successful. But 
still several bottlenecks have to be removed 
before optimal use of internet infrastructures for 
NGS experiments (Olabarriaga et al, 2010). 
Overwhelming amounts of data being generated 
and constant updates make this a challenging 
field. In general, high performance computer 
systems [33-34] are needed with clustered 
processors, high internal bandwidth to fast 
storage and the proper software to perform the 
complex multiple-step flow. 

 

 
Fig. 1. Whole genome sequence analyse 

Schematic overview of the WGS pipeline. Red line indicate process and time of a single run of large data files 
send on terabyte scale hard disc drives. Blue line indicates control and distributes large volumes of data storage 

and bioinformatic programs in cloud environment. High performance of computer systems with high internal 
bandwidth for fast storage and complex multistep processing of data; efficient parallelization of analyses using 

cloud or grid solutions 
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2.1 Alignment and Software 
 
Most important for biological application is 
accurate alignment or assembly of raw short 
reads to a reference genome for which a variety 
of algorithms and software has been developed. 
Short lengths of the reads generated by NGS 
could limit the analysis [35-38] as algorithms of 
short reads alignment normally uses a two-step 
procedure; mapping and extending. In the first 
step of mapping, seed (short fragment of 
sequence with fixed length) reads are compared 
with the reference genome based on exact 
matches but the sensitivity of this approach is 
rather low. The difference between alignments 
algorithms mainly occur in the first step of 
mapping seeds. The next extension step, the rest 
portion of a read is fully mapped to the reference 
genome. This approach extension is the key to 
balancing alignment accuracy and speed. When 
the reference genome has many repeats; the 
number of hits (successful mappings) of a seed 
is very large, making the alignment very slow as 
it is time consuming [39].  Commercial software 
are under development (CLC Genomics 
Workbench) which allow insertions and deletions 
in the alignment by using spaced seeds that only 
treat substitutions as mismatches. With the 
increasing volume of NGS data, expected to 
double every two years, resequencing of 
reference strains, and functioning data like RNA-
seq. data will be available from different 
databases (see below). To fully utilize the diverse 
types of NGS data for medicine the urgent need 
for assembly programs that can integrate 
different types of reads into similar assembly 
process are necessary (loci sequencing / DNA 
barcoding). Development of new assembly 
algorithms that utilize parallel computation on 
large scale processor clusters in all steps will be 
a challenge. The need for assemble programs 
that can efficiently assemble genomes based on 
multiple data sets with very diverse read lengths 
from different NGS databases are another issues 
that has been raised  [35,40]. Furthermore, these 
advances have revealed a new problem in DNA 
sequencing; functional classification and 
interpretation of newly discovered genetic 
variations in genetic research and clinical 
applications of genomic technologies.  

 
2.2 Databases and Storage 
 
Genome databases such as the UCSC Genome 
browser [41] (http://genome.ucsc.edu/), Esembl 
[42] (http://www.ensemble.org), GenBank (NCBI) 

[18,43] (http://www.ncbi.nlm.nih.gov/), EMBL 
[19,44] (http://www.ebi.ac.uk/), DDBJ [20,45] 
(http://www.ddbj.nig.ac.jp/), The Genomes     
Online Database (GOLD) [46] 
(http://www.genomesonline. org/) and Mycobank 
[47,48] (http://www.mycobank.org/) accessible 
via web browsers are useful in the search for 
annotation information for DNA sequences. 
However, despite their capacities, the main 
limitation by using those databases lies in the 
limited amount of data that can be accessed at a 
given time. Furthermore, most free genome 
browsers do not support multiple genomes 
simultaneously, do not capture spatial or 
temporal information and cannot be customized. 
Researchers have to rely on commercially 
available software solutions. The new generation 
of DNA sequencing can generate large amounts 
of DNA sequence data. Platforms as Roche/454 
(2004) [35,49], HiSeq (Illumina,2006) [31,35], 
ABI/SOLiD (2008) [35,50], Ion Torrent-Proton II 
[51], Helicos tSMS Sequencing [52], PACBIO RS 
II [53] and Oxford Nanopore minion [54] are 
capable of generating Giga base pairs of 
sequences in one single run and projects such 
as the 1000 Genomes project (http://www,1000 
genomes.org) and the human Microbiome project 
(http://commonfund.nih.gov/hmp) are examples 
of projects generating on terabyte-scale amounts 
of DNA sequence data. Unfortunately, 
differences in methodologies between used NGS 
platforms result often in differences in the way 
data is represented. The way sequences are 
measured is not related to a formatting problem. 
The Illumina method differs from the Roche/454 
and the SOLiD is even more complicated (as it 
contains base sequence translation errors). It 
means that separate pipelines have to be built for 
each platform. Here, the need for development of 
free available software that can cope with, and 
combine data from the different platforms comes 
into view. Furthermore, the large amount of 
produced data can only be handled by powerful 
computational infrastructures and architecture, 
sophisticated algorithms, efficient programs, and 
well-designed workflows (Figs. 2a, 2b, 2c). In 
recent years, different technologies and service 
providers have emerged to challenge the 
paradigm of cloud computing [7,9-15,55-57]. 
Users have transparent access to a wide variety 
of distributed infrastructures and systems. In this 
environment, computing and data storage 
necessities are accomplished in different and 
unanticipated ways to give the user the illusion 
that the amount of resources is unrestricted. In a 
collaborative environment, cloud computing is an 
interesting option to control and distribute 
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processing of large volumes of data produced in 
genome sequencing projects and stored in public 
databases that are freely available. Applications 

special for bioinformatics are continuously            
being developed to combat the constant             
growing computational and storage power.

 

 
(2a) 

 

 
 

(2b) 
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(2c) 

 
Fig. 2. Methodologies use for Next Generation Sequencing and Metagenomics. 2a. Workflow of 
NGS; computational demands end bottlenecks. Blue square indicates process of data handled 
by powerful computational infrastructure and power. 2b. Workflow of Metagenomic pipeline, 

bottlenecks are between upload server and trimming data. 2c. Next generation sequence 
pipeline; software limitations 

 
Working with one single cloud service provider 
can be restrictive while working with more than 
one cloud can make the workflow more robust in 
the face of failures and unanticipated needs 
[13,58-61]. One of the technologies to execute 
bioinformatics programs in cloud is the Apache 
Hadoop framework [62], in which the 
MapReduce [61,63] model and its distributed file 
system (HDFS) [64] are used as infrastructure to 
distribute large scale data processing and 
storage facilities. Since they are independent 
from one another parallelization of MapReduce 
does not require communication among 
simultaneously processed tasks. Still main issues 
are remaining; costs are comparatively higher to 
perform computations in the cloud [10]. Wireless 
sensor networks can be broadly applied in 
various areas such as medical care and 
environmental monitoring. Today, we can rapidly 
and affordably sequence a single human 
genome. We have sensors that can remotely 
track virtually any physiologic metric parameter, 
from vital signs to glucose to intraocular 
pressure. We can add a lab-on-a-chip [65] to a 
smartphone to assay almost any routine 

chemistry and digitize pills to ensure adherence. 
Or use a smartphone app to conduct all the 
components of do-it yourself (DIY) physical 
examinations [66]. This is superimposed and 
convergent with a remarkable digital 
infrastructure that includes ever-increasing 
bandwidth, pervasive connectivity, cloud- and 
supercomputing, enormous social networks, and 
those small mobile devices that we cannot put 
down. Unfortunately, a great deal of energy will 
be wasted if data which include time and space 
correlation is transmitted [25,67,68]. Data 
compression algorithm for those networks could 
be a solution [69-74]. 
 

3. PROCESSOR UNITS 
 
As the sequence technology continues growths 
and improved tools become available on the 
market, sequencers are increasingly producing 
larger quantities of data. This big data make 
computational analysis with contemporary tools 
more challenging. Unfortunately, calculation 
speed has been frequently found insufficient; 
especially for analyzing large data obtained from 
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NGS [75]. Faster search tools, such as BLAST, 
have sufficient search sensitivity for 
Metagenomic analysis, but are only valuable if 
you know how to deal with the data. Here, the 
use of Bioinformatic tools is very important. 
Development of new highly efficient homology 
search algorithms suitable for central processing 
units (CPUs; serial processors) is warranted [76]. 
To get shorter processing times and executing 
virtually any algorithm or software, hardware 
acceleration applying a specialized hardware for 
a given problem instead of CPU could be a 
concept [77]. Specific accelerators for those 
applications have a custom architecture that fits 
the needs of a certain family of algorithms but 
are unfit for other general tasks. They use 
parallel architectures which allow them to exploit 
the parallelism available in the given application 
by performing independent operations 
simultaneously. Hardware accelerators such as 
graphics processing unit (GPUs) [76] are utilized 
in many scientific applications when the time 
consuming operations makes it impractical or 
even impossible to use ordinary CPUs. The use 
in Bioinformatics is not an exception; it includes 
many problems and algorithms which are 
computationally expensive due to the large 
amount of NGS data to be processed or the 
complex operations that are involved [32]. CPU 
programs have also several limitations, for 
example: when it is impossible to access the host 
during CPU execution. Calculations of results 
have to be stored to memory on a CPU, and size 
of memory on a CPU can be a limiting factor. 
Storage of results often failed because of the 
shortage of CPU memory and data analysis 
represents a serious bottleneck in the NGS 
platform [78,79].  
 

4. CLINICAL ASPECTS 
 
It has been often quoted that drugs are one of 
the problems for the emergence of resistant 
organisms. The problem of this antimicrobial 
resistance is expected to increase 
disproportionately and controlling infections is 
becoming difficult because of the rapid spread         
of those microorganisms. Recent infectious 
outbreaks, for example with E. coli in Germany, 
Multi Resistant Staphylococcus aureus (MRSA), 
and multi resistant fungi in the USA are 
responsible for an annual death rate yearly over 
20.000 people in the US only. Those 
microorganisms have been modifying 
themselves to evade the action of available 
drugs or causing rapid spread before they can be 
prevented. Due to the increase in surgical 

interventions, transplantations, stem cell 
therapies, and oncological treatments those illicit 
immunocompromised side effects, is often 
accompanied by opportunistic infections. Fast 
and precise identification of those 
microorganisms in medical samples is necessary 
to apply the optimal medical treatment as soon 
as possible. The biomedical informatics provided 
a proper interdisciplinary context to integrate 
data and knowledge when processing available 
information, aiming effective decision making 
support in clinics [80]. From the patient’s side, 
usually a sample is taken and cultures are set 
up. This approach is very highly time consuming 
and error proning, since many medical 
microorganisms are difficult to detect for biopsy 
and hard to culture. The sample usually contains 
a mixture of human cell material, bacteria, 
parasites, fungi and often in a limited volume. 
Thus not too many different cultivation media can 
be used. The information for identification using 
morphology is slowly available and can be very 
limited. The consequences: no immediate 
individualized treatment possible, patients are 
infectious over a long time and suffer from the 
damage the microorganism produced during 
prolonged untreated infection. The complex 
nature of those patients condition have been 
difficult to assess the resultant increase in 
mortality, length of hospital stay (LOS), and costs 
attributable to the infection (US costs 
approximately $ 20 billion / yearly). Given that 
delay in appropriate antimicrobial therapy is 
associated with increased mortality, improved 
use of early empirical, pre-emptive, and 
prophylactic therapies should help to reduce 
invasive infectious associated mortality. Lack of 
specific clinical findings and slow insensitive 
diagnostic testing complicates the early 
recognition and treatment of Invasive infections 
and become a persistent public health problem. 
The incidence and mortality rates associated with 
infectious diseases have remained unchanged 
for more than a decade despite major advances 
in the field of antimicrobial therapy.  
 

4.1 Next Generation Sequencing in 
Clinical Settings 

 
Next generation sequencing platforms have 
accelerated clinical and research genomics 
because they provided an inexpensive and 
scalable way to interrogate genetic differences, 
gene expression, and other epigenetic and 
epitranscriptomic variations of DNA and RNA 
[36].  High-throughput method for proteomics and 
metabolomics are now being added as features 
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for patients to examine during routine medical 
visits. Metagenomics and metabolomics are the 
newly emerging field of research in the high-
throughput identification and quantification of the 
small molecule metabolites in the metabolome 
[81-83]. Defined as the complete collection of all 
small molecules (<1,500-Da) metabolites 
(peptides, amino acids, sugars, bases, lipids, 
etc.) are found in an organism, organ or specific 
cell [84]. Because of its unique focus on small 
molecules and interactions, metabolomics are 
widespread found in a variety of clinically impor-
tant areas, including infectious diseases [85], 
clinical toxicity [86], diabetes [87], osteoarthritis 
[88], genetic disease diagnosis [89,90], trauma 
and surgical interventions and organ/stemcell 
transplant monitoring [91]. In the context of a 
modern laboratory for analysing infectious 
samples and biopts, NGS offers a solution 
compared to current alternatives [92]. Taxonomic 
characterizing of the microbial communities 
offers a new challenge into the Metagenomic 
studies. DNA barcoding and sequencing of 
specific loci are major steps to address this 
issue. Directed to the future, molecular 
epidemiology performed for outbreak and 
surveillance of infections for microbes that are 
difficult to grow can be a routine use of Whole 
Genome Sequencing (WGS) in the diagnostic 
and public health microbiology [93]. Implication of 
these diagnostic tools is still pending, owing to 
the time-consuming processing of the results. 
Adequate typing and diagnosing of the 
pathogens involved in infection disease will 
definitely result in dedicated and personalized 
antimicrobial therapies. The use of microbial 
analysis [94] is still under development, new data 
in this field of genomics, proteomics or 
transcriptomics [95] are readily available and 
easily analyzed through free online databases. 
Data can help to define gene models, correcting 
errors in genome annotation. Furthermore, 
metabolomics have strong emphasis on 
chemicals and analytical chemistry techniques 
such as mass spectrometry (MS), nuclear 
magnetic resonance spectroscopy (NMR), and 
chromatography. The software used by 
metabolomics, particularly as it relates to 
metabolite identification, is often different than 
the software used in genomics, proteomics, and 
or transcriptomics. The field of metabolomics is 
not only concerned with the identification and 
quantification of metabolites, but it is also con-
cerned with relating metabolite data to genes, 
proteins, pathways, physiology, and phenotypes. 
As a result, metabolomics requires that whatever 
chemical information it generates must be linked 

to both biochemical causes and physiological 
consequences. This means that computational 
approaches to metabolomics must combine two 
completely different disciplines: bioinformatics 
and chemical informatics. Currently, the genetic 
research of NGS sequencing technologies is 
revolutionizing and revived methods in drug 
design. Furthermore, the last years have 
witnessed the emergence of different 
computational tools aimed at understanding and 
modeling this process at a molecular level        
[96-99]. Although still rudimentary, these 
methods are shaping a coherent approach to 
help in the design of molecules with high affinity 
and specificity, both in lead discovery and in lead 
optimization. For Cancer, integrating multiple 
genome wide data, increase predictive 
performance of clinical decision support models 
[100]. However, for identification of microbial 
species those experiments are expensive and 
time consuming. If we can provide biomarker 
genes that show unique expression patterns 
during infection, this approach opens new 
insights. Another aspect of genome annotation is 
gene prediction, identification of uncharacterized 
genomic sequences; important for understanding 
alterations and evolution in biological functions of 
the sequences of these genomes in human 
health and medicine [101-102]. But the current 
increase in amount of available data emphasizes 
the need for a methodological integration 
framework. 
 

5. CONCLUSIONS AND FUTURE 
CONSIDERATIONS 

 

First, fast connecting with other databases helps 
in healthcare discussion making as independent 
evidence [103]. Use of tools available by other 
databases; SAM-Tools (finding significant genes) 
[104], Genome expression (Omnibus DB) [105], 
Burrows-Wheeler (reads >220bp) [106], 
Phylogenic approaches (reliability, avoiding 
increase presence of polluting sequences) and 
ITS region pipelines [107] results in > 96% 
identification of species. Now NGS has 
fundamentally altered the genomic research, 
development costs will drop down and the 
technology will bring extreme potential for fast 
and accurate molecular bacterial typing for 
clinical microbiology.  One problem that rises; 
global available databases use different methods 
of data access. While some databases allow 
data to be downloaded via web access, others 
provided flexible access to their databases only 
through their commercial ingredients (API). A lot 
of intervention by scientists is required to 
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download the required information from 
databases with no public API and creates 
challenges for software developers to obtain 
information from such available databases. For 
databases whose API is public accessible, 
there’s no guarantee that all such API would use 
the same programming languages. This causes 
developers to incorporate clumsy wrappers 
within their applications to adhere to the API of 
the databases. Software solutions from Galaxy 
combined with program MEGAN5 (Huson et al.) 
could be solving this problem. All databases 
release their pathway information via some non-
standard graphical format. Such a graphical 
representation is useful for visual manual 
analysis. However, it is inconvenient for large-
scale computational analysis and provided 
incompatible data formats. Databases such as 
GenBank and EMBL are mentioned as reference 
sources for publicly available sequence 
information of patients. Unfortunately, both 
databases only include granted patents, which 
limit the searches. Various patent offices do not 
provide freely available and comprehensive 
feeds of their sequence data or sequences are 
only available as TIFF or PDF image files which 
require the use of optical character recognition 
software for extracting the sequence data.  
Besides that, neither organization is clear in the 
way they get data from patent offices and 
represent their RNA sequences converted to 
DNA.  In terms of sequence comparison, it 
represents a loss of information in the dataset. 
This can be an issue in addressing the IP 
landscape around a sequence, especially in the 
area of small RNA sequences.  
 
5.1 Limitations 
 
Secondly, epidemiology as study of genetic 
factors determining health and diseases at 
population level can be seen as science dealing 
with etiology, control and distribution of diseases 
in individuals with relationship between                
them and the population to a certain extent 
[93,103,108,109]. New tablet devices combined 
with high bandwidth network (4G), significantly 
enhance speed and improved access to rich data 
visualization delivered by location intelligence 
functionality. Epidemiological advantages such 
as infection spread are visible, and medically 
relevant microorganism differences between 
clinical significance and invasive species can be 
achieved [110-113] due new development of 
innovative techniques. The incidence and 
mortality rates associated with infectious 
diseases have remained unchanged for more 

than a decade despite major advances in the 
field of antimicrobial therapy. The excess length 
of hospital stay (LOS) and additional 
interventions associated with invasive infections 
carries with it significant extra hospital costs, to 
the extent that annual expenditures for those 
infections have been estimated at more than ∼$1 
billion in the United States alone (2012).  
Epidemiological studies have recently identified 
species that may vary geographically in 
frequency of isolation (Yapar 2014, Caggiano 
2015). It is also apparent that no class of 
antimicrobial agent is immune to the 
development of resistance. While national and 
international surveillance is important to 
recognize trends in epidemiology it is, however, 
of utmost importance to gain knowledge about 
the local epidemiology as this information should 
guide the empiric therapy of patients. 
 
The use of mobile devices continues to grow 
unabated, and is expecting to have a forecast by 
2017 of more than $ 20 billion. Recent research 
indicates its potential worth in the patient support 
and education. Unfortunately, despite the 
explosion of Apps in other industries, medical 
industries have generally been slow to exploit the 
possibilities they represent. With the possibilities 
of mobile Apps, direct links to different databases 
can be archived. This opportunity helps to reduce 
the wide spread of antimicrobial multi-resistance 
of cultures. Furthermore, epidemiological 
visualization can be used for governmental 
discussions for treatment of populations / groups 
confronted with infection diseases and emerging 
outbreaks. New data provided from unexplored 
localities and hosts helps in accumulating 
knowledge about the microbial life form and 
discover patterns of resistance, which may later 
form the basis of further questions on the 
complex life cycle of enigmatic microbial species. 
Knowledge of areas of increased incidence may 
improve diagnostic or prevention measures in 
patients at risk for endemic diseases, including 
those receiving immunosuppressive medications 
or with new environmental exposures and may 
affect diagnostic or prevention measures for 
patients at risk. The use of databases opens a 
broad definition of questions about capture 
standards and protection of privacy while 
accessing invaluable information. 
 
Most important, only a few updated databases 
are available for clinical medical bacteria or fungi. 
The BioloMICS database [48,114] which include 
Mycobank is an open and continuously updating 
database. User actions and samples are 
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traceable which allow the database to grow. The 
setup of this system can as well be used for 
identification and rapid treatment of infections 
caused by other microorganisms such as 
bacterial and /or parasites. The use of databases 
opens a broad definition of questions about 
capture standards and protection of privacy while 
accessing invaluable information. With the direct 
link to the online database (Qpr-Apps, patient 
samples, photo’s (fungi / yeasts), LIMS tools as 
DNA extracts, PCR sequencing data and 
Nanopore technologies (GridION, minION) [54] 
can be sent for analyzing. Results visible on 
tablet and /or mobile phone can then directly be 
used in the laboratory or clinic. The software can 
act as a gene structure prediction in higher 
organisms. Data used to plot species presence 
on MAPS, exploring what signal indicating the 
environmental preferences in the growing online 
databases. There’s a need to establish current 
distributions in the face of changing 
environmental conditions. A large amount of 
undetected data, currently available fungal ITS 
sequences (1% of estimated 1.5 Million fungal 
species) and morphological characters 
overlapping between species; fungi / plants / 
invertebrates can be used for standardization 
and reliability. Size and restriction analyses by 
PCR; amplified ITS region DNA, can be used as 
rapid and reliable method to identify clinically 
significant yeasts including new or merging 
pathogenic species. To provide a better biological 
inference, microarray experiments could provide 
information. It’s possible to superimpose 
microarray data to RNA-seq. by Meta 
comparison methods. Unfortunately such 
techniques run into issues if the data source 
used is not consistent (low level) or 
comprehensive. Incompatibility of the different 
data sources renders this option extremely 
challenging [115]. The existing IT infrastructure 
built for microarray data is not suitable for NGS. 
The problem between microarray data and NGS 
data analysis is mainly a platform problem; to 
simply use Roche 454-software to handle 
Illumina data or data from the SOLiD system 
(representing nucleotides) could de done only 
with commercial software. Limitations may 
exceed into; incompatible methods of data 
access; incompatible data formats; incompatible 
molecular representations; and incompatible 
pathway names.  Incompatibilities between 
different databases makes cross- data accesses 
another option to investigate. Introducing a 
standard of communication between programs 
will also help future expansion by integrating 
more bioinformatics tools and will provide a 

development environment for open source 
projects. Additional genomic information, such as 
alternative splicing and expression data derived 
from EST, SAGE and microarray experiments, 
can be integrated into the system. Improvement 
of new chips, like Field programmable gate 
arrays (FPGAs), could decrease the time for 
processing. Those silicon chips are providing 
extremely fast results for certain operations up to 
11 times faster than CPUs. Alignments from 
BLAST processed on a 4U chassis-sized FPGA 
cluster would have an equivalent computational 
power of ‘’over 2,000 dual-core processors”. But 
there is still a bottleneck for large FPGA 
applications; memory interface affects the 
performance of the FPGA and high bandwidth is 
necessary for greater speedups [116]. 
 
Storage mirroring provides an important element 
of data protection, and databases should be 
regularly being backed up. While databases grow 
in size, new optimized techniques are required to 
constrain both speed and the processing and 
calculation time. Failure caused by human errors; 
mistakes by update, cleaning or development of 
critical tables is an issue that has to addressed. 
As a suggestion, these issues can be 
encountered by a WIKI-based database structure. 
Restore and recovery can take a long time and 
transactions made after the time of error can be 
lost [117]. To protect against data loss, many IT 
organizations are investing in secondary data 
centers with standby databases, which can be 
synchronized with the changes being made in 
the production environment. The traditional 
method of synchronization requires expensive, 
remotely mirrored storage solutions. The storage 
replicates every write performed on the 
production system to the standby system. This 
means that expensive, high-bandwidth networks 
are required between datacenters, incurring 
additional cost and limiting the distances that can 
exist between the datacenters.  
 
To better understand pathways and genes 
related to diseases new insight in this big data is 
necessary. Enabling diverse backgrounds 
together in a network can help by making 
decisions more patient’s specific, leading to 
improved treatment. Medical doctors and 
researchers should without special computational 
training and Bioinformatic background use 
statistical techniques. Data integration (Bayesian) 
and machine learning algorithms to understand 
this huge amount of data is often too specialized 
and is only understandable to those who are 
working in this field.  
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