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Abstract

Magnetic fields grow quickly even at early cosmological times, suggesting the action of a small-scale dynamo
(SSD) in the interstellar medium of galaxies. Many studies have focused on idealized turbulent driving of the SSD.
Here we simulate more realistic supernova-driven turbulence to determine whether it can drive an SSD. Magnetic
field growth occurring in our models appears inconsistent with simple tangling of magnetic fields, but consistent
with SSD action, reproducing and confirming models by Balsara et al. that did not include physical resistivity η.
We vary η, as well as the numerical resolution and supernova rate, s , to delineate the regime in which an SSD
occurs. For a given s we find convergence for SSD growth rate with resolution of a parsec. For s ssn   , with ssn
the solar neighborhood rate, the critical resistivity below which an SSD occurs is

h> > -0.005 0.001 kpc km scrit
1, and this increases with the supernova rate. Across the modeled range of

0.5–4pc resolution we find that for h h< crit, the SSD saturates at about 5% of kinetic energy equipartition,
independent of growth rate. In the range s s s 0.2 8sn sn   growth rate increases with s . SSDs in the supernova-
driven interstellar medium commonly exhibit erratic growth.

Unified Astronomy Thesaurus concepts: Astrophysical fluid dynamics (101); Magnetohydrodynamical simulations
(1966); Supernova dynamics (1664); Interstellar medium (847); Interstellar magnetic fields (845); Supernova
remnants (1667); Magnetohydrodynamics (1964)

1. Introduction

We here study the small-scale dynamo (SSD) in the
interstellar medium (ISM). SSD acts at small eddy scales of
turbulence, driving magnetic field growth at correspondingly
short timescales. The large-scale dynamo (LSD) with much
longer turnover times generates magnetic fields ordered on
kiloparsec scales. Hence, capturing LSD alongside the faster
growing modes of SSD in simulations is computationally
challenging. However, interaction between SSD and LSD
modes likely fundamentally determines the evolution and
structure of the magnetic field.

Many simulations of supernova (SN)-driven turbulence with
realistic vertical stratification (e.g., de Avillez & Breitsch-
werdt 2005; Piontek & Ostriker 2007; Hill et al. 2012;
Hennebelle & Iffrig 2014) have no mechanism to induce LSD,
such as rotation and shear. Strong ordered magnetic field
effects are modeled by imposition of a background, typically
uniform, magnetic field. Some large-scale models do seek to
include LSD (e.g., Korpi et al. 1999; Gressel et al. 2008;
Hanasz et al. 2009; Wang & Abel 2009; Pakmor et al. 2017;
Gressel & Elstner 2020), but show no SSD, or appear to find
SSD within the context of halo-disk scale flows (e.g., Rieder &
Teyssier 2016; Steinwandel et al. 2019), but capture no LSD.
Gent et al. (2013a, with additional analysis by Evirgen et al.
2017) appear to include an SSD with an LSD. To confirm this

and determine its effect on LSD, we must understand the
properties of the SSD.
Any magnetic noise produced by tangling of a large-scale

field will also grow exponentially if an LSD is present. This
noise can play an important role in quenching the LSD. We
need to discriminate this effect from an SSD.
Previous experiments (e.g., Balsara et al. 2004, hereafter

BKMM4; Balsara & Kim (2005); Mac Low et al. 2005)
examined the SN-driven SSD. The limited resolution study
of BKMM4 did not allow demonstration of solution conv-
ergence. Furthermore, they imposed a uniform background
field and implemented no physical resistivity or viscosity. We
shall show that the amplification of their field is a result of SSD
action and not just tangling of the field.
In this Letter we first compare the SSD to tangling in an

idealized simulation (Section 2). We then describe our models
of SN-driven turbulence for demonstrating the action of SSD
(Section 3). Simulations use the PENCIL CODE.8 A broad
resolution and parameter study allows us to show numerical
convergence and determine the critical resistivity for excitation
of an SSD, which we follow to saturation (Section 4). This
provides objective criteria for the action of SSD in simulations
(such as Gent et al. 2013a; Steinwandel et al. 2019; Gressel &
Elstner 2020). Finally, we conclude in Section 5.

2. Disentangling the Dynamo

Previous SSD studies have examined Pm dependence with
stochastic nonhelical forcing, including at high Mach number
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(e.g., Haugen et al. 2003, 2004a, 2004b; Federrath et al.
2011, 2014). Here we specifically seek to illustrate differences
between tangling and SSD. Nonhelical random forcing with
wavenumber =k k 8f 1 is applied to –2563 zone, 2π-periodic,
isothermal boxes with viscosity n = -5 10 3· . The lowest
wavenumber in the domain is =k 11 and the largest is the
Nyquist frequency =k k 1281 . The imposed uniform field has

-e e6 10B K
22· , where eK is the time-averaged kinetic

energy density.
Two simulations are distinguished by use of dimensionless

resistivity h = -10 4 and h = -2 10 3· . Respectively, these
yield magnetic Reynolds number =Rm 150, with magnetic
Prandtl number =Pm 50, exciting an SSD and =Rm 7.4,
with =Pm 2.5, inhibiting the dynamo so that amplification is
limited to tangling of the imposed field.

Figure 1(a) shows the SSD growing exponentially in just
over 400 eddy turnover times; see Zeldovich et al. (1983) for
SSD properties and excitation conditions. Tangling induces
only linear growth (see inset), saturating just above the
imposed field energy within 50 turnover times.

Figures 1(b) and (c) show compensated power spectra for
both cases. Magnetic energy spectra are compensated for by
Kazantsev’s k3 2 power law (Schekochihin et al. 2002; Bhat &
Subramanian 2014), and kinetic energy by Kolmogorov’s
-k 5 3. The forcing scale kf is prominent in the magnetic energy
spectra of the tangling but not in the magnetic spectra of the
SSD. For SSD the range with Kazantsev power law
(horizontal) extends to scales smaller than the forcing scale
(Figure 1(b)), and during the kinematic phase the magnetic
energy peak is at k k 91  . For tangling (Figure 1(c)) the
Kazantsev scaling applies only at <k k k1 f . Thus, in the SSD,
kinetic energy in the Kolmogorov cascade transfers to magnetic
energy at these scales, inducing an inverse Kazantsev cascade
at scales smaller than kf , while tangling transfers energy only at
scales between kf and the scale of the imposed field.

3. Supernova-driven Turbulence Model Design

Our SN-driven turbulence models exclude large-scale
magnetic field dynamics by omitting global-scale rotation,
shear, and stratification. Our simulation domain is a periodic
cube of length 256 pc and zone size d =x 0.5, 1, 2, or 4 pc,
except for our direct comparisons with BKMM4, which have
domains of 200 pc and d =x 0.78, 1.56, and 3.12 pc (units
henceforth assumed). Our fiducial models exclude tangling of
an imposed field as a source of magnetic amplification, by
applying a random 10nG initial field. Transient dissipation
prior to hydrodynamic steady state and dynamo onset yields a
turbulent seed field of about 1nG. For models
reproducing BKMM4 this seed is substituted by a uniform
10nG background field as applied by BKMM4.
We solve the system of nonideal, compressible, nonisother-

mal MHD equations
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with the ideal gas equation of state closing the system. Most
variables take their usual meanings. Terms containing
z z= =n2, 5D and z =c 2 are applied to all ISM models
and resolve shock discontinuities with artificial diffusion of
mass, momentum, and energy proportional to shock strength
(see Gent et al. 2020 for details). Equations (2) and (3) include
terms with zD to provide momentum and energy conserving
corrections for the artificial mass diffusion applying in
Equation (1). In previous work Gent et al. (2013a) we have
used a formalism that included artificial diffusion in vector
potential at shocks. In Figure 2 we show comparative slices of

Figure 1. (a) Mean magnetic energy density, eB, with nonhelical random
forcing, scaled to time-averaged kinetic energy density, eK . Inset: early zoom-
in of linear growth of tangled field. Time is normalized by eddy turnover time,

k u1 f rms. Compensated power spectra of kinetic energy Pk and magnetic
energy PB for (b) SSD and (c) tangling, at times given in the legends. Kinetic
energy uses the right-hand axes. Forcing scale, =k k 8f 1 : vertical dotted line.
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the magnetic energy and gas density with and without resistive
shock diffusion zh. With z >h 0 (Figure 2(b)) magnetic energy
is reduced in the remnant shell relative to Figure 2(a), where
compression actually enhances it. Since the magnetic field is
well resolved in either case, as also shown by the magnetic
energy spectra below, and the simulation is numerically stable
without it, this extra artificial diffusion is unnecessary.

In both models a concentration of magnetic energy, marked
with + in Figure 2, has below average gas density. This
snapshot reflects the overall behavior of the system, in which
magnetic field amplification also occurs independently of shock
compression. As Figure 2 shows, SN shock fronts do compress
and amplify the magnetic field, resulting in strong local and
instantaneous correlation of the field and density. However, on
global and long-term scales, this is not the dominant
mechanism for the dynamo, which operates just as effectively
in the nonshocked, more diffuse regions, as is also indicated by
this figure. This is based on the amplification factor due to
compression being estimated 2, taken as density fluctuations
to power 4/3, while the magnetic energy is amplified by 4–6
orders of magnitude.

Unlike past experiments (Gent et al. 2013a, 2013b, 2020),
thermal diffusivity χ is also omitted, as the artificial
diffusivities chosen are adequate to ensure numerical stability.
The physical effects of thermal conductivity can be expected to
be relevant only at the unresolved or marginally resolved Field
length defined by Begelman & McKee (1990, named after

George Field, not the magnetic field). Terms containing n c,3 3
and h3 apply sixth-order hyperdiffusion to resolve grid-scale
instabilities (see, e.g., Brandenburg & Sarson 2002; Haugen &
Brandenburg 2004), with mesh Reynolds number set to be ;1
for each δx. The simplified isothermal model considered in
Section 2 solves only Equations (1), (2), and (4), without the
shock-dependent diffusion or hyperdiffusion terms, and while
setting = ´ +B A Bimposed.
In the ISM simulations SNe are exploded at uniform random

positions at a Poisson rate s scaled by the solar neighborhood
value s - -50 kpc Myrsn

3 1  . Explosions inject
=E 10 ergth

51 thermal energy, except in dense regions, where
a proportion (<5%) may be kinetic Ekin(see Gent et al. 2020).
Models with common s have the same timing and location of
explosions. Nonadiabatic heating Γ and cooling L T( ) are
included (Gent et al. 2013a) following Wolfire et al. (1995) and
Sarazin & White (1987).
To understand the effects of purely numerical diffusivity, we

also run an ideal MHD model with h = 0 and n = 0. We
determine how low a physical resistivity η can be resolved by
varying it from 10−5 to - -10 kpc km s3 1 (units assumed
henceforth). We also test the effect of n h=Pm , varying ν

with h = -10 4 or varying η with n = -10 3. Our direct
comparison with the results of BKMM4 uses =Pm 2.5, apart
from one run using h n= = 0.

Figure 2. 2D slices of (a)–(b) magnetic energy density eB and (c)–(d) gas density with shock-dependent resistivity, zh, as indicated. The site of the most recent SN is
indicated by X in (c)–(d). d =x 1 pc, h = -10 4 and n = - -10 kpc kms3 1.
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4. Results

4.1. Resolution and Convergence

Figure 3 shows that numerical diffusion still dominates at
studied resolutions for resistivity h = -10 4, as can be seen
from the increasing speed of the SSD with resolution, but that a
converged SSD solution emerges at h = -10 3 for parsec
resolution. Saturation at around 5% of eK appears to be a well-

converged result. The h = -10 3 models show false conv-
ergence (Fryxell et al. 1991) of solutions with similar magnetic
energy decay at d x 2. We note that strong fluctuations in the
characteristics of the flow occur at the low s that we choose to
avoid thermal runaway (Li et al. 2015), with thermal phases
occupying changing fractional volumes (e.g., Gatto et al. 2015)
and hosting SSD instabilities with different thresholds and
growth rates.
We ran models to reproduce the results of BKMM4, which

adopt their choice of s s= 8 sn  . In our fiducial runs we use a
lower value of s0.2 sn to preserve multiphase thermal structure.
The higher s rapidly drives thermal runaway resulting in high
temperatures >T 107 K. The growth rate is faster than in our
fiducial models (Figure 3(c)), reflective of the single phase
kinematics and more persistent forcing rate, yet still saturating
at about 5% of eK . At equivalent resolution, the sixth-order
Pencil Code has far lower diffusion than the second-order
Godunov code used by BKMM4. As a result, we find faster
growth at equivalent resolution. Figure 3(d) shows that kinetic
energy fluctuates around a stationary mean in our models, with
higher SN rate s producing higher kinetic energy, less
intermittency in the energy, and less erratic growth in the
dynamo.
We can also examine the kinetic and magnetic energy

spectra (Figure 4). The kinetic spectra for d x 1 agree well at
all scales above the viscous cutoff, which appears, as expected,
at lower k for d =x 1 than d =x 0.5. By contrast the kinetic
spectra for d x 2 differ and exhibit significant energy losses at
all scales, indicating only solutions for d x 1 have converged.
The addition of viscosity n = -10 3, indicated by the magenta

curves in panels (b) and (c), makes little difference to the shape
of the magnetic or kinetic energy spectra. The magnitude of the
magnetic energy spectrum increases somewhat with the
addition of viscosity, as can also be seen from comparing
dotted light and dark blue lines in Figure 5(a2).
We have shown that SSD turbulence converges for d x 1.

Underresolving SN-driven turbulence results in a significant
loss of energy at all scales. The SSD for s s s 0.2 8sn sn  
saturates in the ISM at about e5% K and grows more rapidly
with increasing SN rate.

4.2. Effective Resistivity and Prandtl Number

To understand the role of physical resistivity η and viscosity
ν on the SSD, we need to determine the value at each resolution
where they exceed numerical diffusion in strength. Figure 5
shows that a physical resistivity of h = -10 5 (panels (a1) and
(a2)) makes no impact on field growth at s s= 0.2 sn  , while
h = -10 3 clearly dominates over numerical resistivity at all
resolutions. The exact value of the minimum physical
resistivity does seem to vary not just with δx but also with σ,
as can be seen by comparison of the h = -10 4 and 10−3 cases
(panels (c1) to (d2)).
When we consider eB for the models with only numerical

viscosity (Figures 5(a), (c), (d)), h - 10 3 initially appears
sufficient to suppress SSD. At low resolution this remains so
for s s= 0.2 sn  (panels (c1) and (d1)), apart from a transitory
surge near 100Myr for d =x 2. However, for s s= sn  within
100Myr SSD is evident. Only, h = 0.005 dampens SSD
(panel (d2)).
The kinetic energy spectra in Figure 4 may show the

resolution of this contradiction. They display a bottleneck
effect (Falkovich 1994; Haugen et al. 2003), an energy cascade

Figure 3. Magnetic energy density shown for resolutions δx given in the
legends for models with resistivity (a) h = -10 4 and (b) h = -10 3, scaled by
the time-averaged kinetic energy density eK . Total magnetic energy, EB scaled
by Eth, (c) matching BKMM4 for δx and viscosity ν included in the legend and
(d) kinetic energy, EK, for δx, η, and s given in the legend with corresponding
magnetic energy (dotted).
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less efficient than -k 5 3 leading to an accumulation of power
and then rapid dissipation at high k. This bottleneck shifts to
lower k as δx increases (panels (a)–(c)) or s decreases (panel
(d)). The deeper into the magnetic energy spectrum this peak
extends, the more scales available for transfer to magnetic
energy and the more efficient the SSD. The critical resistivity
above which SSD is suppressed, therefore, increases with s ,
within the range considered. Even at s = 0.2 , for h = -10 3 and
d x 1 SSD occurs after 20–40Myr.

Resistivity contributes to Rm, which is expected to control
the onset of the SSD and affect growth rate. We therefore
anticipate that lower η would correlate with higher growth rate
(Schekochihin et al. 2007). This mainly is the case when we
compare models with d x 1 at concurrent stages in their
evolution. However, in Figure 5(c2) there are some anomolous
patterns, where higher η models overtake lower η models, e.g.,
at 80Myr. To explore this further we include experiments with
d =x 1 and n > 0, and examine the effect of Pm on the SSD

Figure 4. Compensated magnetic (left) and kinetic (right) energy spectra. Compensation is for the Kazantsev spectrum k3 2 (left) or the Kolmogorov spectrum -k 5 3

(right). Panels (a)–(c): samples at =t 27.5 Myr for δx given in the legend for resistivity η and supernova rate s as indicated on each panel. Field strengths reached
differ between models at this time (see Figure 3). Viscosity n = 0, except n = -10 3 for models identified by Pm. Panel (d): samples taken at different times but similar
field strength at η and s as indicated in the legend, with the highest supernova rate being the d =x 1.56 run from the comparison with BKMM4 and d =x 2 otherwise.

5
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(Figures 5(b1), (b2)). We identify each model by n h=Pm ,
but due to the inclusion of shock and hyper diffusivities, the
effective Pm and, indeed, Rm vary substantially across space
and time. In panel (b1) we include one run with shock
resistivity, z ¹h 0 (olive, dashed), which is referenced in

Figure 2. The dynamo is slower and saturates lower than the
comparative model =Pm 10 (blue, solid). This is consistent
with more efficient dissipation of compressed field.
Plotted in panel (b2), where we fix h = -10 4 and vary ν,

initial growth of eB is faster for =Pm 0.1 than for higher

Figure 5. Magnetic energy density eB normalized by the time-averaged kinetic energy eK for values given in each panel of resolution δx and SN rate s . Time axes
extend for d x 2 to accommodate SSD saturation. Captions indicate resistivity η, with viscosity n = 0, unless indicated otherwise or where n h=Pm is varied with
ν fixed (b1) or η fixed (b2). In (b1) the run with z =h 0.55 has =Pm 10. All other models have z =h 0. Line styles in (a1) also apply in (a2).
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values. This is a regime less conducive to exciting the SSD
than the high Pm regime typical of the ISM (Haugen et al.
2004a). A plausible explanation may be that the higher fluid
Reynolds number, Re, could facilitate the dynamo. We
therefore set a physical viscosity n = -10 3 and vary η. Plotted
in panel (b1) the growth rates mainly conform to our
expectations, except for =Pm 5 between 20 and 40Myr. We
confirm that h - 10 2.3 suppresses SSD at s s= 0.2 sn  . While
the saturation level is insensitive to Pm, with ν fixed (panel
(b2)), the saturation level increases with Pm for η fixed (panel
(b1)), indicating that saturation level is sensitive to Re. We also
include two of these plots in panel (a2) for comparison to
n = 0. Comparing the kinetic energy spectra (magenta) models
in Figures 4(b2), (c2), ν alters very little.

We have shown that the critical resistivity for SSD in the
ISM with a low SN rate is h> >- -10 102.3

crit
3 and that this

increases with increasing s within the range considered.
Although higher Rm and Pm generally increase growth rate
and saturation in line with theoretical expectations, there is
considerable variation, likely due to intermittency in the
multiphase ISM.

4.3. Tangling of the Imposed Field

We now examine whether the field growth seen in our
models could be due to tangling. In Section 2 we argued that
tangling should produce linear growth rate, with dissipation
dominating scales below the forcing range. Conversely, an
SSD leads to exponential growth and a Kazantsev cascade
extending below the forcing scale.

SN-driven turbulence does not have a single forcing scale,
because of explosions randomly located in the heterogeneous
ISM. Instead, the forcing is distributed at scales of roughly
60–200pc (Joung & Mac Low 2006; de Avillez &
Breitschwerdt 2007; Hollins et al. 2017), or ~k 30
–105kpc−1.

In Figures 3 and 5 we indeed demonstrate strong exponential
growth over multiple orders of magnitude for sufficiently low
resistivity, at varying supernova rate s , numerical resolution δx,
and physical viscosity ν. Apparently linear growth occurs only
with high physical resistivity.

We now turn to the power spectra. Figure 6 shows
compensated spectra over time during intervals that span
epochs with distinct rates of SSD growth followed by
saturation. The compensated magnetic energy spectra in
Figures 6(a1) and (b1) have peaks conforming to the end of
the Kazantsev range.

For s s= 0.2 sn  up to 14Myr this peak is at -k 200 kpc 1
while the SSD grows slowly. During accelerated growth the
Kazentsev range extends to -k 700 kpc 1, above the forcing
scale and consistent with SSD as shown in the uniform,
isothermal model (Figure 1(b)). The peak contracts upon
saturation to < -k 200 kpc 1, consistent with no further
dynamo (Figure 1(c)).

In Figure 6(b1) until 7 Myr there is no Kazantsev range and
the peak energy increases as k 0, a signature of tangling of
the imposed field. However, as the magnetic field grows much
larger than the imposed field, this signature disappears and the
peak shifts to high k, suggesting a healthy SSD.

We have demonstrated that the magnetic field amplification
in BKMM4 is due to SSD. Tangling of the imposed field is
initially present, but is dominated by SSD. Our other models

with only a weak seed field confirm that an imposed field is not
required.

5. Conclusions

Through the most extensive resolution and parameter study
to date, we demonstrate in this Letter that SSD likely occurs
easily in the ISM. The critical resistivity is

Figure 6. Compensated spectra as in Figure 4 of magnetic (a1), (b1) and
kinetic (a2), (b2) energy at times given in the legends (combined for each pair)
for δx, s , and η indicated. Resistivity is h = -10 4 with (b1)–(b2) as a
comparison to BKMM4.
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h> -0.005 0.001 kpc km scrit
1 for supernova rate

s s= 0.2 sn  and increasing over the range considered
s s sÎ 0.2 , 8sn sn( )   . The SSD saturates at about 5% of the
equipartition kinetic energy density. This level is insensitive to
Pm, but increases with increasing Re. We find that the
conventional approach from dynamo theory of categorizing the
turbulence according to Rm based on a forcing scale ℓ, mean
random velocity urms, and resistivity η is inadequate for such a
complicated system.

We show that simulations with insufficient resolution can
appear to converge to a false solution lacking dynamo activity
(Figure 3(b)). This can occur because these simulations are not
scale independent. The SN energy input and the physically
motivated ISM cooling processes impose length and timescales
that must be adequately resolved. We obtain convergent results
for SSD with grid resolution d x 1.

We confirm, by comparing models with and without an
imposed magnetic field, that the field amplification obtained in
SN-driven ISM turbulence by Balsara et al. (2004) was
evidence of an SSD and not only due to tangling of their
imposed field. A seed field of less than 1nG can be amplified
to saturation at microgauss levels within about 10Myr
(Figure 3).

Gressel et al. (2008) and Gressel & Elstner (2020) have
d =x 8.3 and 6.7 pc, respectively, and
h - -10 kpc km s2.2 1 , which appears to exclude an SSD.
Gent et al. (2013b) with d =x 4 pc applied
h - -10 kpc km s3.1 1 , which would support SSD for
s ssn   . We can now construct LSD experiments to explore
how SSD impacts the onset of LSD, critical Ω, and dependence
on s .
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