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The fault diagnosis of the inverter is fundamental to energy intelligence. Due to the
complex characteristics of the inverter (e.g., high-dimensional decision and poor
stability), it is challenging to solve the problem using traditional fault diagnosis
methods. Recently, artificial intelligence (AI)-based approaches have emerged as
the most promising methods. However, they often require to set hyperparameters
manually, which hinders further AI-based applications in fault diagnosis of inverters.
To fill the gap, we propose an inverter fault diagnosis method using fast Fourier
Transform (FFT) and evolutionary neural network. This method combines the
amplitude of low-frequency harmonic component of the three-phase inverter
output current which is obtained by FFT and the average value in a period of
three-phase inverter output current into the fault eigenvector. This method uses
an evolutionary neural network trained by combining genetic algorithm (GA), ant
colony optimization (ACO) algorithm and Back-propagation (BP) algorithm to realize
fault diagnosis. This method can effectively resist noise interference and reduce the
number of independent variables in the part of feature extraction, so that it can
simplify the network model. In addition, this method can avoid the network training
from trapping in local optima in the part of fault classification, with high accuracy and
fast response speed. The experimental results show that the proposed algorithm and
method of fault feature extraction can effectively detect and locate the insulated-
gate bipolar transistor (IGBT) with open circuit (OC) fault in three-phase inverter, and
can be applied to online monitoring.

KEYWORDS

converter, three-phase inverter, evolutionary neural network, fast Fourier transform, fault
diagnosis

1 Introduction

With the development of industrial automation and intelligent manufacturing, industrial
robots are gradually replacing manual work. In order to prevent the problem of robot operation
accuracy caused by data loss in case of abnormal voltage or mains power interruption, the
control system of industrial robots is usually equipped with uninterruptible power supply. As
the core component of uninterruptible power supply, the reliability of inverter has been widely
concerned. Industrial demands put forward strict requirements for inverter (Ahmad et al., 2021;
Yan et al., 2021) (High-voltage and high-power output, small system electromagnetic
interference, low total harmonic distortion rate of output voltage, and small switch loss,
etc.). Due to the wide application of wide band gap semiconductor devices, IGBT of converter is
easily damaged, because it needs to withstand high-frequency interruption, high-voltage and
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high-current impact and temperature impact (Li et al., 2021). When
the IGBT fails, the output current of the inverter will be seriously
distorted that will result in irreversible damage to the subsequent
equipment. Therefore, the fault diagnosis of the inverters has research
significance for the industrial robot control system, and provides a
basis for the research of the fault tolerance of inverter control strategy.

Fault diagnosis methods are mainly divided into model-based
methods, signal-based methods, and knowledge-based methods.
Model-based methods use the output state of the circuit that is
evaluated by establishing an accurate mathematical model of the
inverter to carry out fault diagnosis. The accuracy is high, but the
modeling process is complex. For example, Wang et al. proposed a
node path modeling method for fault detectionWang et al. (2021), this
method used current path state and node potential to represent the
circuit’s working mode, and located transistor faults according to the
deviation of output current. Knowledge-based methods depend on the
given knowledge in the relevant fields. They need to have a certain
understanding of the system structure and summarize the relationship
between the normal state of the system and different fault states. These
methods have some limitations, such as slow derivation process,
difficulty in establishing knowledge base and poor timeliness. For
example, Kou et al. proposed a method based on knowledge driven
and data driven Kou et al. (2020), which used the Concordia transform
(knowledge driven) for feature conversion, and used the random
forests technique (data driven) to train the fault diagnosis classifier
for inverter fault diagnosis. Signal-based methods can directly analyze
the measured signal to obtain fault characteristics. Artificial
intelligence methods can be used for fault diagnosis. The fault
feature extraction methods include Fourier Transform and wavelet
transform, etc. Fault classification adopts machine learning methods,
such as BP neural networks, support vector machines, Multi-layer
Perceptron, etc. These methods have a high accuracy, but need to
collect a large number of sample data to train the network. For
example, Khomfoi et al. took the output voltage of the inverter
bridge arm as the measured signal, used FFT to obtain the
40 high-order harmonic amplitudes as the fault diagnosis data.
This method designed five multilayer feed forward networks, where
the number of input nodes, hidden nodes, and output nodes were 40,
2, and 1, to operate in parallel for fault location. The classification
performance could reach 98% (Khomfoi and Tolbert, 2007), but the
data dimension was large and the network structure was complex. And
Phaneendra Babu et al. built a Multilayer Perceptron neural network,
where the number of input nodes, hidden nodes, and output nodes
were 40, 12, and 1, to run for fault location, with 99% classification
performance Phaneendra Babu et al. (2008).

In recent years, the signal-based methods are improving, but there
are still shortcomings. In the traditional fault diagnosis methods based
on FFT, the problems of high eigenvector dimension and too many
independent variables lead to the complex structure of the neural
network, slow response in engineering applications, and poor anti-
interference. Cai et al. used FFT to extract the signal characteristics of
line voltage, and used principal component analysis to reduce the
dimension of eigenvector. They used Bayesian networks for fault
diagnosis (Cai et al., 2017). This method made full use of fault
information in samples, but it was difficult to resist high-frequency
noise interference, and the original data dimension was huge. To
reduce the dimension of eigenvector, it required 10 PCs to run
simultaneously for data processing, which was very complex. Ji
et al. used Park transform to obtain the fundamental amplitude of

three-phase current as the characteristic variable of fault detection and
divided the fault types in detail, and used BP neural network and logic
judgment to achieve fault location (Ji and Liu, 2018). Although this
method reduced the dimension of eigenvector, but it made the fault
classification complex. What’s more, the algorithm used in it is easy to
trap in local optima, resulting in low network accuracy.

To solve the above problems, this paper presents a diagnostic
method for inverters based on FFT and evolutionary neural network.
This method collects the output current of the three-phase inverters as
measured signal. Firstly, the amplitudes of the DC component,
fundamental wave and second harmonic of the output current
under fault state are extracted through FFT, and the average value
in a period is calculated and marked, then the above components are
combined to obtain the eigenvector. This process can effectively
reduce the number of variables, so that it can simplify the network
model. Secondly, a neural network model is established, GA, ACO,
and BP algorithm are combined to train the network. This method
discretizes the solution interval of weight, uses GA and ACO to locate
the optimal weight to a certain subinterval, and then uses BP algorithm
to obtain the optimal weight. This process combines the advantages of
the three algorithms, reduces the search time, accelerates convergence
speed, avoids trap in local optima, and improves the solution
efficiency. Finally, the trained network is applied to fault diagnosis
of three-phase inverter. This method can realize different fault
classification, accurately locate the fault point, and has high
diagnostic accuracy. In addition, this is a software-based method,
which reduces the hardware cost, and has filtering effect in the phase
from signal acquisition to fault feature extraction, so that the influence
of noise can be eliminated, and the response is fast, so it can be used for
online monitoring.

This paper consists of the following parts: First, the fault of three-
phase inverter is analyzed. Secondly, according to the characteristics of
three-phase inverter output current under fault conditions, a fault feature
extraction method based on FFT is proposed. Then an evolutionary
network is proposed and the algorithm flow is analyzed in detail. Finally,
MATLAB/Simulink is used to build a simulation model of three-phase
inverter, and LabVIEW is used to build a virtual instrument for data
acquisition. Through the joint simulation between the two, eigenvectors
under fault state are extracted for network training. At the same time, the
training results of the algorithm proposed in this paper, hybrid GA-BP
algorithm, hybrid ACO-BP algorithm and traditional BP algorithm under
the same training samples and network architecture are compared and
analyzed.

2 Fault analysis

Inverters are widely used in power systems, and their reliability
directly affects the security and stability of power supply systems.
Affected by uncertain factors such as working environment, aging,
electromagnetic interference, etc., power devices become the most
vulnerable components of the inverter (Cao et al., 2021). The common
fault types are OC faults and short circuit (SC) faults of power devices.

2.1 Topology of three-phase inverter

This paper takes three-phase inverter as the research object and
the topology of three-phase inverter is shown in Figure 1 (Hu et al.,
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2011). As can be seen from Figure 1, Udc, Cdc, Sn (n = 1,2,3,4,5,6), Dn

(n = 1,2,3,4,5,6), Ln (n = 1,2,3), Cn (n = 1,2,3), and Rn (n = 1,2,3)
represent the DC voltage, DC link capacitor, IGBTs, antiparallel
connected diodes, filter inductance, filter capacitor, and load,
respectively.

The controller controls the switching on and off of the IGBTs by
generating pulse width modulation wave, inverter filters the
harmonics through the filter circuit so as to leave the fundamental
wave, then it can convert DC power into three-phase alternating
current power.

2.2 Short circuit fault analysis of three-phase
inverter

When the IGBT in the inverter has an SC fault, for example, when
the IGBT S2 occurs SC fault, as shown in Figure 2, S1 is turned on
under the control signal, which will cause a short circuit to the DC
source. In this case, the current in the circuit will increase sharply,
which will cause the DC source, other IGBTs and even the whole
circuit to burn out. In engineering application, the IGBT in the
inverter is usually equipped with short circuiting protective circuit.

When the IGBT is short circuited, the short circuiting protective
circuit will react immediately, and then turn the SC fault into the OC
fault (Li, 2020).

2.3 Open circuit fault analysis of three-phase
inverter

When the IGBT has an OC fault, it cannot flow current, and the
corresponding part of the inverter output current is missing. For
example, when the IGBT S2 of the lower bridge arm has an OC
fault, its topology is shown in Figure 3, and its three-phase output
current and its amplitude spectrum are shown in Table 1. It can be
found that the negative half wave of phase A current disappears, the
current waveform of phase B and C is severely distorted, and the
harmonic content increases significantly. Similarly, it can be seen
that when the IGBT S1 of the upper bridge arm fails, the positive
half wave of the corresponding output current will disappear, and
the output current waveform of the other two phases will be
severely distorted. This situation makes normal power supply
impossible. This paper will mainly diagnose the OC fault of the
inverter. In practical application, the fault of the inverter is usually

FIGURE 1
Topology of three-phase inverter.

FIGURE 2
Topology of three-phase inverter with SC fault of S2.
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the OC fault of one or two IGBTs, and the simultaneous OC fault of
three IGBTs is rare. This paper focuses on the OC fault of one or
two IGBTs.

There are six cases when the OC fault happens on single IGBT.
There are 15 cases when the OC fault happens on two IGBTs at the
same time.

FIGURE 3
Topology of three-phase inverter with OC fault of S2.

TABLE 1 Fault eigenvector and amplitude spectra of phase A, B, and C with S2 failure.

Faulty IGBT Output current wave Amplitude spectrum Average value �X Eigenvector V

S2

0.953

0.95

1.051

0.365

0.634

1.365

0.395

0.342

1.748

0.390

1

0

0

−0.637

−0.298
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3 Fault feature extraction

The traditional fault, extraction method has high feature
dimension and is difficult to resist noise interference. This paper
proposes a fault feature extraction method. First, the output current

of three-phase inverter is collected and the amplitude spectrum is
obtained through FFT. According to the amplitude spectrum, the
amplitudes of DC component, fundamental wave, and second
harmonic of the output current of phase A, B, and C are
obtained. Secondly, the average values in a period of the output

FIGURE 4
Block diagram of fault feature extraction.

TABLE 2 Fault eigenvector and amplitude spectra of phase A, B, and C with S4 and S6 failure simultaneously.

Faulty IGBT Output current wave Amplitude spectrum Average value �X Eigenvector V

S4, S6

−1.013

1.011

0.946

0.348

0.736

0.648

0.251

0.271

0.361

0.302

0

1

1

0.735

0.272
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current of phase A, B, and C are calculated and marked. The 12-
dimension fault eigenvector under fault condition is obtained. This
method collects the amplitudes of specific low-frequency
components as the diagnosis data, which can effectively avoid
high-frequency interference caused by noise. The block diagram
is shown in Figure 4.

3.1 Fast Fourier transform

Fourier Transform can convert time domain signal into a series of
sinusoidal signals of different frequencies and amplitudes (Bi et al.,
2021), and then it can get the amplitude spectrum of the time domain
signal.

The Fourier Transform of the analog signal x(t) is:

X w( ) � ∫ ∞

−∞
x t( )e−jwtdt (1)

x(nT) is obtained by sampling x(t), and its Discrete Fourier
Transform (DFT) is:

X k( ) � ∑N−1

n�0
x n( )Wnk

N � ∑N−1

n�0
x n( )e−j2πN nk, k � 0, 1, . . . , N − 1 (2)

where X(k), x(n), Wnk
N are all complex, the above formula can be

written as:

X k( ) � ∑N−1

n�0
x n( )Wnk

N

� ∑N−1

n�0
Re x n( )[ ] + jIm x n( )[ ] Re Wnk

N[ ]( ) + jIm Wnk
N[ ]{ }

� ∑N−1

n�0
{ Re x n( )[ ]( )Re Wnk

N[ ] − Im x n( )[ ] Re Wnk
N[ ]( )

+ j(Re x n( )[ ]Im Wnk
N[ ] + Im x n( )[ ]Re Wnk

N[ ])}

(3)

Wnk
N has periodicity and symmetry.

Wnk
N( )* � W−nk

N (4)
Wnk

N � W n+N( )k
N � Wn k+N( )

N (5)

FFT is a fast algorithm of DFT (Guo et al., 1998). In the
FFT formula, the DFT equitation X(k) is decomposed into a
number of short transforms based the symmetry and periodicity
of Wnk

N , then recombined regularly. This process reduces the
cardinality of the sample points, makes the multiplication and
addition operations much less, and makes the Fourier transform
easy to achieve.

TABLE 3 Fault eigenvector and amplitude spectra of phase A, B, and C with S3 and S5 failure simultaneously.

Faulty IGBT Output current wave Amplitude spectrum Average value �X Eigenvector V

S3, S5

1.013

1.026

0.899

0.35

0.733

0.638

0.225

0.293

0.341

0.291

1

0

0

−0.722

−0.291
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3.2 Average value

The average value in a period of a periodic signal is:

�X � 1
N

∑N
i�1
Xi (6)

where N is the number of sampling points in a period of the periodic
signal.

3.3 Feature extraction

When the IGBT of the inverter has an OC fault, its topology
changes, resulting in distortion of the output current. When the
IGBTs on different bridge arms fail, the amplitude spectra of their
output current waveform are different, but when the IGBTs with OC
faults are at different positions of the same bridge arm, the amplitude
spectra of their output current waveform are the same. It can be seen
from Section 2.3, that if the IGBT on the same bridge arm fails,
according to its location, its output current will have the loss of
positive half wave or negative half wave. Therefore, according to the
characteristics of the disappearance of positive half wave or negative
half wave and the increase of harmonic content under the fault state,
the method proposed in this paper extracts features from the
amplitude spectrum and average value on one cycle of inverter
output current for fault diagnosis. First, the output current of
three-phase inverter is collected, and the amplitude spectrum is
obtained through FFT. According to the amplitude spectra, the
amplitudes of DC component, fundamental wave, and second
harmonic of the output current of phase A, B, and C are
obtained, and recorded as A0A,0B,0C, A1A,1B,1C, A2A,2B,2C. Secondly,
the average values on one cycle of the output current of phase A, B,
and C are calculated and marked, recorded as �XA,B,C. When the
average value is greater than 0, it is marked as 1, when the average
value is less than or equal to 0, it is marked as 0. After marking the
mean value, it can effectively avoid excessive fluctuation of mean
value caused by noise in engineering applications, which will affect
the fault diagnosis results. The 12-dimension fault eigenvector V is
obtained as the fault diagnosis data.

V � AOA, A1A, A2A, AOB, A1B, A2B, AOC, A1C, A2C, �XA, �XB, �XC[ ]T (7)

The S2 failure, S4, and S6 failure simultaneously, S3 and S5 failure
simultaneously are taken as examples to verify the effectiveness of the
proposed fault exaction method, fault eigenvectors and amplitude
spectra of phase A, B, and C are shown in Tables 1–3.

Based on the above tables, for each fault, the eigenvectors obtained
by the fault exaction method proposed in this paper are different,
which can be used for fault diagnosis of three-phase inverter.

4 Evolutionary neural network

BP algorithm is the most widely used in neural network training
method, and its essence is a learning algorithm based on stochastic
gradient descent. BP neural network is highly dependent on the initial
connection weight values, which makes the neural network training
easy to trap in local optima. In the late training period, the output
neurons are prone to premature saturation. This will affect the

convergence speed and learning accuracy of the neural network
(Hongjiao, 2019; Lei et al., 2020). Although the appeal problems
can be solved by appropriately increasing the number of hidden
layers and hidden nodes, it will increase the complexity of the
network structure, training time, and computation. This paper
proposes an evolutionary neural network, which combines the
global search of GA and ACO with the local search of BP
algorithm to train the network weight to the optimal value, and is
applied to inverter fault detection.

4.1 Genetic algorithm

GA is a simulation study of the evolution of biosystem (Yu et al.,
2018; Lambora et al., 2019; Tao et al., 2021). It is a random global
optimization algorithm. It simulates the functions of selection,
crossover, mutation and other functions in genetics. Selection
and crossover maintain the most suitable genetic information
for the current iteration, but these two operations easily make
network training trap in local optima, and mutation operations can
maintain the diversity of the population. In each operation, the
selection of genes is random to expand the search space and avoid
trapping in local optima. Through inheritance and evolution of
generations in a population, more excellent individuals are
generated, and the optimal solution of the problem is finally
obtained (Ma et al., 2021b; Ma et al., 2021c).

4.2 Ant colony optimization algorithm

ACO is a bionic algorithm that imitates the behavior of ants in
nature (Yu et al., 2018; Yang and Shi, 2019; Mohamed et al., 2021). In
the process of optimization, the path is selected according to the
pheromone on the path, and roulette is used to increase the
randomness in selection process. The pheromones are related to
the number of times selected and the evaporation coefficient.

4.3 Back-propagation algorithm

BP algorithm is a local optimization algorithm, which adjusts the
connection weights through the forward propagation of signals and
the back propagation of errors. The stochastic gradient descent
method is used to modify the connection weight values of each
layer to minimize the errors, so as to achieve the goal of
optimization. At the initial time, the connection weights of each
layer are randomly assigned. As a result, it is easy to trap in local
optima when using BP algorithm to train network.

4.4 Algorithm implementation

In this paper, there are many connection weights that need to be
optimized. If GA is used alone to optimize, coding the connection
weights into chromosomes will cause the network training time to be
too long because the chromosome is too long. If the ACO is used alone
for optimization, in the early stage of search, because the pheromones
are equal, the progress of ant colony optimization is blind, which
makes the convergence speed slow, leads to long calculation time, and
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traps in local optima easily (Khapre et al., 2020). Based on the above
problems, this paper proposes an evolutionary neural network, which
is trained by combining GA, ACO, and BP algorithm. The algorithm
firstly adopts GA, with its capability of global stochastic searching, to
find a number of optimal solution candidates, by which the initial
pheromone distribution for ACO is updated, and then focuses the
optimal solution to an interval using the ACO, and finally uses the BP
algorithm to find the optimal solution. Combining the advantages of
the three algorithms, the search time is reduced, the convergence speed
is accelerated, and the solution efficiency is improved.

4.4.1 Establishing a three-layer neural network
A there-layer neural network is established, the number of

parameters needed to be optimized is:

n � ni + 1( ) × nh + nh + 1( ) × no (8)
where ni is the number of input nodes, nh is the number of hidden
nodes, no is the number of output nodes. All parameters are noted as
Pi(i � 1, 2, . . . , n), and combined into a vector P � [P1, P2, . . . , Pn].
The interval of each parameter is divided into N parts, and the
candidate values of the parameters consists of a random value in
each subinterval. The candidate value set of Pi is IPi, and the candidate
values of all parameters constitute matrix IP.

IPi �

IPi1

IPi2

.

.

.
IPiN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

IP �
IP11 IP21 . . . IPn1

IP12 IP22 . . . IPn1

..

. ..
. ..

.

IP1N IP2N . . . IPnN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

The value ofN does not need to be too large. Too many candidate
values have little effect on avoiding trapping in local optima, but will
increase the training burden (Ma et al., 2021a; Ma et al., 2022).

4.4.2 Initializing the parameters of genetic algorithm
The candidate values of the parameters of the vector P are

constructed into chromosomes based on float-encoding to generate
corresponding chromosome populations. The error function between
the expected output vector T and the actual output vector Y of the
neural network is:

E′ � 1
2
∑n0
i�1

ti − yi( )2 (11)

FIGURE 5
Algorithm flow chart.
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where n0 is the dimension of the output vector.
For q samples, the mean square error (MSE) of actual output and

desired output is:

E � 1
2q

∑q
i�1
∑n0
j�1

tij − yij( )2 (12)

The performance of the neural network is measured by the error
function. The fitness function selected in this paper is:

f � 1
E

(13)

The larger the fitness value, the smaller the MSE, and the better the
individual.

4.4.3 Crossover and mutation
Two individuals are randomly selected from the population for

crossover, resulting in two new individuals. The new individuals

generated by the crossover of the individual k and individual l at
the gene j are:

xkj � xkj 1 − a( ) + xlja
xlj � xlj 1 − a( ) + xkja

{ (14)

where a is a random number of [0,1].
An individual K in the population is randomly selected, the gene j

of this individual is selected for mutation, and the resulting new
individual is:

xkj �
xkj × 1 − c × 1 − t

tm
( )2[ ] b≤ 0.5

xkj × 1 + c × 1 − t

tm
( )2[ ] b> 0.5

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(15)

where b, c are random numbers between [0,1], t is the current number
of iterations, tm is the maximum number of iterations.

4.4.4 Optimal individual preservation and worst
individual replacement

The best individual in each iteration should be remained so that it
no longer performs crossover and mutation. In this way, the
inheritance of the best individual is preserved to the greatest
extent. In this paper, the best individual in the current population
is used to replace the worst individual in each iteration.

4.4.5 Initializing pheromone
Steps in Sections 4.4.3, 4.4.4 should be repeated until the GA

training reaches the maximum number of iterations. In the last

FIGURE 6
Three-phase inverter simulation model.

TABLE 4 Simulation parameters.

Parameters Values

Load power 2 kW

DC voltage (Udc) 600 V

AC output voltage 220 V

Filter inductance (L1, L2, and L3) 5 mH

Filter capacitor (C1, C2, and C3) 12 μF
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FIGURE 7
The relationship between the number of hidden nodes and classification error, MSE.

FIGURE 8
The predictive failure categories and actual categories of the test data.
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FIGURE 9
The training error of Traditional BP neural network.

FIGURE 10
The training error of GA-BP neural network.
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FIGURE 11
The training error of ACO-BP neural network.

FIGURE 12
The training error of the evolutionary neural network.
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iteration of the GA training, all individuals are sorted according to
the fitness value from large to small, and the first 10% of
individuals are selected to guide the initial pheromone
distribution of ACO training. First, the initial pheromones for
the candidate values of each neural network parameter should be
set equal, both of which are τ0. The top 10% of excellent
individuals are selected so that the combination of connection
weight values contained in each individual can be obtained, and
the candidates in set IPi that differ from the candidates in these
combinations by less than one subinterval length can be found
respectively. The initial pheromones of these candidates are
updated according to Eq. 16.

τPji � τ0 + Q

Etop j � 1, 2, . . . , N i � 1, 2, . . . , n( ) (16)

where Q is the pheromone constant, Etop is the MSE of the network
formed by the weight combination of one of the top 10% excellent
individuals of the fitness value.

4.4.6 Travel of ant colony
From the pheromone table, probability that the element in set IPi is

selected is defined by Eq. 17.

Pselect IPji( ) � τPji
α

∑N
j�1τPji

α (17)

where α is heuristics for pheromone. The probabilities that all
candidate values of each connection weight are selected are
calculated, and each ant uses roulette to select the candidate for
each element of the vector P.

4.4.7 Pheromone update policy
After a round trip of the ant colony, m ants constructed

m combinations of weight values. The MSE of each
combination is calculated separately, and the optimal path in
this iteration is the combination with the smallest error and
should be recorded.

The pheromone should be updated according to Eq. 18.

τPji � 1 − ρ( )τPji + ΔτPji

ΔτPji � ∑m
k�1

ΔτkPji

⎧⎪⎪⎨⎪⎪⎩ (18)

where ρ is the evaporation coefficient, ΔτkPji
is the amount of

pheromone, which is left by the ant K after selecting the candidate IPij.

ΔτkPji
�

Q

Ek
antK selects candidate IPji

0 antKdoes not select candidate IPji

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (19)

where Ek is the RMS of the network formed by the weight combination
selected by ant K.

4.4.8 The results of ant colony optimization guide
the initialization of connection weight values

Steps in Sections 4.4.6, 4.4.7 should be repeated until the ACO
training reaches the maximum number of iterations. The results
searched by ACO are taken as the initial weight values of the
neural network, and BP algorithm is used to start training until the
requirements are met.

4.5 Algorithm flow chart

Based on the above training process of the evolutionary neural
network, the algorithm flow chart is shown in Figure 5.

5 Simulation results and analysis

MATLAB/Simulink is used to build the simulation model of the
inverter, LabVIEW is used to collect the output current signal of the
inverter and extract the features, and User Datagram Protocol is used
for communication between them. The fault eigenvectors of
10 typical fault states of the inverters are selected as input data of
the neural network. Fifty groups of data are collected for each fault
state, and a total of 500 groups of data are used for network training
and testing.

5.1 Simulation model

In order to demonstrate the method described in this paper,
MATLAB/Simulink is used to build a three-phase inverter
simulation model, as shown in Figure 6. The control mode is
droop control, the modulation strategy is Space Vector Pulse
Width Modulation, and its electrical parameters are shown in
Table 4.

5.2 Network training

Based on the sample data, it is determined that there are 12 input
nodes and 10 output nodes in the neural network. The number of
hidden nodes is uncertain, and an appropriate number can be found
according to Eq. 20. The Eq. 20 is an empirical formula.

a � ����
n + b

√ + c (20)
where n is the number of input node and b is the number of output
nodes. c is a constant, usually between [0,10].

Too few hidden nodes will lead to poor network performance, too
many will lead to too long training time, trap in local optima, and
overfit easily. Therefore, the number of hidden nodes should be
determined by comprehensively considering the complexity and
error of network, it should be as small as possible on the basis of
meeting the accuracy requirements.

According to Eq. 20, the appropriate numbers of hidden nodes are
6, 7, 8, 9, 10, 11, and 12. The neural networks are respectively built and
trained using BP algorithm under the same training samples. The
percentage of classification error and MSE of each network are shown
in Figure 7, so the number of hidden nodes is selected as 9.

The number of input nodes, hidden nodes, and output nodes
are 12, 9, and 10. The hidden layer uses the tansig function and the
output layer uses the purelin function. There are 217 connection
weights of neural network to be optimized. The interval [−10, 10] is
equally divided into 100 parts. A number is randomly selected as
candidate value in each cell. Finally, each connection weight to be
optimized corresponds to a set of 100 candidate values. The initial
chromosome of GA is composed of a candidate selected randomly
from the set of candidate values for each parameter. After repeated
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matching and debugging, in the process of GA training, the
population size and the number of iterations are finally selected
as 100 and 300 respectively. In the process of ACO training, the ant
population size, the evaporation coefficient ρ, the initial pheromone
τ0, the heuristic pheromone factor α, the pheromone constant Q,
and the number of iterations are selected as 150, .7, 1,000, 3, 1, and
150 respectively. The minimum error of neural network training is
set to .0001. Five hundred groups of data are divided into training
data, validation data, and test data, which are 400 groups, 50 groups
and 50 groups respectively.

5.3 Analysis of simulation results

The proposed algorithm is run for ten times independently, where
the mean, variance, maximum, and minimum values of MSE are
4.9819e-6, 5.4712e-10, 8.7457e-5, and 1.2686e-5, respectively. The
experimental results show that the algorithm has good stability
based on smaller means, variances, and extreme values. The
predictive failure categories and actual categories of the test data
are shown in Figure 8.

In order to highlight the performance of the algorithm proposed in
this paper, the training results of hybrid GA-BP algorithm, hybrid
ACO-BP algorithm, and traditional BP algorithm under the same
training samples and network architecture are added for comparative
analysis. The RME decline curves of actual output and desired output
are shown in Figures 9–12.

It can be seen from Figure 8 that the trained evolutionary neural
network can accurately classify test samples, and the fault
extraction method and fault diagnosis algorithm proposed in
this paper can effectively achieve accurate fault location. It can
be seen from the comparison of Figures 9–12, the traditional BP
neural network converges after 26 iterations, and the accuracy does
not reach the predetermined value. The traditional BP neural
network randomly assigns weights at the initial stage of training,
so that it traps in local optima during the training process and
occurs the problem of premature neuron saturation. This situation
leads to the network training stopping before reaching the
predetermined accuracy. GA-BP algorithm and ACO-BP
algorithm converge after 30 and 26 iterations respectively, and
the evolutionary neural network converges after 16 iterations, it is
obvious that the evolutionary neural network has a faster
convergence speed and smaller convergence error, because the
evolutionary neural network introduces the crossover operator
and mutation operator of GA and the ant colony tour of ACO
during training, which expands the search space of the algorithm.
The complementary advantages of GA and ACO improves the
search ability and convergence speed, avoids trapping in local
optima and improve the accuracy of the optimal solution.

6 Conclusion

Aiming at the characteristics of the increase of harmonic
components and the loss of the positive and negative half
waveforms of the output current in the inverter fault state, this
paper proposed a feature extraction method based on FFT and

average value on one cycle and an evolutionary neural network for
fault diagnosis of three-phase inverter. The evolutionary neural
network proposed in this paper combines the global search of GA
and ACO with the local search of BP algorithm to obtain a more
accurate combination of weight.

The joint simulation results of MATLAB/Simulink and LabVIEW
show that the evolutionary neural network proposed in this paper is
not easy to trap in local optima, has high learning accuracy and fast
convergence speed, and is superior to the conventional neural network
learning method in performance. Compared with traditional signal-
based fault diagnosis methods, this method proposed in this paper can
effectively resist noise interference and reduce the number of
independent variables in the part of feature extraction, so that it
can simplify the network model. In addition, this method can avoid
the network training from trapping in local optima in the part of fault
classification, with high accuracy and fast response speed. At the same
time, it is mainly processed by software, which reduces the hardware
cost, can realize precise location of the OC fault of one or two IGBTs of
the inverter, can avoid the influences of noise, has fast response speed,
and can be used for online monitoring.
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