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ABSTRACT

The study derives general frequency dependencies of the surface impedance modulus for
conductors without the dc dissipation, i. e. for superconductors or perfect conductors. The
frequency-dependent surface impedance was applied for the solutions corresponding to the
spatially dispersive eigenvalues of the permittivity operator for conductors. The study demonstrates
that appropriately taken into account effects of the spatial dispersion can give the general frequency
dependence of the surface impedance for the obtained solutions including that for superconductors.
It is shown that incorporation of the spatial dispersion leads to an appearance of the Meissner effect
in perfect conductors in the same manner as in superconductors.

*Corresponding author: E-mail: karuz@sci.lebedev.ru;

http://www.sciencedomain.org/review-history/26633


Dresvyannikov et al.; PSIJ, 19(3): 1-15, 2018; Article no.PSIJ.43533

Keywords: Superconductivity; spatial dispersion; electrodynamics; nonlocality; Meissner effect; perfect
conductor.

1 INTRODUCTION
Recently the frequency-dependent surface
impedance was calculated for the spatially
dispersive eigenvalues of the permittivity operator
in conductors [1]. It is reasonable to give
a brief description of these formulations valid
for both conductors and superconductors The
electrodynamics of superconductors is supposed
to be in principle reduced to those for conductors
as the temperature approaches the critical
temperature Tc and beyond Tc. However, such
a reduction is not rather straightaway. Early the
problem resulted in a supplement of the Maxwell
equations by postulating additional London
equations for an explanation the Meissner effect
[2]. It discriminates the perfect conductor in non-
zero-field cooling behaviour as compared to the
superconductor. Here the study demonstrates
that appropriately taken into account effects of
the spatial dispersion can give general frequency
dependencies of the surface impedance for
the obtained in [1] solutions including those
both for the normal conductor and for the
superconductor or perfect conductor. It is shown
that incorporation of the spatial dispersion leads
to an appearance of the Meissner effect in
perfect conductors in the same manner as in
superconductors.

2 FREQUENCY DEPENDENCIES
To evaluate the general frequency dependence
of the eigenvalue modulus |ε̃a| of absolute
permittivity operator ̂̃εa and of the surface
impedance modulus |Z̃|, let us again [1] consider
at first only the spatial effects in permittivity,
assuming the problem is stationary ω = 0
and taking into account only the spatial field
inhomogeneity in the form of a wave number
k′′. Preliminary results concerning the frequency
dependencies and spatial effects were discussed
in [3, 4, 5].

2.1 Normal Conductivity

The first of Maxwell equations can be written as

rot H̃ = (∂D̃/∂t) + j̃. (2.1)

Below the vectorial values of electromagnetic
field are meant as the eigenfunctions compliant
with the eigenvalue of permittivity operator ̂̃εa, i.
e. with the numerical complex value ε̃a in the
constitutive equation [1] D̃ = ̂̃εaẼ = ε̃aẼ. The
frequency ω′′

k = k′′vF can be associated with
the spatial inhomogeneity k′′ [1], where vF is the
Fermi velocity, i. e. the velocity of propagation of
the external perturbation. Using the ambiguity of
the representation of a right side of the previous
expression [6, 7, 8] and integrating it over the
time one can get from the constitutive equation
[1] D̃ (r, t) = ε̃aẼ (r, t) an expression [9]

ε̃a = ε̃pε0 − iσ̃/ω′′
k = ε̃pε0 − iσ̃/(k′′vF ) (2.2)

Here σ̃ is the static eigenvalue of conductivity
operator, ε̃p is the eigenvalue of relative
permittivity operator of a lattice. The solutions
found in Dresvyannikov et al. [1] for conductors
and superconductors have the fixed arguments of
complex numbers ε̃a and Z̃ ∼ 1/k̃ determined by
conditions of the spatial force resonances. So for
a finite frequency ω of an external field the spatial
inhomogeneity k′′ is determined, according to
Dresvyannikov et al. [1] and Karuzskii et al.
[9], by the frequency and by the eigenvalue of
permittivity operator

k′′ ∼ ω(ε̃aµ0)
1/2 = ω/ṽph (2.3)

That may be assigned to a mean field
approximation. The conductivity in the extremely
anomalous limit is determined by the frequency
σ̃ ∼ 1/ω also [10]. The substitution of k′′ and
σ̃ into the expression (2.2) for ε̃a results in the
proportionality (ε̃a)

3/2 ∼ ω−2 that corresponds
to the frequency dependence of the impedance
modulus |Z̃| ∼ ω2/3 for all solutions found for the
conductor except that for the superconductor, as
it was shown in [1].

2.2 Superconductors and
Perfect Conductors

To estimate the frequency dependencies of
moduli |Z̃| and |ε̃a| for the solution found for
superconductors or perfect conductors having
the phase of ε̃a equal to β1 = π and the phase
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of Z̃ equal to ψ1 = π/2 (and additionally for
the solution with α0 = 0 and φ0 = 0) [1]
one should note that for these solutions the real
parts of eigenvalue σ̃ of the conductivity operator
in the equation (2.2) equal zero and the direct
current does not dissipate with time. In this
case one should take into account an influence
of spatial inhomogeneities of the field with the
largest possible value of a wave number k′′ or of
a frequency ω′′

k = k′′vF , regarding an absence
of the dc dissipation, for all possible spatial
scales, but not only for those corresponding
to the frequency of an incident wave (cf. the
Eq. (2.3)). The velocity of propagation of a
perturbation in the quasi-stationary environment
without the dc dissipation could correspond to
the spatially dispersive value v, which should not
be necessarily associated with the Fermi velocity
vF , but may be equal to the speed of light c, for
example, as in the Langmuir plasma frequency.
The highest value of spatial inhomogeneity of
the field with the largest possible value of a
wave number k′′ or of an associated frequency
ω′′
k = k′′v, in this case, can approach the

vertical-asymptote values equal to the k′′0 or to
the frequency proportional to ω′′

kp0 = k′′0 vF ,
corresponding to the Langmuir plasma frequency

ωp = k′′0 c = c/λ0, (2.4)

where

λ0 = (k′′0 )
−1 = (m/µ0ne

2)1/2 (2.5)

is the London penetration depth. The absence of
the dc dissipation should result in the feasibility
of ”acoustic” conditions (v > 0) for the spatially
dispersive plasmon polariton frequency ω′′

kp =
k′′v.

This spatial inhomogeneity will correspond to the
highest value of the Abraham force (see the
Eq.(3.4) below and Ref. [1]). So it should result
in the spatial structure dominating over the others
possible structures [1, 9]. A value of this spatial
inhomogeneity will not depend on frequency
values ω of any incident microwaves, while those
could be considered as quasi-stationary when
ω < ω′′

kp0 ≪ ωp. This can be illustrated by an
expression of a current density after the end of an
external perturbation obtained with the account of
the spatial dispersion [10]. If one substitutes the
spatial factor in Eq.(3) of Ref.[10] in the form of

j0(θ, r) = j0(θ)e
iκr, (2.6)

where θ is the reduced temperature θ = T/Tc

[10, 11], it is reexpressed as the current density

j(θ, r, t) = j0(θ)e
−ω′

ktei(κr±ω′′
k t), (2.7)

which remains after switching off an electric field
E = E0e

i(kr+ωt). In a perfect conductor the
direct current does not decay with time (ω′

k =
0), and the stationary current solution (2.6) may
be reconstructed from (2.7) by the proper time
averaging of plasma oscillations with positive
and negative signs of the plasmon-polariton
frequency ω′′

k = ω′′
kp0, by a finite time shift in their

starting moments, for example.

The requirement of an independence of the
spatial inhomogeneity k′′ on the frequency ω
should result, according to the equation

k′′ = ω(|ε̃a|µ0)
1/2 = ω/|ṽph|, (2.8)

in the inverse ratio
√

|ε̃a| ∼ 1/ω and in
the dependence of the surface impedance (its
modulus) linear on a frequency ω

|Z̃| =
√

µ0

|ε̃a|
=
ωµ0

k′′
. (2.9)

It may look surprising that similar equations
(2.3) and (2.8) produce different solutions.
However, this is not an error, but those are
two different possible formal solutions of this
equation following from different conditions of
spatial dispersion. The frequency dependence
of the eigenvalue ε̃a in the right side of the Eq.
(2.8) is determined by the requirement of the
independent on ω wavenumber k′′ in the left
side, inversely to their correlations in the Eq.
(2.3), where the wavenumber k′′ is determined
by the eigenvalue ε̃a according to the mean-field
approximation. The further temperature issue
of how the electrodynamics of superconductors
can be reduced to those for conductors as the
temperature approaches and beyond the critical
temperature may be clearly stated using, e. g.,
the generalised two-fluid principles [10, 11] or
rigorous modelling [11, 12].
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3 THE SPATIAL DISPERSION
AND MEISSNER EFFECT IN
SUPERCONDUCTORS AND
PERFECT CONDUCTORS

In the surface impedance approximation [6, 7,
8, 9, 11, 12] let it will be the coordinate z
with the basis vector k, which are directed
into the conductor together with the unitary
normal n to the boundary surface z = 0. A
monochromatic transverse field at the normal
incidence to the plane surface of a conductor
will be considered. An electric field strength
vector is directed tangentially along the x-axis
(Ẽ(z) = Ẽx(z)i), and a magnetic induction
vector is directed along the y-axis (B̃(z) =

B̃y(z)j). Here i and j are the basis vectors. The
fields decrease into the depth of a conductor as
B̃y(z) = B̃y(0)e

−z/δ̃ and Ẽx(z) = Ẽx(0)e
−z/δ̃,

where δ̃ is the complex penetration depth, which
defines the surface impedance by the relation
Z̃ = iωµ0δ̃ [6, 7, 8, 9, 11, 12], and µ0 is
the permeability of vacuum. Since the surface
impedance relates the tangential components of
fields on the boundary surface [9, 11]

Z̃ =
Ẽx(0)

H̃y(0)
=
B̃y(0)

D̃x(0)
, (3.1)

the zero limit of the surface impedance Z̃|ω→0 =
0 at the zero frequency, deduced from the
Eq. (2.9), means that the stationary tangential
component of an electric field (or of a magnetic
induction) should be equal zero Ẽx(0)|ω→0 = 0

(or B̃y(0)|ω→0 = 0), but with a possible finite
value of H̃y(0)|ω→0 ̸= 0 (or D̃x(0)|ω→0 ̸= 0).
An alternative combination of a finite value of
B̃y(0)|ω→0 with an infinite D̃x(0)|ω→0 is possible
in situations when the direct current flows without
dissipations. Formally the Eq. (3.1) in this case,
corresponds to the indeterminate form such as
0 · ∞, an evaluation of which is closely related
to the Meissner effect. The remainder of this
study is devoted to the problem of evaluating
this indeterminate form by substituting it in the
expression of Abraham force.

Let us consider a behaviour of the Abraham
force [6, 8] in a perfect conductor (or in a
superconductor) in the limit of zero frequency
ω → 0. From the expression for the spatial
density of the momentum flux [1, 9], which is
the corresponding component of the Maxwellian
field-stress tensor,

Π̃ = [D̃× B̃] = (µ
1/2
0 ε̃ 3/2

a )Ẽ2
x(0)k, (3.2)

where k is the basis vector of the z-axis, the
Abraham force can be derived [6, 8] neglecting
the frequency dispersion:(

1− 1

ε̃

)
∂Π̃

∂t
=

(
1− 1

ε̃

)
∂

∂t
[D̃× B̃] =

=

(
1− 1

ε̃

)
∂

∂t

[
D̃x(0)e

iωti× B̃y(0)e
iωtj

]
= (3.3)

= 2iω

(
1− 1

ε̃

)
ei2ωt

[
D̃x(0)i× B̃y(0)j

]
,

where ε̃ = ε̃a/ε0 is the eigenvalue of relative permittivity operator. The surface impedance (3.1)
defines the relation between electric and magnetic inductions D̃x(0) and B̃y(0) and may be substituted
in the expression (3.3) for the Abraham force. Then using the Eq. (2.9) for the modulus of surface
impedance and taking account of its phase ψ1 = π/2

2iω

(
1− 1

ε̃

)
ei2ωt

[
B̃y(0)

Z̃
i× B̃y(0)j

]
=

= 2iω

(
1− 1

ε̃

)
ei2ωt

[
−ik′′A
ωµ0

B̃y(0)i× B̃y(0)j

]
= (3.4)

= 2

(
1− 1

ε̃

)
ei2ωt

[
k′′A
µ0
B̃y(0)i× B̃y(0)j

]
=

= 2

(
1− 1

ε̃

)
ei2ωtµ0

[
rotH̃(0)× H̃(0)

]
.
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The expression (3.4) shows that Abraham force at all frequencies ω ≪ ωp, as well as in the stationary
limit ω → 0, achieves the highest magnitude when the spatial inhomogeneity k′′A gets the largest,
frequency-independent value (see Sec. 2.2) corresponding to the London (or plasma) penetration
depth λ0 = (k′′0 )

−1 = (m/µ0ne
2)1/2. Such the spatial configuration of the fields related to the

reconstruction of an electronic system, which corresponds to the highest magnitude of the Abraham
force, is dominant due to the force correlations and the consequential decrease of the free energy
[1, 9]. And respectively, the absolutely unstable spatial configuration, according to the Eq. (3.4),
corresponds to the geometry of the spatially homogeneous field and the zero value of the spatial
inhomogeneity k′′A = 0 when the Abraham force is zero with no advantage in the free energy. So the
conclusions obtained here in the surface impedance approximation show that the spatial dispersion
results in an appearance of the Meissner effect in perfect conductors in the same manner as in
superconductors contrary to the preceding considerations [2], which do not incorporate the spatial
dispersion effects. A driving force of its appearance is the Abraham force.

It should be noted that this conclusion may be derived more formally, without considerations of any
frequency dependencies. Abraham force can be reexpressed as(

1− 1

ε̃

)
∂Π̃

∂t
=

(
1− 1

ε̃

)
∂

∂t

[
D̃× B̃

]
=

=

(
1− 1

ε̃

)[
∂D̃

∂t
× B̃

]
+

(
1− 1

ε̃

)[
D̃× ∂B̃

∂t

]
(3.5)

For monochromatic fields the Maxwell equations in a homogeneous medium with the spatial dispersion
may be written [1, 6, 7, 8, 9] as

rotB̃ = µ0rotH̃ = µ0(∂D̃/∂t); rotẼ = −(∂B̃/∂t); (3.6)

divD̃ = divẼ = 0; divB̃ = 0. (3.7)
Due to an absence of magnetic charges and an equality ∂B̃/∂t = 0 in the second of Eqs (3.6) in
the stationary approximation ω = 0 the second term in the sum (3.5) equals zero. Regarding the
ambiguity of the representation of the first Maxwell equation (cf. the first of Eqs (3.6) and the Eq.(2.1)
rot H̃ = (∂D̃/∂t) + j̃), one can replace the partial time derivative in the first term of the sum (3.5),
which may be assigned formally to the ”stationary displacement current” or simply to the current
density j̃, by the rotH̃ from the first of Eqs (3.6), that results in(

1− 1

ε̃

)[
rotH̃× B̃

]
=

(
1− 1

ε̃

)[
k′′ef
µ0

B̃y(0)i× B̃y(0)j

]
. (3.8)

This expression shows that Abraham force achieves the highest magnitude when the spatial inhomo-
geneity k′′ef gets the largest value. It corresponds to a half of the London penetration depth λ0/2 =

(2k′′0 )
−1 = (m/µ0n4e

2)1/2 taking into account a factor of 2 that differentiates the Eqs (3.4) and (3.8)
in the stationary approximation ω = 0.

4 FORMAL BACKGROUNDS OF THE ELECTRODYNAMIC NONLOCA-
LITY

To find the origin of this double ratio formal backgrounds of the electrodynamic nonlocality is deduced
in this section with an emphasis on the analysis of nonself-adjoint problems. Since it may be not quite
comprehensible for general interest readers with a background in the condensed matter due to the
presence of rather abstract technical formulations, this section can be skipped in first reading.
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The double ratio k′′ef = 2k′′A in the force
expressions can be understood considering
that the operator rotH̃ in the Eq.(3.8) acts
for the ”stationary displacement current”, i.
e. for the displacement-current operator
(∂D̃/∂t) in the zero frequency limit. So
it should resemble fundamental properties of
a displacement current. Nonlocality is its
basic property that comes into definitions
of electric and magnetic polarisations and
inductions via the spatially dependent electric
and magnetic moments. In the continuous
media electrodynamics [6, 7, 8] these moments
are introduced as the electric or magnetic
moment formed on the boundary surface of
the body and related to a geometric shape
of the surface. The boundary surface usually
is approximated by the certain quadratic form
[13] of vectors in a three-dimensional linear
space, which is a mathematical abstraction of
our empirical coordinate space with the real-
valued Euclidean square. This linear space
is a linear manifold spanned by the three real
spatial basis vectors [13] with a basic reference
standard of the length defined materially. It may
be considered as the space V3 the elements
of which are vectors (directed line segments)
subject to certain suitably defined operations.
These vectors are studied in three-dimensional
analytic geometry and mechanics. V3 is a linear
space over the field R of real numbers [13].
This mathematical abstraction allows describing
empiric physical quantities numerically as vector
or scalar fields in that, given by experiences, real-
valued Euclidean coordinate space with three
real spatial basis vectors. Being defined in this
abstract linear space V3 the scalar, vectorial and
mixed products of vectors are assumed to be
applicable as well to the vectors of the fields of
physical quantities as if those belong to the linear
space. Furthermore, in differential operators
of vector or scalar fields of physical quantities,
such as Hamilton or Laplace operators, it is
these three-dimensional real spatial variables,
concerning those the spatial derivatives are
taken. One can remember differential operators
in the equations of Maxwell (3.6), (3.7), or
of Newton with a gradient of a scalar field
potential, vector fields of electric magnitudes or
of velocities, scalar fields of spatial densities of an
electric charge or of a mass. The assumption of

applicability of the products of three-dimensional
vectors and of the differential field operators to
the vector manifold of empiric physical fields
as if it belongs to the space V3 allows using
those in the equations, which explain the physical
phenomena.

For this abstract boundary surface to be an
electrodynamics boundary surface, i. e. to
produce any observable physical effect, it
should separate the bounded regions of the
space by different values of at least the one
more real-valued variable parameter, which may
vary independently of variations of the three
spatial coordinates. It corresponds to the
inhomogeneous distribution of this parameter
over the space V3. In Maxwell equations,
such novel independent variables are the
constitutive parameters or a combination of
these parameters, which characterise material
properties. Those are the specific bulk densities
of a charge and of a mass as well as the
absolute permittivity, which is a combination of
these densities and of a frequency, i. e. of the
time-related parameter. The absolute permittivity
(cf. [6, 7, 8, 10, 11] and Eq. (2.2)) ε̃a =
ε̃pε0 − iσ̃/ω = ε̃pε0 − iε0ω

2
p/[ω(ω̃k + iω)] =

ε̃pε0−i/[λ2
0µ0ω(ω̃k+iω)] = ε̃pε0−ine2/[mω(ω̃k+

iω)] = ε̃pε0 − i(ne)2/[(nm)ω(ω̃k + iω)] depends
on the charge (ne) and mass (nm) densities, on
the time (1/ω), and combines the basic units of
length, mass, time and electric charge.

These additional real-valued variables of mass,
time and charge are independent of variations
of the three spatial length coordinates and
consequently should result in the greater than
3 dimension of the abstract linear space over
the field R of real numbers [13] to proceed
the description of empiric physical fields as the
vectors existing in a linear space, but with a
number of real-valued coordinates greater than
3.

The linear description allows using
advantages of finite-dimensional linear spaces
[13] given by the application of linear operations
in most powerful techniques.

The increased dimension requires an
appearance of the respective number of
additional basis vectors, which are linear-
independent of three real spatial basis vectors of
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the three-dimensional linear space V3 comprising
a linear manifold spanned by these three real
basis vectors. Since the given by experiences
dimension of our coordinate space is limited by
three real spatial basis vectors, e. g. i, j, k,
the additional basis vectors must be notional,
not existing in our three-dimensional space, e.
g. ii, ij, ik [13], because in the linear manifold
spanned by these three real basis vectors there
is no vacant space for the fourth or higher linear-
independent real vector. The variables of mass,
time and charge are meant as real-valued so
the complex manifold of vectors of physical fields
with additional imaginary basis vectors should be
considered as vectors of the real linear space C6

over the field R of real numbers [13] with the real
pseudo-euclidean square [14] that results from
the mutual orthogonality of the sextet of all real
and imaginary basis vectors. The additional basis
notional vectors ii, ij, ik have in this real pseudo-
euclidean space the pure imaginary unitary value
of the ”length” [14, 15], which is derived from the
pseudo-euclidean square defined in the same
manner as in the real Euclidean space V3 and
agrees with the requirement of nonexistence of
these notional vectors in the space V3.

The similar linear space has been considered
formally in more details [1] when seeking
a solution of the nonself-adjoint Laplace
operator derived from Maxwell equations, which
corresponds to the eigenvalue in the form of
the complex Euclidean square of some vector
k̃ in the real-base three-dimensional Euclidean
space, but generally with complex components.
This vector – the wave vector may be considered
as a vector of the three-dimensional complex
Euclidean space [14] C3 over the field C of
complex numbers [13]. The similarly specified
complex n-dimensional space was introduced
in finding a modification of the Jordan matrix
suitable for the case of a real space [13]. In the
three-dimensional complex Euclidean space the
scalar, vectorial and mixed products of vectors
may be considered formally, at least in the
component form, as defined in the real Euclidean
space V3. However, the derivatives in differential
operators are taken with respect to the real
spatial variables [1].

Certain general geometric restrictions have been
noted [1] concerning a behaviour of vectors

from the complex Euclidean space if those are
considered in the real three-dimensional space,
which is associated with the physical reality. The
restrictions relate to a known duality [13, 14]
of the representation of the one and the same
complex affine space as the spaces of different
dimension over the fields of complex (e. g. C3

over the field C) or real (e. g. C6 over the
field R) numbers. Subscripts denote here the
number of basis vectors. This duality is closely
related to the fundamental theorem of algebra,
to polynomial factoring with coefficients in the
field R of real numbers and to the real Jordan
canonical form [13]. In general, there is no
canonical basis in which the matrix of a linear
operator acting in a real n-dimensional space
Rn takes the Jordan form [13], if only because
the characteristic polynomial of the operator can
have imaginary roots. To find a modification
of the Jordan matrix suitable for the case of
a real space the linear transformation is used
which constructs a basis in the real space Rn by
replacing each pair of the complex conjugate
vectors of the Jordan basis by a pair of real
vectors [13]. The transformation resembles the
similar one known in theories of superfluidity and
superconductivity as Bogoliubov transformation.
The different dimensionality of complex and real
representations of the unique complex affine
space results in different possible definitions (see
Sections 8.2, 9.2, 9.4 in [13]) of the products of
vectors in these complex affine spaces, including
the mentioned above pseudo- and complex
Euclidean square [14]. That ambiguity could
expand [1] the variety of possible solutions of
the non-self-adjoint problems and might occur
to be useful in such the first, linear approach
to finding solutions and to the future analysis of
obtained solutions, which in general should be
verified empirically, however.

In the second, nonlinear approach the restrictions
are a result of a consideration of the vectors
from the real linear space C6 over the field R
of real numbers, which is the linear manifold
spanned by the sextet of real and imaginary basis
vectors and has an even dimensionality as the
real number representation of the complex affine
space [13, 14]. To the contrary, we consider such
vectors as the vectors of the fields of physical
quantities as if those reveal themselves in the

7
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three-dimensional space V3 over the field R of
real numbers with the real original basis i, j, k,
a dimension of which is not even. As a result,
this three-dimensional real space complemented
by the complex vector manifold of physical fields
cannot be in general a three-dimensional linear
space due to its odd dimensionality. Such a
three-dimensional combination of the space
and the manifold cannot be the real number
representation of the complex affine space, the
dimensionality of which should be even [13, 14].
Consequently this combination can not be a
subspace of the complex space C3 over the field
C or of the real space C6 over the field R. It may
form only [1] a three-dimensional factor space
[13] of the C6 over the field R with respect to
the kernel subspace consisting, for example, of
the pure imaginary vectors of this real space C6,
which transforms into the null-vector of the real-
base three-dimensional space V3 over the field R
of real numbers.

An injection of the space V3 by the vector
manifold of the empiric physical fields allows to
use the suitably defined and verified empirically
operations of products of three-dimensional
vectors and the differential field operators in
expressions, resembling empiric physical laws,
for all vectors of the manifold as if it belongs to
the space V3. However, in this second approach
the space V3 can not continue to be the affine
space being combined with the manifold. It
means that the ”physical space”, comprising
the combined vector manifolds of the space
V3 and of the empiric physical fields, loses
main attributes of the linear three-dimensional
space over the field R of real numbers, which
include the addition rule of vectors and the
rule for multiplication of a vector by a number
together with respective axioms obeyed by
these operations [13]. The vector manifold of
empiric physical fields, being combined with the
space V3, transforms it into the nonlinear three-
dimensional vector manifold corresponding to
the three-dimensional factor space [13] of the C6

over the field R. Consequently there is no real
three-dimensional basis which could produce
this manifold as a linear manifold over the field
R of real numbers spanned by three vectors of
this real basis. It means that such basis could
not be obtained by any linear mapping of the

original real three-dimensional basis i, j, k of
the space V3 which would be described by an
3 × 3 matrix of real constants. Otherwise, the
existence of a linear transformation, which could
produce such basis, should lead to the linearity of
a vector manifold of the ”physical space” due to
the general K-isomorphism of all n-dimensional
(here n = 3) linear spaces over a field K [13].

Thus a linear mapping of V3 should be replaced
by a general nonlinear transformation to describe
a vector manifold of the ”physical space”. Such
transformation may be thought as an injection
of the additional vector manifold of physical
fields into the linear space V3 accompanied
by the tensile-compressive deformation of the
last. It can be described by mapping the
three-dimensional Euclidean linear space V3

into its three-dimensional ”frames” occupied
by the combined Euclidean vector manifold of
this former space V3 and of physical fields and
can be defined, for example, by an explicit real
function y = y(x), where x = (x1, x2, x3) and
y = (y1, y2, y3) are vectors of the space V3 and
of the combined ”physical” manifold respectively,
by a more general implicit relation F (x,y) = 0,
or by a parametrically definable function.

In accordance with [15] let dy dy and dx dx be
Euclidean squares of the ”distance” between
the points (vectors) y, y + dy and x, x + dx.
Those are the comparable line elements in
the nonlinear vector manifold and in the linear
space V3, from which this nonlinear manifold has
been transformed. Let dσ2 and ds2 denote the
Euclidean squares, respectively. The mapping
is Gauss conformal if there is a positive scalar
function λ(x) that satisfies the relation dσ2 =
λ(x)ds2. It is angle-preserving and Liouville’s
theorem on conformal mappings in Euclidean
space states [15] that any smooth conformal
mapping on a domain of Rn, where n > 2,
can be expressed as a composition of a finite
number of translations, similarities, orthogonal
transformations and inversions: they are Möbius
transformations (in n dimensions). This theorem
severely limits the variety of possible conformal
mappings in R3 (here in V3), and higher-
dimensional spaces.

Three of four possible elementary operations of
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translations
y = x+ h , (4.1)

similarities y = µx, orthogonal transformations
y = Cx, where h = (h1, h2, h3) is the
constant vector, µ - the real constant scalar,
and C - the orthogonal matrix [13, 15] of
real constants, are the linear maps with λ =
1 for the first and third operations and with
λ = µ2 for the second operation [15]. To
ensure the inevitable nonlinearity of a vector
manifold of the ”physical space” these conformal
maps of translations, similarities, orthogonal
transformations or any composition comprising
only these elementary linear maps should be
eliminated from possible general transformations
of V3 into the ”physical space”. Conformal maps
of translations and similarities and of orthogonal
transformations may be considered, respectively,
as global translational (translational-dilatational,
in general) and rotational symmetries of a finite-
dimensional affine space. It means that these
global symmetries correspond to linear maps
of the affine space into itself. Consequently,
the physical nonlocality, which is embedded
in Maxwell equations and has been discussed
in the beginning of this section, leads to the
inevitable nonlinearity of the vector manifold
of the non-empty ”physical space” resulting in
the broken global translational and rotational
symmetries of the formerly empty affine space
V3. These global symmetries may be considered
as necessary and sufficient conditions of the
linearity of a real finite-dimensional vector space
(in n dimensions, where n > 2), a failure of
which corresponds reasonably to the supposed
above inhomogeneous distribution of constitutive
parameters over the space V3. Necessity follows
from the definition [13] of linear space and
sufficiency has been proven just above.

Thus the only allowed one of four possible in V3

elementary operations of global Gauss conformal
maps is the inversion

y =
x

(x · x) (4.2)

of the affine space V3 into a nonlinear vector
manifold of the ”physical space” with the
nonlinear scalar function λ(x) = (x · x)−2 [15],
where (x · x) is the scalar product. Any arbitrary
composition of elementary conformal maps of
the space V3 into the nonlinear manifold of

”physical space”, which may be required in the
solution of an electrodynamic problem, should
necessarily incorporate the nonlinear map of
inversion among four possible types of conformal
maps. This conclusion illustrates the mentioned
above tensile-compressive deformation of the
”physical space”. It is a consequence of the
duality in the representation of the complex affine
space as the complex or real space and finds
good agreement with the conception of the phase
space.

The ambiguity in possible definitions of products
of vectors in finite-dimensional complex affine
spaces can expand, as it has been previously
discussed in this section, the variety of possible
solutions of the non-self-adjoint problems, if
only because the adjoint operators are defined
concerning the fixed bilinear form [13, 14]. This
ambiguity can lead also to different nonlinear
metric properties of a vector manifold of the
”physical space”. It may be illustrated by
the simplest one-dimensional complex space
C1 and by its two-dimensional real number
representation C2. Let dz dz be again a scalar
square of the ”distance” between the complex
points (complex vectors) z, z+dz, i. e. of the line
element, where z = (x+ iy)i and z+ dz = ((x+
dx)+i(y+dy))i are vectors of the complex space
C1. Let C1 be a complex unitary space with the
Hermitian scalar product [13] of the line element
dz dz = ((dx + idy) i, (dx − idy) i) = dx2 + dy2

or, alternatively, be a complex Euclidean space
[14] with the Euclidean scalar square dz dz =
((dx+idy) i, (dx+idy) i) = (dx2−dy2)+2 i dx dy.
Consider the respective real space C2 consisting
of the formal sums z = x i+ y(i i) and z+ dz =
(x + dx) i + (y + dy)(i i), which are vectors in
a complex orthonormal basis of the real space
C2 [13] (taking account of the pure imaginary
unitary ”length” of the basis notional vector).
The following natural scalar products may be
defined arbitrarily, being not predetermined a
priori as well as for the space C1, by the formulae
dz dz = ((dx i + dy(i i)), (dx i + dy(−i i))) =
dx2 + dy2 corresponding to the real Euclidean
space with the Hermitian scalar product of the
basis notional vector, or alternatively, by dz dz =
((dx i + dy(i i)), (dx i + dy(i i))) = dx2 −
dy2 corresponding to the real pseudo-euclidean
space [14] with the Euclidean scalar square of the
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basis notional vector.

A general nonlinear transformation into a vector
manifold of the ”physical space” for the case
of C2 can be described by mapping the one-
dimensional Euclidean linear space V1 into
its one-dimensional ”frames” occupied by the
combined vector manifold of this former space
V1 and of physical fields and can be defined, for
example, by a parametrically definable function
using the component x of the real basis vector
as a parameter, i. e. z(x) = x i + y(x)(i i).
It allows to estimate a respective transformation
of a scalar square of the line element. Thus
for considered above scalar products of the
line element dσ2 one obtains the following x-
dependencies dσ2 = λ(x)ds2 : [1 + (dy/dx)2]dx2

for a complex unitary space C1 with the Hermitian
product as well as for a real Euclidean space C2

with the Hermitian product of the basis notional
vector, [1 + i(dy/dx)]2dx2 = [1 − (dy/dx)2 +
2i(dy/dx)]dx2 for a complex Euclidean space
[14] C1 with the Euclidean scalar square, and
[1 − (dy/dx)2]dx2 for a real pseudo-euclidean
space [14] C2 with the Euclidean scalar square of
the basis notional vector. A scalar function λ(x)
characterising a transformation of the metric is
generally the nonlinear square-law real function,
except the complex function for the complex
Euclidean space C1. This transformation function
is of an elliptic type for the spaces C1 and C2 with
the Hermitian product, and of a hyperbolic type
for the spaces C1 (at least for the real part of
λ(x)) and C2 with the Euclidean scalar square.
In this last case of the pseudo-euclidean space
C2 there is a limitation of the value of derivative
in the inequation λ(x) = [1 − (dy/dx)2] ≥ 0 to
provide the real, not pure imaginary length of the
line element for it would not belong to the zero
class of a factor space and could be measurable
in the ”physical space” of real vectors.

5 EFFECTIVE PARAMETERS
AND ABRAHAM FORCE

The nonlocality may be considered as an
indication of inhomogeneity of the ”physical
space” corresponding to the broken global
translational symmetry, that has been formally
demonstrated in the previous section 4. In

the problem considered here the nonlocality is
revealed as a requirement of electroneutrality,
i. e. as a requirement of an absence of
extrinsic charges (see the first of Eqs (3.7)).
The requirement of electroneutrality results in
the zero values of the bulk integral electric
charge and of the total kinetic (true) momentum
p = 0 in the absence of extrinsic currents, if
the total momentum can be written in the form
characteristic of the rigid medium p = mv
where the velocity v is the same constant
vector for all particles or parts of the rigid
medium. Here the velocity v of an intrinsic
charge carrier is measured relative to the rest
reference coordinate system which is exterior to
the conductor, m is the parameter expressed
in units of mass. The approximation of a rigid
medium correlates with the discussed in section
2.2 feasibility of ”acoustic” conditions for the
spatially dispersive plasmon polariton frequency
and with Landau criterion for superfluidity. The
presence of the critical minimal velocity for
intrinsic elementary excitations in the system
leads to the movement of the system as a whole,
i. e. as a rigid medium when the velocity of the
movement is lower than the critical velocity for
intrinsic excitations.

The latter requirement of the zero total
momentum just corresponds to inhomogeneity of
the space relative to the movement of participate
matter considered as a rigid medium. Otherwise,
the constant non-zero vector of the total true
(kinetic) momentum p = mv ̸= 0 would
correspond to the invariant state of the ”physical
space” comprising current carriers. The instant
states of such physical system could only differ in
just spatial coordinates of current carriers. These
variations of coordinates would not affect all
other parameters of the momentum-conserved
state. Thus coordinates of current carriers in
every instant state of such physical system could
be linearly transformed by translations of the
space V3, in which the coordinates should be
determined. The constant vector in the linear
map of translations (4.1) would be equal to
h = p∆t/m = v∆t, where ∆t should be
the respective interval of time. However, the
linear conformal map of translations (cf. Eq.
(4.1)) must be excluded from possible general
transformations of a finite-dimensional affine
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space V3 into the nonlinear vector manifold of
the ”physical space” as it has been formally
derived in section 4. Consequently, the global
translational symmetry of a finite-dimensional
affine space should be broken in the nonlinear
real vector manifold of the ”physical space”
where coordinates of current carriers would be
determined. The non-zero vector of the total true
(kinetic) momentum p ̸= 0 can not belong to this
”coordinate physical space” in the approximation
of rigid medium. Formal backgrounds of the
previous section allow concluding that non-zero
vectors of the total true (kinetic) momentum can
belong only to the zero class of a factor space,
have the pure imaginary ”length” and cannot
be measurable in the real ”coordinate physical
space” in this approximation.

These conclusions cannot be generalised
with respect the composite non-rigid medium
of current carriers even under conditions of
electroneutrality since the mass factor, which has
been additive in the rigid-medium approximation
m =

∑
mi, comes in the linear combination with

possibly different vectors of velocity and cannot
be involved reciprocally in the vector of translation
h. As a result the map of translations (cf. Eq.
(4.1)) for the composite non-rigid medium fails
to be linear on the kinetic momentum (h ∼ p)
in general. This different behaviour of rigid and
composite non-rigid media correlates with earlier
discussions of electrodynamic nonlocality (cf.
[16] and references therein).

A displacement current is a movement of the
intrinsic charge carriers and can possess only
the quasi-momentum ~k ̸= 0 in the rigid-medium
approximation. The quasi-momentum vector
manifold corresponds to the allowed conformal
map of inversions (cf. Eq. (4.2) and discussions
in section 4).

A stationary current density j̃, substituted into
the Eq. (3.8) instead of the (∂D̃/∂t) in the form
of rotH̃, may not satisfy the basic requirement of
electroneutrality being generally composed of the
induced intrinsic and extrinsic components and
can have the total kinetic (true) momentum p ̸= 0
even in the rigid-medium approximation.

To fulfil the electroneutrality requirement
unambiguously one can introduce it, together

with the condition p = 0, in the constitutive
parameter k′′ef in the Eq.(3.8) similar to the
manner used in the quasiparticle formalism. A
displacement current alters an electric dipole
moment, which is defined as an electric charge
multiplied by a distance q ·∆x. Let an increment
of the electric dipole moment in the first interior
coordinate system, acquired by a moving charge
in a time interval t0, is equal to qm∆xm where
∆xm = vmt0 and vm is the velocity of the
charge movement in this first coordinate system,
relative to the x-axis of which a charge is
moving. Since in the surface impedance (plane
wave) approximation the three-dimensional
electrodynamics problem is reduced to the
one-dimensional partial differential equation
[6, 7, 8, 9, 11], one can use the specific linear
density of the mobile charges η in place of the
specific bulk charge density generally considered
[6]. In a conductor, it should be compensated
by the same value of the specific linear density
of the charge of the opposite sign ρ to fulfil the
electroneutrality requirement. It may be treated
as a charge of the background and can be
assigned to the interior coordinate system. In
this paradigm the moving intrinsic charge may be
assumed as an integrator of the incoming specific
linear density of mobile charges in the process
of a charge motion along the x-coordinate, e.
g., q = η · |∆x|. The dipole moment, acquired
by a charge moving relative to the first interior
coordinate system qm∆xm where ∆xm = vmt0,
due to an absence of extrinsic charges should
be equal to the dipole moment acquired by a
charge in any interior coordinate system as well
as in the second interior coordinate system,
relative to which the charge looks like immobile
in the sense of the zero kinetic (true) momentum
in the exterior rest coordinates, qL∆xL where
∆xL = vLt0 and vL is the velocity of the charge
movement in this second interior coordinate
system. Here the subscript L stands for Langmuir
and means that the parameters of this looking-
like-in-the-rest charge carrier enter the plasma
frequency (2.4), (2.5). That allows fulfilling the
requirement of zero kinetic (true) momentum.

The boundary conditions in directions lateral
to the boundary plane are not fixed at any
determinate spatial points for the surface
impedance (plane wave) approximation, so the
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electroneutrality requirement should result in
the local implementation of this requirement
for the moving intrinsic charge. To assure
it simultaneously with the above-considered
condition of zero kinetic (true) momentum and
regardless of lateral boundary conditions let us
compare the electric dipole moments in both
the first and the second interior coordinate
systems, which have been introduced here.
As it was mentioned previously, the electric
dipole moments acquired by a charge in a
time interval t0 should be the same in both
interior coordinate systems due to an absence
of extrinsic charges qm∆xm = qL∆xL. Here
∆xm = vmt0, ∆xL = vLt0, vm and vL are the
respective velocities of the charge movement in
the first interior coordinate system, relative to
which a charge is moving, and in the second
interior coordinate system, relative to which the
charge looks like immobile in the exterior rest
reference coordinates. The electric charge of the
immobile carrier qL corresponds to the charge
value entering the Langmuir plasma frequency
(2.4), (2.5).

The condition of local neutrality for the moving
intrinsic charge, which acts as a discussed
above integrator of the incoming specific linear
density η, may be formulated as a predicate
of the local even parity of a spatial distribution
of the bare linear density ρ of the background
charge of the opposite sign in a vicinity of the
location point of moving charge. Such a local
symmetry of the background ρ regions around
the peak η acquired by the charge qm moving
over these symmetric sections of the bare,
noncompensated background allows remaining
the global electroneutrality irrespectively of lateral
boundary conditions. The desired symmetry of
the bare background sections can be assured
by a movement of the mobile charge with the
velocity vm relative to the first coordinate system,
which itself should move in the opposite direction
with the value of velocity vL = 2vm relative to
the exterior rest coordinates. A moving intrinsic
charge qm would integrate the incoming specific
linear density of mobile charges η stripping it
off both sides around this moving charge. The
section of bare background on the one side

would be formed due to the charge movement
together with the first coordinate system with
the velocity value vL = 2vm. The same section
on the opposite side would be formed due to
the movement of the charge itself relative to
the first coordinate system with the velocity
value vm. Substituting this ratio of velocities in
the equality of dipole moments in both intrinsic
coordinate systems qm∆xm = qL∆xL in the
form of ∆xm = vmt0, ∆xL = vLt0 one obtains
the relations qm · vmt0 = qL · vLt0 = qL · 2vmt0,
i. e. the double ratio qm = 2qL for the charges in
the first and second intrinsic coordinate systems.
Since the charge qL enters the Langmuir plasma
frequency expressions (2.4), (2.5), the charge
qm = 2qL being substituted in these expressions
gives the double ratio for penetration depths
and wave numbers k′′ef = 2k′′A in the force
expressions (3.4) and (3.8). So it may be argued
that at least two coordinate systems should be
introduced in an electrodynamics problem to
describe the nonlocality properly. It would be
analogous with the situation of two travelling
waves, which could compose one standing wave,
and vice versa.

The double ratio k′′ef = 2k′′A in the force
expressions (3.4) and (3.8) results from the
non-dissipating direct current, which provides
the Meissner effect and may be presented as
the superposition of plasmon polaritons with
positive and negative frequencies, corresponding
to the zero total frequency, and with equal
wavenumbers k′′0 , corresponding to the double
total wavenumber 2k′′0 (cf. Eqs (2.6) and (2.7)).
The comprehensible generally accepted scenario
emerges from the given explanations, according
to which the Meissner effect in superconductors
is the result of an incomplete cancellation of
the diamagnetic and the paramagnetic currents
in response to an external magnetic induction
field B at temperatures below the transition
temperature.

Such ”pairing” effect should be inherent both
for superconductors and for ”normal” perfect
conductors. This conclusion is supported by
the experimental data [17] for mesoscopic
conductors and probably [18] for nonequilibrium
electron-hole droplets.

12



Dresvyannikov et al.; PSIJ, 19(3): 1-15, 2018; Article no.PSIJ.43533

6 LONDON EQUATIONS AND ABRAHAM FORCE

The partial derivative of magnetic induction with respect to time in the second of Maxwell equations
(3.6) may be represented as

(∂B̃/∂t) = −rot Ẽ = −rot (̃j/σ̃) = −(iωµ0/(k
′′
0 )

2)rot j̃, (6.1)

where the first London equation [2, 10, 11] d̃j (z, t)/dt = d(̃j (z)eiωt)/dt = iωj̃ (z, t) = (1/µ0λ
2
0)Ẽ =

((k′′0 )
2/µ0)Ẽ has been used to derive the conductivity σ̃ from Ohm’s law j̃ = σ̃Ẽ = (1/iωµ0λ

2
0)Ẽ =

((k′′0 )
2/iωµ0)Ẽ. Substituting the Eq. (6.1) and second London equation [2, 11] rot j̃ = −(1/λ2

0)H̃ =

−(k′′0 )
2H̃ into the last term of Abraham force (3.5), one gets the reinforced expression instead of the

Eq. (3.8) (
1− 1

ε̃

)[
∂D̃

∂t
× B̃

]
+

(
1− 1

ε̃

)[
D̃× ∂B̃

∂t

]
=

=

(
1− 1

ε̃

)[
rot H̃× B̃

]
−

(
1− 1

ε̃

)[
D̃× rot Ẽ

]
=

=

(
1− 1

ε̃

)[
rot H̃× B̃

]
−

(
1− 1

ε̃

)[
D̃× iωµ0

(k′′0 )
2
rot j̃

]
=

=

(
1− 1

ε̃

)[
rot H̃× B̃

]
−

(
1− 1

ε̃

)[
Z̃ D̃× 1

k′′0
rot j̃

]
=

=

(
1− 1

ε̃

)[
rot H̃× B̃

]
+

(
1− 1

ε̃

)[
B̃y(0)i× k′′0 H̃

]
= (6.2)

=

(
1− 1

ε̃

)
µ0

[
rot H̃× H̃

]
+

(
1− 1

ε̃

)[
k′′0
µ0
B̃y(0)i× B̃y(0)j

]
=

= 2

(
1− 1

ε̃

)[
k′′0
µ0
B̃y(0)i× B̃y(0)j

]
.

Here the modulus (Eq. (2.9)) and argument
ψ1 = π/2 of the complex surface impedance
Z̃ have been used similarly to the Eq. (3.4).
Comparisons of the Eqs (3.4), (3.8) and (6.2)
reveal the double ratios k′′ef = 2k′′A = 2k′′0 in the
force expressions.

The equal values of penetration depths and wave
numbers k′′0 = k′′A in the force expressions
(3.4) and (6.2) show that the Abraham force
in the Eq. (3.4) in the stationary limit ω →
0 correctly deals with the role of the gauge
degrees of freedom to define the fields H
and D. The fixed argument and modulus of
a complex surface impedance Z̃ determined
by conditions of the spatial force resonances
are obviously significant in gauge fixing. Such
”gauge fixing” in the Eq. (3.4) to the London
gauge [11], postulated in the force expression
(6.2) by London equations, can be clarified
by formal backgrounds of the electrodynamic
nonlocality described in the Sec. 4. Backgrounds

of the spatial nonlocality are closely relevant
to the principles of gauge theories such as
the configuration space, redundant degrees
of freedom, classes. However, the Sec.4
is addressed mainly to analyse the nonself-
adjoint problems and further detailed formal
comparisons of approaches presented here, and
in gauge theories are beyond the scope of this
study.

The last notice also concerns the following
conclusion. The equalities (3.4), (3.8) and (6.2)
demonstrate that finding the proper, empirically
verified solution of the electrodynamic problem
may require an introduction of the effective
constitutive parameters (cf. Sec. 5) or postulation
of the additional phenomenological equations (cf.
Sec. 6) depending on the kind of representation
of the original problem operator. The reasons for
the dependence on operator representation can
be found also in the Sec. 4. It has been argued
that the combined vector manifold of the real

13



Dresvyannikov et al.; PSIJ, 19(3): 1-15, 2018; Article no.PSIJ.43533

three-dimensional linear space and the empiric
physical fields transforms into the real nonlinear
three-dimensional vector manifold. This can
affect the linear properties and commutativity
of operators acting in this nonlinear manifold.
In turn, the discussed dependence on operator
representation can be the result of lost linearity
and commutativity especially in the case of
evaluating the indeterminate form in the zero
frequency limit. It will be considered in details
elsewhere.

7 CONCLUSIONS

The study derived the general frequency
dependence of the frequency-dependent surface
impedance for the solutions corresponding
to the spatially dispersive eigenvalues of the
permittivity operator for conductors for all
solutions including that for superconductors. It
is shown that an incorporation of the spatial
dispersion leads to an appearance of the
Meissner effect in perfect conductors in the
same manner as in superconductors. Formal
backgrounds of the electrodynamic nonlocality
were deduced. This expanded conception is
promising for applications in novel nanoelectronic
devices exploiting the coherence, nonlocality
of the superconducting-like state and for
search of approaches to the problem of room
temperature superconductivity. The obtained
results demonstrate that finding the proper,
empirically verified solution of the electrodynamic
problem may require an introduction of the
effective constitutive parameters or postulating
the additional phenomenological equations in
accordance with the kind of formal representation
of the original problem.
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