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Abstract

In this paper, we include stochastic perturbation into SIRS epidemic model incorporating media
coverage and study their dynamics. Our model is obtained by taking into account both for
demographic stochasticity and environmental fluctuations on contact rate before alert media β1.
First, we show that the model is biologically well-posed by proving the global existence, positivity
and boundedness of solution . Then, sufficient conditions for the extinction of infectious disease
is proved. We also established sufficient conditions for the existence of an ergodic stationary
distribution to the model. Finally, the theoretical results are illustrated by numerical simulations;
in addition we show that the media coverage can reduce the peak of infective individuals via
numerical simulations.
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1 Introduction

In Epidemiology, mathematical modeling is an important tool to understand and control the spread
of infectious diseases. In 1927, Kermack and Mc Kendricks [1] establish the classical deterministic
SIR (Susceptible-Infected-Removed) model. Since then, many authors have studied the SIR disease
model. The SIR model is the simplest description for some infectious diseases of permanent or
long immunity, such as chickenpox, smallpox, measles, etc. But we know that for some diseases,
such as influenza and sexual diseases, recovered or removed individuals lose immunity and return
to the susceptible class. In mathematical modeling, compartmental SIRS model is commonly used
to describe the dynamics of these diseases. The deterministic SIRS model can be expressed by the
following ordinary differential equations:

dSt
dt

= Λ− µSt − g(It)St + ηRt
dIt
dt

= g(It)St − (µ+ α+ λ)It
dRt
dt

= λIt − (µ+ η)Rt

(1.1)

The parameters in system (1.1) have the following biological meanings: Λ denotes the influx of
individuals into susceptible class, µ represents the natural death rate of S, I,R compartments, λ
denotes the recovery rate of the infective individuals, η stands for the rate at which recovered
individuals lose immunity and return to the susceptible class and α denotes the death rate due to
disease. These parameters are assumed to be nonnegative. Many authors have investigated the
SIRS epidemic models [2, 3, 4] and references therein. Transmission of the infection is governed
by the incidence rate g(I)S and g(I) is called the infectious force. When an infectious disease
appears and starts to spread in a region, one of the immediate actions to take is to educate people
about the preventive knowledge of the disease through mass media coverage [5]. Mass media
(television, radio, newspapers, billboards and booklets) have been used as a way of delivering
preventive health messages due to their potential influence on people’s behavior [6]. For instance,
during epidemic of human Ebola virus disease in West Africa (2014), media coverage played an
important role in helping both the government authority make intervention strategies to contain
the disease and people’s response to the disease . These messages greatly reduced the contact
number per unit time, and therefore decreased the incidence rate. Due to media coverage, changes
in human behavior consequently lead to a reduction in the number of the effective contact rate per
unit time of susceptible individuals [7, 8]. This demonstrated the importance of considering the
infectious forces that include the adaptation of individuals to infection risks under media coverage.
Many mathematical models has been formulated to describe the impact of media coverage on the
transmission dynamics of infectious disease [9, 10, 11] . Those important and useful works on
deterministic models provide a great insight effect on the epidemic model.

However, real biological systems will always be exposed to influences that are not completely
understood or not explicitly feasible to model . Population growth in the natural world is inherently
stochastic because of numerous unpredictable causes . Ignoring these phenomena in the modeling
may affect the analysis of the studied biological systems. Let us note that for human disease, the
nature of epidemic growth and spread is inherently random due to the unpredictability of person-
to-person contacts [12], and population is subject to a continuous spectrum of disturbances . A way
of modeling these elements is by including stochastic influences or noise into epidemic model. Rand
and Wilson [13], partitioned this stochastic effects into three classes: demographic fluctuations or
internal fluctuations arising from stochastic nature of population, randomness in the environment
or external fluctuations and thereby in the parameters affecting the epidemic and measurement
errors which are easier to handle as they are not involved in the dynamics. To be realistic, models
of biological systems should take into account a change in the environment and the variability
of characteristic of individuals . Hence, introduction of stochasticity into population dynamics of
diseases can bring to light new insights. In recent years, epidemic models under environmental
noise described by stochastic differential equation (SDE) have been studied by many researchers.
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Consequently, many authors introduced stochastic perturbations into deterministic models to reveal
the effects of environmental noise in biological system and epidemic model [14, 15, 16, 17]. Many
realistic stochastic epidemic models come from their deterministic formulations [18, 19, 20]. The
main focus of this article is to investigate the effect of external and internal fluctuations on the
disease spreading incorporating media coverage. The rest of this paper is organized as follows.
In section 2, we derive a stochastic differential SIRS model incorporating media coverage with
necessary definitions and preliminaries that will be used in our analysis. The global existence,
positivity and the boundedness of the solution are studied in section 3. In this section, sufficient
conditions for the extinction and the existence of a unique stationary distribution are obtained. We
end this section by numerical simulations to illustrate our theoretical results. In section 4, some
conclusions are given.

2 Materials and Methods

Studying epidemic model , leads to two problems. The first one is: will the disease die out? The
second problem is: will the disease persist in the population? This section presents the main results
of our work. We used the theory of Has’minskii [21], to show that there is an ergodic stationary
distribution for the solution of epidemic model (2.4), when the intensity of white noise is small:
then the infectious disease described by system (2.4) will be persistent. To prove the extinction
of the disease, we showed that It will tend to zero exponentially with probability one, by using
stochastic calculus and Lyapunov function. In order to confirm our theoretical results , we provide
numerical simulations using Milstein’s method mentioned in [22]. Figure were developed using
Matlab software. To estimate the probability density function of St, It and Rt, we used kernel
density estimation (KDE).

2.1 Stochastic model derivation

Let St, It and Rt be the number of susceptible, infective and removed individuals at time t,
respectively. In the absence of media coverage, in many epidemic models, the bilinear incidence
rate βStIt, are frequently used. The bilinear incidence rate is based on the law of mass action.
In the presence of media coverage, social distancing mechanisms come into effect. The reporting
by media is assumed to be an increasing function of the number of present infectious cases, as a
consequence at the contact rate between susceptible and infectious individuals there is a decreasing
function of the number of present infectious cases . Model (1.1) includes the adaption of individuals
behavior under media coverage. Especially, Liu and Cui [9], Tchuenche et al.[23] , and Sun et
al.[10] incorporated a nonlinear function of the number of infective in their transmission term to
investigate the effects of media coverage on the transmission dynamics:

g(I) =

(
β1 −

β2I

b+ I

)
I,

where β1 is the contact rate before media alert; the term β2I
b+I

measures the effect of reduction of the
contact rate when infectious individuals are influenced by media alert. Because the coverage report
cannot prevent disease from spreading completely we have β1 ≥ β2. The half-saturation constant
b > 0 reflects the impact of media coverage on the contact transmission. The function I

b+I
is a

continuous bounded function which takes into account disease saturation or psychological effects
[24]. It follows from above discussion, that SIRS epidemic model incorporating media coverage
takes the following form 

dSt
dt

= Λ− µSt −
(
β1 − β2It

b+It

)
StIt + ηRt

dIt
dt

=
(
β1 − β2It

b+It

)
StIt − (µ+ α+ λ)It

dRt
dt

= λIt − (µ+ η)Rt

(2.1)

3



N’zi and N’zi; JAMCS, 34(3): 1-19, 2019; Article no.JAMCS.52084

The basic reproduction number of system (2.1) is R0 =
Λβ1

µ(µ+ α+ λ)
. It is a threshold quantity

which determines the extinction and persistence of the epidemic. Model (2.1) has always a disease-

free equilibrium E0 =
(

Λ
µ
, 0, 0

)
and an endemic equilibrium E∗ = (S∗, I∗, R∗) if R0 > 1. The

disease-free equilibrium is globally asymptotically stable if R0 ≤ 1, that is the disease dies out.
The endemic equilibrium is globally asymptotically stable if R0 > 1, in the set Γ, were Γ =
{(x1, x2, x3) ∈ R3/x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, 0 < x1 + x2 + x3 ≤ Λ

µ
}. This means that the disease

persist in the population. These results of model (2.1) were studied in [9]. There are mainly
four types of approaches for applying modeling techniques of stochastic differential equation (SDE)
to introduce environmental noises into biological systems. In the first modeling procedure, an
SDE model is obtain as approximation to the continuous time Markov chain [25]. The second
procedure is the technique of parameter perturbation. Due to external fluctuations, which account
for other sources of stochasticity such as environmental fluctuations due to changes in meteorological
conditions, variability within and between individuals and other factors, parameters involved in
epidemic models are not absolute constants, and they may fluctuate around some average value. In
[26, 27], authors demonstrated that one more system parameter(s) can be perturbed stochastically
with white noise term to derive environmentally perturbed system. In particular, the transmission
of influenza is sensitive to random meteorological factors such as absolute humidity, temperature
and precipitation. Random fluctuations in temperature or humidity will have an impact upon the
fluctuations in contact rate β. To incorporate the effect of environmental random fluctuations on the
transmission dynamics of influenza A in human population based on mathematical model, Keeling
and Rohani [28] introduce an additive stochastic perturbation in the contact rate β. In this case, β

changes to a random variable β̃ with average value β and variance σ2. More precisely each infected
individual makes

β̃dt = βdt+ σdBt

potentially infectious contacts with individuals in [t, t+dt]. Thus the number of potentially infectious
contacts that a single infected individual makes with another individual in [t, t + dt] is normally
distributed with average βdt and variance σ2dt. In [29, 30, 31, 17] , the situation of parameter
perturbation is considered. In [29] Weiming et al., assumed that the contact rate β1 in model (2.1)
is subject to environmental noise, that is β1dt→ β1dt+σdBt. Then system (2.1), becomes Itô SDE


dSt =

(
Λ− µSt −

(
β1 − β2It

b+It

)
StIt + ηRt

)
dt− σStItdBt

dIt =
((
β1 − β2It

b+It

)
StIt − (µ+ α+ λ)It

)
dt+ σStItdBt

dRt = (λIt − (µ+ η)Rt)dt

(2.2)

where Bt is a browmian motion and σ is the intensity of environmental white noise. In [29], the
authors proved how environmental fluctuations of the contact coefficient affect the extinction of
the disease. Such a form of stochasticity neglects the individual nature of the population. The
third approach to include random perturbation in a biological model is considered in [14]: here,
the authors formulate the stochastic model by introducing the multiplicative noise terms into the
growth equations of susceptible, infective and removed populations. This approach assumed: that
stochastic environmental factor acts simultaneously on each individual in the population and that
stochastic perturbation is of a white noise type which is directly proportional to the population size.
Mathematically speaking, this approach is based on the assumption that the noise is uniform over
the state and over time [32]. Following this approach, Yan. Z et al. [33], investigate the effects of
environment fluctuations on the disease’s dynamics through studying the stochastic dynamics of an
SIRS model incorporating media coverage. They got the following system of stochastic differential
equation
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dSt =
(
A− dSt −

(
β1 − β2It

α1+It

)
StIt

1+α2It
+ fRt

)
dt+ σ1 StdB

1
t

dIt =
(

(β1 − β2It
α1+It

) StIt
1+α2It

− (d+ e)It − γIt
)
dt+ σ2ItdB

2
t

dRt = (γIt − (f + d)Rt) dt+ σ3RtdB
3
t

(2.3)

where Bit, i = 1, 2, 3 are independent Brownian motion with Bi0 = 0, i = 1, 2, 3 and σi, i = 1, 2, 3
is real constants and known as the intensity of environmental fluctuations. Their authors proved
that system (2.3) has a stationary distribution under certain parametric restrictions. The stochastic
model (2.3) takes care of the fact that intrinsic growth rates of susceptible, infective and removed
individuals are randomly fluctuating due to demographic stochasticity. This formulation takes into
account random immigration and emigration or death and birth or individual characteristic of
constituents of system (susceptible, infective and removed). The last one, is white noise stochastic
perturbations around the positive endemic equilibrium of epidemic models . For example, in [18]
Liu investigated an SIRS epidemic model incorporating media coverage with random perturbation.
He assumed that stochastic perturbation was of white type noise, which was directly proportional
to distance St, It, Rt from values of S∗, I∗, R∗ . By this way, model (2.1) takes the following form:

dSt =
(

Λ− µSt −
(
β1 − β2It

b+It

)
StIt + ηRt

)
dt+ σ1(St − S∗)dB1

t

dIt =
((
β1 − β2It

b+It

)
StIt − (µ+ α+ λ)It

)
dt+ σ2(It − I∗)dB2

t

dRt = (λIt − (µ+ η)Rt)dt+ σ3(Rt −R∗)dB3
t

where Bit, i = 1, 2, 3 are independent Brownian motion with Bi0 = 0, i = 1, 2, 3 and σi, i = 1, 2, 3
is real constants and known as the intensity of environmental fluctuations. In this paper, Liu
proves that the endemic equilibrium of the stochastic model is asymptotically stable in the large.
Generally the epidemic models described by stochastic differential equations are obtained either
by technique of parameter perturbation or by the method introduced in [14]. In this work we will
consider a stochastic version of model (2.1) by combining second and third approaches and study
their dynamics. One advantage of this approach is that it naturally accounts both for demographic
stochasticity and environmental fluctuations on contact rate. That is, the stochastic perturbation
is assumed to be of a white noise type which is directly proportional to the number of susceptible,
infectious and removed, and β1dt in model (2.1) is replaced by β̃1dt = β1dt + σ4dB

4
t . Then we

obtain the following stochastic SIRS epidemic model incorporating media coverage:

dSt =
(

Λ− µSt −
(
β1 − β2It

b+It

)
StIt + ηRt

)
dt+ σ1 StdB

1
t

−σ4StItdB
4
t

dIt =
(

(β1 − β2It
b+It

)StIt − (µ+ α+ λ)It
)
dt+ σ2ItdB

2
t

+σ4StItdB
4
t

dRt = (λIt − (µ+ η)Rt) dt+ σ3RtdB
3
t

(2.4)

where Bit are independent Brownian motion with Bi0 = 0 and σi denotes the intensity of the white
noise, i = 1, 2, 3, 4. We notice that, the existence of stationary distribution of model (2.4) seems
rare. To fill the gap, this paper is devoted to study the existence of a stationary distribution of
model (2.4).

2.2 Preliminaries

Throughout this paper, let (Ω,F , {Ft}t≥0 ,P) be a complete probability space with a
filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right continuous and F0 contains
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all P− null sets ), on which are defined all random variables. For a d− dimensional stochastic
differential equation

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) for t ≥ t0 (2.5)

with initial value x(t0) = x0 ∈ Rd, where B(t) denotes d-dimensional standard Brownian motion.
The differential operator L of (2.5) is defined [34] by,

L =
∂

∂t
+

d∑
i=1

fi(x, t)
∂

∂xi
+

1

2

d∑
i,j=1

[
gT (x, t)g(x, t)

]
i,j

∂2

∂xi∂xj
.

If L acts on a function V ∈ C2,1(Rd × [t0,∞];R+), then:

LV (x, t) = Vt(x, t) + Vx(x, t)f(x, t) +
1

2
trace

[
gT (x, t)Vxx(x, t)g(x, t)

]
,

where: Vt = ∂V
∂t
, Vx =

(
∂V
∂x1

, · · · , ∂V
∂xd

)
and Vxx =

(
∂2V
∂xi∂xj

)
d×d

. By virtue of Itô’s formula,

dV (x(t), t) = LV (x(t), t)dt+ Vx(x(t), t)g(x(t), t)dB(t).

Here, C2,1(Rd× [t0,∞];R+) is the family of all nonnegative functions V (x, t) defined on Rd× [t0,∞]
such that they are continuously twice differentiable in x and once in t . For technical and biological
reasons, we assume that at the initial state, each compartment of our model is not empty; we also
consider a closed set Γ+ as follows

Γ+ = {(x1, x2, x3) ∈ R3
+/0 < x1 + x2 + x3 ≤

Λ

µ
},

with

R3
+ = {(x1, x2, x3) ∈ R3/xi > 0, i = 1, 2, 3}.

In order to verify the existence of a stationary distribution, we shall introduce a well known result
from Has’minskii [21].

Definition 2.1 ([21]). Let P x(t, ·) denote the probability measure induced by Xt = (St, It, Rt)
with initial value x; that is, P x(t, B) = P(Xt ∈ B | X0 = x), for any borel set B ⊂ R3

+. If there is
probability measure P∞(.) on the measurable space (R3

+;B(R3
+)) such that

lim
t→∞

P x(t, B) = P∞(B) for allx ∈ R3
+,

we then say that model (2.4) has a stationary distribution P∞(.).

Let Xt be a regular time-homogeneous Markov process in Rn+ described by the following stochastic
differential equation:

dXt = b(Xt)dt+

k∑
r=1

fr(Xt)dB
r
t ,

and the diffusion matrix is defined as follows:

A(X) = (aij(x)), aij(X) =

k∑
r=1

f ir(X)f jr (X).

We have the following lemma, which will be useful to prove the theorem related to the stationary
distribution for SDE (2.4).
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Lemma 2.1 ([21]). The Markov process (Xt)t≥0 has a unique stationary distribution µ(·), if there
is a bounded U ⊂ Rn with regular boundary such that its closure U ⊂ Rn, having the following
properties:
(i) In the open domain U and some neighborhood thereof, the smallest eigenvalue of the diffusion
matrix A(X) is bounded away from zero.
(ii) If x ∈ Rn \ U, the mean time τ at which a path issuing from x reaches the set U is finite, and
supx∈K E

xτ <∞ for every compact subset K ⊂ Rn. Moreover, if f(·) is a function integrable with
respect to the measure µ, then

P x
{

lim
T→∞

1

T

∫ T

0

f(Xx(t))dt =

∫
Rn

f(x)µ(dx)

}
= 1,

for all x ∈ Rn.

3 Results and Discussion

3.1 Global existence and positivity

As the solution of SDE (2.4) has biological significance, it should be positive. Moreover, to
investigate the dynamical behavior of system (2.4), it is necessary to prove that the solution has
a global existence. Our main goal in this section, is to prove that the solution of system (2.4) is
global, positive and bounded.

Theorem 3.1. For any given initial condition (S0, I0, R0) ∈ Γ+, there is a unique solution (St, It, Rt)
to system (2.4) on t ≥ 0 and the solution will remain in Γ+ with probability one.

Proof. Since the coefficients of (2.4) are locally Lipschitz continuous, for any given initial value
(S0, I0, R0) ∈ Γ+, there is a unique local solution (St, It, Rt) on t ∈ [0, τe), where τe is the explosion
time [34]. To verify that this solution is global, we only need to prove that τe = +∞ a.s. Firstly,
we show that (St, It, Rt) ∈ R3

+ a.s for all t ∈ [0, τe) . Let us consider the stopping time τ+, defined
by:

τ+ = inf {t ∈ [0, τe)/St ≤ 0 or It ≤ 0 or Rt ≤ 0} ∧ τe,with inf ∅ =∞.

We need to prove that τ+ = τe a.s. Clearly, τ+ ≤ τe. Obviously, for all t ∈ [0, τ+), St > 0, It > 0
and Rt > 0. In view of Itô’s formula, for all t ∈ [0, τ+), we obtain:

ln(StItRt)− ln(S0I0R0) =

∫ t

0

[
Λ

Su
− µ− (β1 −

β2Iu
b+ Iu

)Iu +
ηRu
Su
− 1

2
σ2

1 −
1

2
σ2

4I
2
u

]
du

+

∫ t

0

[
(β1 −

β2Iu
b+ Iu

)Su − (µ+ α+ λ)− 1

2
σ2

2 −
1

2
σ2

4S
2
u

]
du

+

∫ t

0

[
λIu
Ru
− (µ+ η)− 1

2
σ2

3

]
du

+

∫ t

0

[σ1dB
1
u + σ2dB

2
u + σ3dB

3
u + σ4(Su − Iu)dB4

u].

Since, β1 ≥ β2 ≥ 0 we have:

ln(StItRt)− ln(S0I0R0) ≥
∫ t∧τ+

0

K(Su, Iu, Ru)du

+

∫ t∧τ+

0

[σ1dB
1
u + σ2dB

2
u + σ3dB

3
u + σ4(Su − Iu)dB4

u] = H(t), (3.1)
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where

K(St, It, Rt) = −(3µ+ α+ λ+ η)− β1It −
σ2

1 + σ2
2 + σ2

3

2
− σ2

4(I2
t + S2

t )

2
.

Assume that P({τ+ < τe}) > 0. By continuity of the solution of system (2.4), on event {τ+ < τe},
we have

Sτ+Iτ+Rτ+ = 0.

So,

lim
t→τ+

ln (StItRt) = −∞. (3.2)

Combining (3.1) and (3.2), we have on {τ+ < τe} that −∞ ≥ H(τ+). Therefore,

{τ+ < τe} ⊂ {−∞ ≥ H(τ+)}.

Since, H(τ+) is finite on event {τ+ < τe}, we have a contradiction. Hence, P({τ+ < τe}) = 0 and
τ+ = τe a.s.
Now, we prove that τe = +∞ a.s. Let m0 > 0 be sufficiently large so that S0 + I0 +R0 ∈ ( 1

m0
, Λ
µ

].
Define, for each integer m ≥ m0, the stopping time

τm = inf{t ∈ [0, τe)/St + It +Rt 6∈ (
1

m
,

Λ

µ
]}, with inf ∅ =∞.

Clearly, τm is increasing as m ↑ ∞ a.s. Set τ∞ = limm→∞ τm. We consider the function V defined
for any vector x = (x1, x2, x3) ∈ R3

+ by

V (x) =
1

x1
+

1

x2
+

1

x3
.

By virtue of Itô’s formula , for all t ≥ 0 and s ∈ [0, t ∧ τm] we get

dV (Ss, Is, Rs) =

[
− Λ

S2
s

+
µ

Ss
+ (β1 −

β2Is
b+ Is

)
Is
Ss
− ηRs

S2
s

+
σ2

1

Ss
+
σ2

4I
2
s

Ss

]
ds

+

[
(µ+ α+ λ)− (β1 −

β2Is
b+ Is

)
Ss
Is

+
σ2

2

Is
+
σ2

4S
2
s

Is

]
ds

+

[
(µ+ η)

Rs
− λ Is

R2
s

+
σ2

3

Rs

]
ds

− σ1

Ss
dB1

s −
σ2

Is
dB2

s −
σ3

Rs
dB3

s +
σ4(I2

s − S2
s )

IsSs
dB4

s .

Integrate the above equality from 0 to s on both sides yields

V (Ss, Is, Rs)− V (S0, I0, R0) =

∫ s

0

[
− Λ

S2
u

+
µ

Su
+ (β1 −

β2Iu
b+ Iu

)
Iu
Su
− ηRu

S2
u

+
σ2

1

Su
+
σ2

4I
2
u

Su

]
du

+

∫ s

0

[
(µ+ α+ λ)− (β1 −

β2Iu
b+ Iu

)
Su
Iu

+
σ2

2

Iu
+
σ2

4S
2
u

Iu

]
du

+

∫ s

0

[
(µ+ η)

Ru
− λ Iu

R2
u

+
σ2

3

Ru

]
du

+

∫ s

0

[
− σ1

Su
dB1

u −
σ2

Iu
dB2

u −
σ3

Ru
dB3

u +
σ4(I2

u − S2
u)

IuSu
dB4

u

]
.

Since for any s ∈ [0, t ∧ τm] , we have (Ss, Is, Rs) ∈ ( 1
m
, Λ
µ

]3 a.s. For any m ≥ m0, in view of
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β1 ≥ β2 ≥ 0 , we have:

V (Ss, Is, Rs)− V (S0, I0, R0) ≤
∫ s

0

[
µ+ (β1 + β2)Iu + σ2

1 + σ2
4I

2
u

] du
Su

+

∫ s

0

[
(µ+ α+ λ) + σ2

2 + σ2
4S

2
u

] du
Iu

+

∫ s

0

[
(µ+ η) + σ2

3

] du
Ru

+

∫ s

0

[
− σ1

Su
dB1

u −
σ2

Iu
dB2

u −
σ3

Ru
dB3

u +
σ4(I2

u − S2
u)

IuSu
dB4

u

]
.

Hence,

V (Ss, Is, Rs)− V (S0, I0, R0) ≤ C
∫ s

0

V (Su, Iu, Ru)du

+

∫ s

0

[
− σ1

Su
dB1

u −
σ2

Iu
dB2

u −
σ3

Ru
dB3

u +
σ4(I2

u − S2
u)

IuSu
dB4

u

]
(3.3)

where

C = max

{
µ+ (β1 + β2)

Λ

µ
+ σ2

1 + σ2
4

Λ2

µ2
, µ+ α+ λ+ σ2

2 + σ2
4

Λ2

µ2
, µ+ η + σ2

3

}
.

Taking the expectation on both sides of (3.3) and applying Fubini’s theorem, we have:

EV (Ss, Is, Rs) ≤ V (S0, I0, R0) + C

∫ s

0

EV (Su, Iu, Ru)du.

According to Gronwall’s Lemma, we deduce that

∀s ∈ [0, t ∧ τm], EV (Ss, Is, Rs) ≤ V (S0, I0, R0) exp(Cs).

Thus, for all t ≥ 0

EV (St∧τm , It∧τm , Rt∧τm) ≤ V (S0, I0, R0) exp(C(t ∧ τm)) ≤ V (S0, I0, R0) exp(Ct). (3.4)

Since V (St∧τm , It∧τm , Rt∧τm) > 0, we have

EV (St∧τm , It∧τm , Rt∧τm) = E[V (St∧τm , It∧τm , Rt∧τm)1(τm≤t)]

+ E[V (St∧τm , It∧τm , Rt∧τm)1(τm>t)]

≥ E[V (Sτm , Iτm , Rτm)1(τm≤t)], (3.5)

where 1A is characteristic function of A. Since each components of (Sτm , Iτm , Rτm) are smaller
than 1

m
, in view of (3.5) we deduce

EV (St∧τm , It∧τm , Rt∧τm) ≥ 3mP(τm ≤ t). (3.6)

From the inequalities (3.4) and (3.6), we get for all t ≥ 0

P(τm ≤ t) ≤
V (S0, I0, R0) exp(Ct)

3m
.

By letting m → ∞, we obtain for any t ≥ 0, P(τ∞ ≤ t) = 0. Hence, P(τ∞ = ∞) = 1. Now, since
τe ≥ τ∞ a.s, then τe =∞ a.s.

9
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3.2 Extinction of the disease

Extinction is one of the most basic questions studied in the populations dynamics. Here, it means
that the disease will disappear. The following theorem gives a condition for the extinction of a
disease expressed in terms of intensities of noise and system parameters. Let us introduce

R̂0 =
µ(β1 + β2)2

2σ2
4Λβ1

R0 − σ2
2

2(µ+ α+ λ)
.

Theorem 3.2. Let (St, It, Rt) be the solution of system (2.4) with initial condition in Γ+. If

R̂0 < 1, then

lim sup
t→+∞

ln It
t
≤ (µ+ α+ λ)(R̂0 − 1) < 0 a.s.

Proof. It follows from Itô’s formula that, for all t ≥ 0

ln It = ln I0 +

∫ t

0

[
(β1 −

β2Iu
b+ Iu

)Su − (µ+ α+ λ)− 1

2
σ2

2 −
σ2

4S
2
u

2

]
du

+ σ2B
2
t +Mt

≤ ln I0 +

∫ t

0

[
−σ

2
4S

2
u

2
+ (β1 + β2)Su − (µ+ α+ λ)− 1

2
σ2

2

]
du

+ σ2B
2
t +Mt, (3.7)

where Mt =
∫ t

0
σ4SudB

4
u. (Mt)t≥0 is a continuous local martingale whose quadratic variation is

〈M,M〉t = σ2
4

∫ t
0
S2
udu. By virtue of Doob’s martingale inequality[35], for any positive numbers ν ,

T and θ we have

P
{

sup
0≤t≤T

[
Mt −

ν

2
〈M,M〉t

]
> θ

}
≤ exp(−νθ). (3.8)

Choose now ν = c (0 < c < 1), T = k and θ = 2
c

ln k, for every integer k ≥ 0. According to (3.8) we
obtain

P
{

sup
0≤t≤k

[
Mt −

c

2
〈M,M〉t

]
>

2

c
ln k

}
≤ 1

k2
.

By applying Borel-Cantelli’s Lemma [34] leads to that for almost all ω ∈ Ω, there is a integer k0

such as

sup
0≤t≤k

[
Mt −

c

2
〈M,M〉t

]
≤ 2

c
ln k, k ≥ k0.

That is, for all 0 ≤ t ≤ k, k ≥ k0

Mt ≤
1

2
cσ2

4

∫ t

0

S2
u du+

2

c
ln k, a.s. (3.9)

Substituting (3.9) in (3.7), for all 0 ≤ t ≤ k, k ≥ k0, we obtain

ln It ≤ ln I0 +

∫ t

0

[
−1

2
(1− c)σ2

4S
2
u + (β1 + β2)Su − (µ+ α+ λ)− 1

2
σ2

2

]
du

+ σ2B
2
t +

2

c
ln k, a.s.

Since

−1

2
(1− c)σ2

4S
2
u + (β1 + β2)Su − (µ+ α+ λ)− 1

2
σ2

2 ≤
(β1 + β2)2

2(1− c)σ2
4

− (µ+ α+ λ)− 1

2
σ2

2 ,

10
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we have

ln It ≤ ln I0 +

[
(β1 + β2)2

2(1− c)σ2
4

− (µ+ α+ λ)− 1

2
σ2

2

]
t+ σ2B

2
t +

2

c
ln k.

Thus, for k − 1 ≤ t ≤ k, we obtain

ln It
t
≤ ln I0

t
+

[
(β1 + β2)2

2(1− c)σ2
4

− (µ+ α+ λ)− 1

2
σ2

2

]
+ σ2

B2
t

t
+

2

c

ln k

k − 1
.

Now, letting k → +∞, so t→ +∞ and applying the strong law of large numbers to the Brownian
motion [34] we have,

lim sup
t→+∞

ln It
t
≤ (β1 + β2)2

2(1− c)σ2
4

− (µ+ α+ λ)− 1

2
σ2

2 a.s.

Finally, by sending c→ 0, in view of R̂0 < 1, we obtain

lim sup
t→+∞

ln It
t
≤ (µ+ α+ λ)(R̂0 − 1) < 0 a.s.

3.3 Existence of the stationary distribution

We now establish the main Theorem of this section.

Theorem 3.3. Assume that R0 > 1. Let E∗ = (S∗, I∗, R∗) be the endemic equilibrium of system
(2.1). If the following conditions hold 0 < δ < min{m1S

∗2,m2I
∗2,m3R

∗2}, where

m1 =($3 +$4)µ− ($3 +$4)σ2
1 −$2I

∗σ2
4

m2 =$3(µ+ α+ λ) +$4(µ+ α)− ($3 +$4)σ2
2

m3 =$4µ+$1(µ+ η)− ($1 +$4)σ2
3

δ =($3 +$4)S∗2σ2
1 + ($3 +$4 +

$2

2
)I∗2σ2

2 + ($1 +$4)R∗2σ2
3

+$2S
∗2I∗σ2

4

$1 =αη(β1b+ I∗(β1 − β2))

$2 =(2λµ(2µ+ α+ λ) + ηλ(2µ+ α))(b+ I∗)

$3 =2λµ(β1b+ I∗(β1 − β2))

$4 =ηλ(β1b+ I∗(β1 − β2)) (3.10)

then for any initial value in (S0, I0, R0) ∈ Γ+, system (2.4) has unique stationary distribution µ(·)
and solution (St, It, Rt) have ergodic property.

Proof. Since R0 > 1, there is a positive endemic equilibrium E∗ = (S∗, I∗, R∗) of system (2.1). Let
us consider the functions Θ1,Θ2,Θ3, Θ4 defined for any vector x = (x1, x2, x3) ∈ R3

+ by

Θ1(x1, x2, x3) =
(x3 −R∗)2

2
, Θ2(x1, x2, x3) = x2 − I∗ − I∗ log

(x2

I∗

)
,

Θ3(x1, x2, x3) =
(x1 − S∗ + x2 − I∗)2

2

Θ4(x1, x2, x3) =
(x1 − S∗ + x2 − I∗ + x3 −R∗)2

2
.

We will show that model (2.4) admits a stationary distribution by considering the Lyapunov function

Θ = $1Θ1 +$2Θ2 +$3Θ3 +$4Θ4, (3.11)

11
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where $1, $2, $3 and $4 are defined in (3.10). The non-negativity of Θ can been derived from
u− 1− log u ≥ 0, ∀u > 0. An application of the differential operator L to Θ1 yields for any t ≥ 0

LΘ1(St, It, Rt) = (Rt −R∗)(λIt − (µ+ η)Rt) +
1

2
σ2

3R
2
t .

At the equilibrium state E∗ we have λI∗ − (µ+ η)R∗ = 0, hence

LΘ1(St, It, Rt) = −(µ+ η)(Rt −R∗)2 + λ(It − I∗)(Rt −R∗) +
1

2
σ2

3(Rt −R∗ +R∗)2.

Using the inequality
(a+ b)2

2
≤ a2 + b2, we derive

LΘ1(St, It, Rt) ≤ −(µ+ η − σ2
3)(Rt −R∗)2 + λ(It − I∗)(Rt −R∗) + σ2

3R
∗2. (3.12)

Next, we calculate LΘ2

LΘ2(St, It, Rt) = (1− I∗

It
)

(
(β1 −

β2It
b+ It

)StIt − (µ+ α+ λ)It

)
+
I∗

2
(σ2

2 + σ2
4S

2
t ). (3.13)

At the equilibrium state E∗, we remark that

µ+ α+ λ = (β1 −
β2I
∗

b+ I∗
)S∗. (3.14)

Substituting (3.14) into (3.13) and using
(a+ b)2

2
≤ a2 + b2, we get

LΘ2(St, It, Rt) ≤ (St − S∗)(It − I∗)
β1b+ I∗(β1 − β2)

b+ I∗
+
I∗σ2

2

2

+ I∗σ2
4(St − S∗)2 + I∗σ2

4S
∗2. (3.15)

We, now calculate LΘ3

LΘ3(St, It, Rt) = (St − S∗ + It − I∗)(Λ− µSt − (µ+ α+ λ)It + ηRt)

+
1

2
σ2

1S
2
t +

1

2
σ2

2I
2
t .

Using Λ = µS∗ + (µ+ α+ λ)I∗ − ηR∗ and
(a+ b)2

2
≤ a2 + b2 we have

LΘ3(St, It, Rt) ≤ −(µ− σ2
1)(St − S∗)2 − (µ+ α+ λ− σ2

2)(It − I∗)2

− (2µ+ α+ λ)(St − S∗)(It − I∗) + η(St − S∗)(Rt −R∗)

+ η(It − I∗)(Rt −R∗) + σ2
1S
∗2 + σ2

2I
∗2. (3.16)

At last, similarly for the function LΘ4, we obtain

LΘ4(St, It, Rt) ≤ −(µ− σ2
1)(St − S∗)2 − (µ+ α− σ2

2)(It − I∗)2

− (µ− σ2
3)(Rt −R∗)2 − (2µ+ α)(St − S∗)(It − I∗)

− 2µ(St − S∗)(Rt −R∗)
− (2µ+ α)(It − I∗)(Rt −R∗)

+ σ2
1S
∗2 + σ2

2I
∗2 + σ2

3R
∗2. (3.17)

Combining (3.12),(3.15)-(3.16)-(3.17) and multiplying appropriately by coefficients $1, $2, $3, $4

of (3.11) determined in (3.10), we eliminate the product (It− I∗)(Rt−R∗), (St−S∗)(Rt−R∗) and
(It − I∗)(St − S∗) from LΘ. Consequently,

LΘ(St, It, Rt) ≤ −m1(St − S∗)2 −m2(It − I∗)2 −m3(Rt −R∗)2 + δ, (3.18)

12
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where m1,m2,m3 and δ are defined in (3.10). Since 0 < δ < min{m1S
∗2,m2I

∗2,m3R
∗2}, then the

ellipsoid

m1(St − S∗)2 +m2(It − I∗)2 +m3(Rt −R∗)2 = δ

lies entirely in R3
+. We can take U to be any neighborhood of the ellipsoid such as U ⊂ R3

+. So for
(S, I,R) ∈ R3

+ \ U, LΘ(S, I,R) < −C ( C is a positive constant). Hence, with the reference to Zhu
et al.[36] condition (ii) in Lemma 2.1 is satisfied. Besides, there is M = min{σ1S

2, σ2I
2, σ3R

2} > 0,
such as

3∑
i,j=1

aij(S, I,R)ξiξj = σ2
1S

2ξ2
1 + σ2

2I
2ξ2

2 + σ2
3R

2ξ2
3 + σ2

4S
2I2(ξ1 − ξ2)2 ≥M‖ξ‖2,

for all (S, I,R) ∈ U and ξ ∈ R3
+. Thus, the diffusion matrix associated to (2.4) is uniformly elliptic

in U. Then, by Rayleigh’s principle in [37], condition (i) in Lemma 2.1 is also satisfied. Therefore,
we can conclude that stochastic system (2.4) has a stationary distribution µ(·) and it is ergodic.

3.4 Numerical simulations and discussions

Here we always choose initial value as (S0, I0, R0) = (15, 5, 1).

3.4.1 Extinction and impact of media coverage

In Figure 1 and Figure 2, we choose parameters as follows

Λ = 35, β1 = 0.02, β2 = 0.018, η = 0.02,

µ = 0.5, α = 0.6, λ = 0.08, b = 30. (3.19)

We have R0 = 1.186 > 1. In Figure 1, we choose σ1 = 0.01, σ2 = 0.8, σ3 = 0.03, σ4 = 0.04.
Then, R̂0 = 0.1112 < 1. We can therefore conclude by Theorem 3.2, that for any initial value
(S0, I0, R0) ∈ Γ+, It obeys

lim sup
t→+∞

ln It
t
≤ −1.049 a.s.

So, It will tend to zero exponentially with probability one. Which is a phenomenon different from its
corresponding deterministic model (2.1)(see Figure 1). To see the disease dynamics of model (2.4),

in Figure 2 we choose σ1 = 0.01, σ2 = 0.08, σ3 = 0.03, σ4 = 0.004. Then R̂0 = 38.2375 > 1. In this
case, our simulations suggests that It is stochastically persistent (see Figure 2). By Theorem 3.2,

we can know, if R̂0 < 1, then the infectious disease of system (2.4) goes to extinction almost surely.
In other words, when the white noise is large enough such that σ2

4(2(µ+ α+ λ) + σ2
2) > (β1 + β2)2

is satisfied, the disease we also die. So, large noise can lead to the extinction of disease. Figure 1
and Figure 2 suggests that R̂0 is the threshold associated with the extinction of infectious disease
of system (2.4). To illustrate the impact of media on the spread of an epidemic, in case of endemic
situation, we consider a variation of the parameter of the media coverage β2 = 0, 0.011, 0.018 with
parameters as follows

Λ = 35, β1 = 0.028, η = 0.02, µ = 0.5, α = 0.6, λ = 0.08, b = 30,

σ1 = 0.01, σ2 = 0.08, σ3 = 0.03, σ4 = 0.004. (3.20)

We remark that increasing the media coverage parameter, decreases magnitude of infected individuals
(Figure 3). This states that the media coverage can reduce the propagation of the disease among
the population.
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Fig. 1. Trajectories of It for model (2.4) and model (2.1). Parameters are taken as

(3.19). σ1 = 0.01, σ2 = 0.8, σ3 = 0.03, σ4 = 0.04 and R̂0 = 0.1112 < 1.
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Fig. 2. Trajectories of It for model (2.4) and model (2.1). Parameters are taken as

(3.19). σ1 = 0.01, σ2 = 0.08, σ3 = 0.03, σ4 = 0.004 and R̂0 = 38.2375 > 1.

3.4.2 Stationary distribution

In Figure 4 and Figure 5, we choose parameters as follows

Λ = 20, β1 = 0.1, β2 = 0.08, η = 3.8,

µ = 0.5, α = 0.6, λ = 0.08, b = 30 (3.21)
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Fig. 3. Trajectories of It, with different values of β2, for model (2.4). Parameters are
taken as (3.20.)

and σ1 = 0.001, σ2 = 0.01, σ3 = 0.003, σ4 = 0.004, so that

R0 = 3.890 > 1, E∗ = (15.087, 11.229, 0.209), m1S
∗2 = 139.881,

m2I
∗2 = 174.392, m3R

∗2 = 1.401, δ = 1.224.

The conditions in Theorem 3.2 are satisfied. Accordingly, there is a stationary distribution for
model (2.4). This situation is illustrated by Figure 4 and Figure 5, where the red lines represent the
kernel density functions of St, It and Rt. Figure 4 and Figure 5 shows histograms of the approximate
stationary distribution of the susceptible, infective and recovery classes. From histograms , we can
see that the values of St, It andRt are distributed normally around the average values 15.087, 11.229,
0.209 respectively. We see the density function at t = 400 (see Figure 4) and t = 500 (see Figure 5)
based on 5000 stochastic simulation are very close to each other that can be considered as a good
estimation of the stationary distribution of system (2.4). Theorem 3.2 gives the possibility that an
asymptotically stationary distribution exists for the solution of model (2.4), which in turn implies
the stability in a stochastic sense. Furthermore, Theorem 3.2 suggests that if the condition of the
theorem is satisfied, then the stochastic model (2.4) oscillates around the endemic equilibrium E∗

of the deterministic model (2.1). This indicates the persistence of the disease a.s. under certain
conditions.

The results obtained in this study (extinction and stationary distribution) is in the line with the
work of [33], where authors consider only multiplicative noise terms in their models. Our method
to prove the extinction and persistence of the disease described by the stochastic model is different
from that proposed by some authors. In particular [15], authors study the asymptotic behavior of
the stochastic model solution around the disease-free equilibrium and the endemic equilibrium of
deterministic model to determine whether the disease disappears or persists in the population.
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Fig. 4. Histogram and the kernel density function estimations of St, It and Rt of
system (2.4) at time t=400. Parameters are taken as (3.21).
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Fig. 5. Histogram and the kernel density function estimations of St, It and Rt of
system (2.4) at time t=500. Parameters are taken as (3.21).

4 Conclusion

In this paper, we studied a new stochastic SIRS model that takes into account a reduction of
interpersonal contacts as a result of media coverage about the disease. We proposed a stochastic
version of the SIRS epidemic model incorporating media coverage by introducing the multiplicative
noise terms into the growth equations of susceptible, infective, removed populations and noise
introduced in contact rate. Firstly, we have proved the global existence, positivity and boundedness
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of solution. Then we investigated the asymptotic behavior of the model. Theorem 3.2 demonstrates
that if the noise intensity is sufficiently large so that σ2

4(2(µ + α + λ) + σ2
2) > (β1 + β2)2 then the

number of infective individuals It tends asymptotically to zero exponentially almost surely ( see
Figure 1). We also proved that if the intensity of the white noise is sufficiently small and R0 > 1
then there is a unique stationary distribution to stochastic system ( see Theorem 3.3 and Figure 4,
Figure 5 ). Finally, We give an illustration of our analytical results by numerical simulation. The
value of our study lies on two aspects. Mathematically, we used stochastic Lyapunov functions to
give, sufficient conditions for the extinction and the existence of a stationary distribution using the
theory of Has’minskii. Epidemiologically, we find that random fluctuations can suppress disease
outbreak, which can provide us with some useful control strategies to regulate disease dynamics.
Furthermore, simulations show that the role of media is crucial for reducing incidence. Increasing
the media coverage rate reduces the magnitude of the infectious individuals in the population (see
Figure 3). We conclude that efforts should be made, by means of massive media coverage, in order
to prevent the disease to spread widely in the population: especially for emergent diseases like
Chikungunya, Ebola....
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