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Abstract: With the development of new methodologies for faster training on datasets, there is a
need to provide an in-depth explanation of the workings of such methods. This paper attempts
to provide an understanding for one such correlation filter-based tracking technology, Kernelized
Correlation Filter (KCF), which uses implicit properties of tracked images (circulant matrices) for
training and tracking in real-time. It is unlike deep learning, which is data intensive. KCF uses
implicit dynamic properties of the scene and movements of image patches to form an efficient
representation based on the circulant structure for further processing, using properties such as
diagonalizing in the Fourier domain. The computational efficiency of KCF, which makes it ideal for
low-power heterogeneous computational processing technologies, lies in its ability to compute data
in high-dimensional feature space without explicitly invoking the computation on this space. Despite
its strong practical potential in visual tracking, there is a need for an in-depth critical understanding
of the method and its performance, which this paper aims to provide. Here we present a survey of
KCF and its method along with an experimental study that highlights its novel approach and some
of the future challenges associated with this method through observations on standard performance
metrics in an effort to make the algorithm easy to investigate. It further compares the method against
the current public benchmarks such as SOTA on OTB-50, VOT-2015, and VOT-2019. We observe that
KCF is a simple-to-understand tracking algorithm that does well on popular benchmarks and has
potential for further improvement. The paper aims to provide researchers a base for understanding
and comparing KCF with other tracking technologies to explore the possibility of an improved
KCF tracker.

Keywords: visual tracking; correlation filters; circulant matrices; kernel trick

1. Introduction

Visual tracking can be considered as finding the minimum distance in feature space
between the current position of the tracked object to the subspace represented by the
previously stored data or previous tracking results. Visual tracking systems have, for a
long time, employed hand-crafted similarity metrics for this purpose, such as the Euclidean
distance [1], Matusita metric [2], Bhattacharyya coefficient [3], and Kullback–Leibler [4]
and information-theoretic divergences [5].

Visual tracking has seen tremendous progress in recent years in robotics and mon-
itoring applications. It aims to address the issues caused by noise, clutter, occlusion,
illumination changes, and viewpoints (e.g., in mobile or aerial robotics). There have been
numerous attempts to design and deploy a robust tracking method; however, the work
continues. Since the seminal work of Bolme et al. [6], correlation-based filters have enjoyed
immense popularity in the tracking community. Recent developments in Correlation Filter
Trackers (CFTs) [7] have accelerated the development of visual object tracking. Despite their
impressive performance, these discriminative learning tracking systems, for example CFTs,
still have several limitations. Firstly, they tend to drift while tracking over a long period
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of time. This drift can be more closely observed in a dynamic environment and while
tracking multiple targets, thereby affecting its accuracy. Secondly, in such discriminative
learning methods, negative samples of the image are equally as important as the positive
samples. In fact, training with a higher number of negative samples (image patches from
different locations and scales) has been found to be highly advantageous to better training
of any tracking algorithm. However, any increase in the samples can lead to a higher
computational burden, which can adversely affect the time-sensitive nature of trackers.
Along a similar line, limiting the samples, however, can sacrifice performance, which is
a tradeoff.

Kernelized Correlation Filter (KCF) [8] addresses this issue of handling thousands of
samples of data while keeping the computation load low by exploring tools of the kernel
trick and, most importantly, properties of circulant matrices. Circulant matrices also allow
us to enrich the toolset provided by classical signal processing like that of correlation filters,
by working in the Fourier domain, making the training process faster.

Despite the increased efficiency brought by KCF, the current number and variety of
datasets that can be used for real-time performance studies are inadequate. In the past,
most experiments conducted on available state-of-the-art trackers (TDAM [9], MDP [10],
DP-NMS [11], and NOMT [12]), were carried out on sample videos. This observation
is sometimes very significant since it is obvious that for real-life robotic monitoring and
surveillance, and due to various factors such as environmental changes, the tracking
accuracy depicted by online trackers may not reflect real-time scenarios. The limitations
include using their validations only on a few datasets (example videos) or shorter-length
videos. To cover for the lack of needed datasets for given scenarios, we collected our
own dataset in real time using the Microsoft Kinect sensor. This dataset reflects real-
time scenarios in different settings. We refer readers to a comprehensive review of visual
tracking using datasets in [13–15] and specifically using the correlation filter with the kernel
trick in [7].

In this paper, we study some of the key components that contribute to the design of
KCF, a detailed overview on its working principles, and its performance under various
challenging scenarios such as variation in illumination, appearance, change due to view-
points, occlusions, speed of the subject (slow, medium, or fast), type of crowd (tracking
a single target with no crowd and tracking a single target with a crowd of 10–15 people),
the position of the camera, etc. We chose these factors while keeping in mind that these
are some of the most challenging factors the field of visual tracking has been facing. The
experiments are performed using the RGB-D sensor in a live, open environment to ensure
real-time scenarios. The environment chosen is the public hallway of a university with stu-
dents as subjects to replicate the real-time scenario. Moreover, the duration of tracking time
varies from 10 s to 2–4 min in order to allow enough time to observe the performance of the
tracker. These factors ensure that we have worked in various scenarios in order to make
the surrounding environment as diverse as possible. We also compared the performance of
KCF with other state-of-the-art trackers evaluated on OTB-50, VOT 2015, and VOT 2019.

The remainder of the paper is organized as follows: Section 2 of the paper gives a
general overview of the KCF tracker and its key practical properties, followed by Section 3,
which goes through a key analytical description of the method; Section 4 shows the KCF
pipeline and details the dataset used. Section 5 presents the results of our experimental
studies using various scenarios and measures in terms of precision curves and other metrics.
Section 6 discusses the performance comparison of KCF with other state-of-the-art trackers
evaluated on OTB-50, VOT 2015, and VOT 2019. Finally, the paper presents concluding
remarks in Section 7.

2. An Overview of KCF

There are few recent works that have surveyed correlation filter tracking techniques.
The most recent work is [16], which focuses on the background and current advancement
of correlation filter-based algorithms in object tracking. Chen et al. [7] provide a detailed
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survey of recent development and improvements in CFTs and summarize their general
framework. Similarly, the work also discusses the correlation tracking methodology and
experiments on standard datasets. We also highlight various challenging scenarios that
affect tracking performance. However, this paper differs from others whereby none of
the surveys mentioned above provide such an in-depth explanation of the workings of
the tracker.

KCF uses a large number of (all the possible) translations of an image patch (window
size of the Region of Interest i.e., ROI in the entire image). These image patches can be
extracted by providing the dimensions of the window size to the image at the time of com-
putation. KCF uses these patches and its extracted features (raw image pixels or Histogram
of Gradient i.e., HOG) as data to detect the location of the target in the subsequent frame of
the image. This detection at subsequent frames can eventually be stored and used to track
the target over time. It is to be noted that there is a good rationale behind using this large
amount of stored data in KCF. These data are relevant for any learning algorithm because
they represent various ways in which the samples (here features) can be encountered by
the learning algorithm, thus making the algorithm more robust. However, if not used
efficiently, these data (high-dimensional features) can also become a bottleneck in the case
of real-time processing. If we can, somehow, represent the high-dimensional feature space
in a form that captures the translational properties of the object between the frame and still
accomplish learning using a linear model (using an algorithmic trick that will be discussed
later), we can reduce the computation significantly. A linear model is preferred because
it gives us a simpler linear discrimination relationship between the classes in the feature
space and any independent and associated dependent variable. The above-mentioned
methods also bring the certain advantage of element-wise multiplication in the Fourier
domain and their resemblance to fast correlation filters, making computation faster.

3. Mathematical Exposition of KCF

KCF is based on the discriminative method, which formulates the tracking problem
as a binary classification task and distinguishes the target from the background by using
a discriminative classifier [17]. Any modern framework in addressing recognition and
classification problems in the field of computer vision is usually supported by a learning
algorithm. The objective is to find a function f that can classify through learning from a
given set of examples. It should be able to classify an unseen data representation of an
image patch from an arbitrary distribution within a certain error bound. One such linear
discriminator is the Linear Ridge Regression (LRR). Mathematically, it is defined as:

min
w

n

∑
i=1

(
wTxi − yi

)2
+ λ ||w ||2 (1)

where xi is the input sampled variable (here image feature), w is the weight vector, y is the
true value/ground truth (obtained by observation or measurement),

(
wTxi − yi

)2 is the
squared error between the actual and predicted variable, and λ ||w ||2 is a squared norm
regularizer with λ as the regularizer to prevent overfitting. In simple words, in determining
the weight vector w for minimizing the square of the model error

(
wTxi − yi

)2, it is bound
to a certain limit with the help of a regularizer λ. For a better understanding of the
mathematical representations, the authors feel the need to make certain clarifications in
the representations. x and x′ will be used as independent variables. The transpose of x
will be defined as xT . The authors will use bold fonts in a variable to represent vectors.
For example, x represents a concatenated vector with each element/entry in the vector
represented as xi ∈ Z i.e., in the space of all integers (Z).

Traditionally, for learning, research has been focused on utilizing positive samples
(samples that are similar to the target object); however, negative samples (samples that do
not resemble the target object) have been found to be equally important in discriminative
learning. Hence, the higher the number of negative samples, the better the discriminative
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power of the learning algorithm. If we can use a higher number of features (and as a
result, more negative samples), it will be beneficial for the learning algorithm. For instance,
though raw pixels of an image are good features in themselves, using features such as HOG
can be advantageous because of the larger number of data (features). Though effective in
helping with improved accuracy, the availability of a large number of samples can create a
bottleneck in terms of complexity and speed.

The Kernelized Correlation Filter tracker attempts to use a large number (high-
dimensional data) of negative samples, but with reduced complexity. It achieves this
using (a) the dual space for learning high-dimensional data using the kernels trick and (b)
the property of diagonalizing the circulant matrix in the Fourier domain. These factors
make the tracking algorithm computationally inexpensive and faster, respectively. We will
discuss the concept of the circulant matrix, the kernel trick, and the Fourier domain in more
detail in upcoming sections.

The KCF algorithm exploits this circulant structure in the learning algorithm in using
a sample 2D image patch of the target and generating additional samples (using all the
possible translations of it, leading to a circulant structure). This results in several virtual
negative samples, which can be used in the learning stage to make our discriminative
classifier efficient. For example, in 2D images, we obtain circulant blocks using a similar
concept of circulant blocks. Let us assume we have a 2D image represented as a data matrix
in the following form:

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 (2)

where aij represents the image features. Now, construct a matrix X that has four rows of A
denoted by ai as below:

Xm = circ(am) (3)

where circ defines a function that can generate circulant values of the input. More specifi-
cally, we can write it as:

X0 = circ(a0) = circ(a11a12a13a14)

X1 = circ(a1) = circ(a21a22a23a24)

X2 = circ(a2) = circ(a31a32a33a34)

X3 = circ(a3) = circ(a41a42a43a44) (4)

We can now construct a 16× 16 circulant matrix as:

X′ =


X0 X1 X2 X3
X3 X0 X1 X2
X2 X3 X0 X1
X1 X2 X3 X0

 (5)

This structure of X is called the Block-Circulant Circulant Matrix (BCCM), i.e., a
matrix that is circulant at the block level, composed of blocks that are circulant themselves.
Visualization of a BCCM on a sample 2D image patch of the target taken from a Kinect
RGB camera can be seen in Figure 1. Similar visualization can be performed on features,
such as HOG features, of the target image patch we used in our visual tracking experiment,
as shown in Figure 2.
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Figure 1. (a) Sample 2D greyscale image and cropped patches. The dimension of each of the cropped images is 30 × 30.
(b) Color-coded Block-Circulant Circulant Matrix for the cropped 2D image patch shown in (a).

Figure 2. (a) HOG features of the cropped patches from an image frame. For convenience, we extracted the HOG features
from the same grayscale cropped patches as shown in Figure 1a. It is to be noted that we chose 1 (out of 32) orientations of
the HOG features for simplicity in visualization (best viewed in color). The dimension of HOG features for each of the four
patches shown is 7 × 7 per orientation. (b) HOG features as color-coded circulant blocks. The edges and labels have been
added for better clarity.

Since we know that (a) a large amount of data is beneficial for our learning algorithm
and (b) translating samples in a circulant manner creates a circulant structure of a large
amount of data, we can generate and exploit the circulant nature of HOG features for a
visual tracking advantage. Hence, we can now define C(x) as very high-dimensional data
that represent all possible translations of the base sample HOG features (in the case of a 1D
image) or base patch HOG features (in the case of a 2D image). Such a data matrix (with
shifted translations) is relevant for a learning algorithm because it represents various ways
(distribution of inputs) in which the samples can be encountered by the learning algorithm.

Now, with features in hand, we can use our learning algorithm (e.g., linear ridge
regression (LRR from Equation (1)). The goal of the objective function is to find a weight
w that will help in classifying the data. Mathematically, the optimal solution of LRR is
given by:

w =
(

XTX + λI
)−1

XTy (6)

where X is a data matrix (also called the design matrix). In our case, the data matrix is the
circulant matrix. It can be observed from Equation (6) that we need to take the inverse of(
XTX + λI

)
, which is an m×m matrix. In most cases, m×m i.e., the feature space is very
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large, making the computation very expensive. This problem can be addressed by solving
the Linear Ridge Regression in dual space [18] as explained in Appendix A. Mathematically,
the dual solution for the Linear Ridge Regression can be written as:

α = (G + λI)−1y (7)

where α ∈ Rn is a vector of coefficients that defines the solution. Here, G = XXT is called
the Gram Matrix. The Gram Matrix will be helpful later. In general, for any two pair of
samples (xi, xj), the Gram Matrix can be written as:

Gij = xT
i xj (8)

Hence, for X of size n×m where n is the number of examples (samples) and m is the
number of features, dual space allows us to compute the inverse of n× m dimensional
data, unlike the m x m in previous case. It is advantageous in scenarios where n� m.

In the linear learning model (i.e., dual LLR), the objective is to find a hyperplane that
can linearly separate our training data. However, there is an issue. Our preferred feature
space i.e., HOG is non-linear in nature. One way to resolve this issue is to investigate
some non-linear hyperplane pattern classifiers (i.e., higher-order surfaces). This is not
a practical approach in comparison with a simple linear one. There are a number of
such transformation techniques, such as the powerful kernel trick [19] and their efficient
applications in correlation filter-based tracking [18,20]. By applying the kernel trick in a
non-linear feature space, we would be able to conduct the computation in the non-linear
feature space without explicitly instantiating a vector in the space.

In many cases, the non-linear data points can be linearly separable if we can map the
original data points to some other feature space using a transformation, say ϕ. Hence, it is
expected that, in this new feature space, the points will be linearly separable. Hence, for
any two training data points x1, x2, if we can somehow find a function κ (called kernel
function), it can map non-linear data to a higher-dimensional feature space such that:

κ(x1, x2) = ϕ(x1) � ϕ(x2) (9)

where � is the dot product. The data in the new feature space are now linearly separable.
The functions κ that make these transformations are called kernel functions.

A kernel function helps us evaluate the dot product in the lower-dimensional original
data space without having to transform it to the higher dimensional feature space. In this
process, we can benefit from the linearity in the transformed high-dimensional (mapped
with ϕ) feature space. This is called the kernel trick. There are various types of kernels such
as linear kernels, polynomial kernels, and gaussian kernels. Understanding the kernel trick
will help us better understand its applications in the KCF tracker. For our explanation, we
will stick with Gaussian kernels because of their ability to transform data into an infinite
feature space.

If we can map our current non-linear features to a high-dimension feature space using
the kernel function κ, we can now use standard machine-learning techniques, such as linear
ridge regression. For simplicity in explanations, let our original data points be denoted
by x′i ∈ Rm ′. We will call this space the input space. Let us assume that for some kernel
function ϕ, we can transform our data points from the input space to a higher-dimensional
feature space with the data xi ∈ Rm i.e.,

ϕ : Rm ′ → Rm (10)

such that xi = ϕ
(

x′i
)
. Hence, we can define a solution for the dual case using the kernel

function κ as:
α = (K + λI)−1y (11)
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where Kij = κ
(

x′i , x′j
)

= ϕ
(
x′i
)
. ϕ
(

x′j
)

= xi . xj. Here, K is called the Kernel matrix
(equivalent to the Gram Matrix G). K is the circulant for the kernel, like in Gaussian kernels.
We keep stating high-dimensional feature space brought by ϕ yet we have not stated what
these features are. For Gaussian kernels, we can obtain the explicit features using the Taylor
expansion [21] of these Gaussian kernel functions as follows:

ϕ
(
x′
)
= e−

||x′ ||2

2σ2
1

σk
√

k!

k

∏
i=0

x′ji (12)

where i = 0, 1, 2.k and j enumerate over all selections of k co-ordinates of x′. Now, in KCF,
the learned function f (z′) for some sample z′ is given by:

f
(
z′
)
=

(
n

∑
i

αi ϕ
(

x′i
))T

ϕ
(
z′
)
=

n

∑
i

αiκ
(

x′i , z′
)

(13)

To calculate this learned function, we need the value of α. It can be computed us-
ing the relation between the Circulant Matrix C(x) (readers are suggested to refer to
Equations (2) to (5) for details of the Circulant Matrix) F and sample x [8] such that:

C(x)−1 = F−1
(

F
(

x−1
))

(14)

where C(x)−1 is the inverse transform of C(x), F is the Fourier transform, and F−1 is the
inverse Fourier transform. Using Equations (14) and (11), it is possible to diagonalize K
(the concept is similar in the linear case) and obtain:

α = (K + λI)−1y

α = F−1
(

F
(

1
K + λI

))
y

From the right-hand side of the above equation, we can see that multiple computations
are taking place in the higher-dimensional space. However, these computations can be
made very fast if we can somehow make the computations a simple dot product i.e., using
Discrete Fourier transform. Taking DFT on both sides,

DFT(α) = DFT
(

F−1
(

F
(

1
K + λI

))
y
)

DFT(α) = DFT
((

y
(K + λI)

))
α̂ =

(
ŷ

F(K + λI)

)
α̂ =

(
ŷ

k̂xx + λ

)
(15)

where kxx is the first row of the kernel matrix K = C(kxixj) and a hat ˆdenotes DFT of a
vector, α can be computed and taken as the inverse Fourier transform of α̂.

From Equation (13), using kernelized Ridge Regression, we can finally evaluate f
(

z
′
)

,
which represents the learned function on several image locations i.e., for several cyclic
patches such as:

f
(
z′
)
=

(
n

∑
i

αi ϕ
(

x′i
))T

ϕ
(
z′
)
=

n

∑
i

αiκ
(
x′i , z′

)
=
(

Kz′
)T

α (16)
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where

α̂ =

(
ŷ

k̂xz + λ

)
(17)

Hence, we only need the first row of the Kernel matrix K for our computation. This is
one of the main components that can offer much lower computation compared to m×m or
n× n computation in the original input feature space of the data matrix Xn x m. In addition,
from Equation (16), we have f (z′), the full detection response i.e., a vector containing
the output for all cyclic shifts of z. Equation (16) can be computed more efficiently by
diagonalizing it to obtain:

f̂(z) = k̂xz � α̂ (18)

where � represents the dot product. This increase in computation speed is due to the
element-wise multiplication in the Fourier Domain and also the computation in high-
dimensional data using the kernel trick. Once we are able to locate the target in a subsequent
frame, we can use the prior knowledge of the target at the first frame and the calculated
response at the second to track the target. This method can be employed for all subsequent
frames. Hence, for any instance in the image, with the current target location and prior
memory, the target can be tracked over time. As mentioned before, this type of tracking
methodology is called tracking-by-detection and has been used in research time and again.
Tracking-by-Detection breaks down the task of tracking into detection-learning and then
detection, where tracking and detection complement each other i.e., results provided by
the tracker are then used for the algorithm to learn and improve its detection.

4. KCF Tracker Pipeline and Dataset

The dataset used in the evaluation was collected by the author using the Kinect V2
RGB camera. The environment was chosen to replicate the real-time environment for
testing the KC tracker. Subjects varied in size, the color of the dress, etc. Figure 3 gives an
overview of the sequence of images used in the experiment.

Figure 3. Cont.
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Figure 3. Cont.
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Figure 3. Overview of the sequences used in the experiment. A total of six experimental scenarios: (a) Clutter; (b) defor-
mation; (c) motion; (d) normal; (e) occlusion; (f) out-of-view. Targets have a bounding box around them. Best viewed
in color.

Motivated by the suggested performance of the KCF tracking algorithm, we realize
the need to further analyze and study the experimental performance of the tracker under
similar conditions also exists. Commonly, such a study is accomplished using standard
datasets. However, we realized the tracker performance needs to also be validated in
real-time under different challenging possible scenarios. The current standard benchmark
does not test it in real-time settings, leading to a major drawback in its validity when used
using a real-time setup, e.g., by observing people via a camera in real time under different
scenarios. This section builds on this motivation and discusses tracker performance.

Figure 4 shows the CF tracking pipeline in detail. It has the following main com-
ponents: (a) Pre-processing stage; (b) feature extraction stage; (c) learning stage; and (d)
updating stage. A preprocessing step is performed first on every captured frame of the
video before it is passed to the tracker.
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Figure 4. Flow diagram of training and detection pipeline.

Scenarios used for the analysis were selected based on the major challenges faced by
the visual tracking community. These include scenarios such as (a) normal, (b) background
clutter, (c) deformation, (d) occlusion, (e) fast motion, and (f) out-of-view scenes. Figure 5
shows a sample representation of our data. We refer readers to Figure 3 for a complete
overview of all scenarios.

Figure 5. Sample images from ‘occlusion’ scene that were used in tracker evaluation. The target has a bounding box around
it. Best viewed in color.

A brief description of these scenarios is given below:
Normal: Normal scenarios include no occlusion, deformation, illumination, etc.
Background Clutter: In this scenario, scenes are composed of several familiar objects

with similar colors and textures, making it harder to recognize the target by an algorithm.
Deformation: In the case of deformation, the location of the object as a whole or object

parts often vary in frames of a video.
Motion: This indicates how fast the target is moving (faster objects cause motion blur).
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Out-of-view: Out-of-view is a state when the target, during its observation, moves
out of the visible range of the sensor (for example, the camera). This scenario is different
from occlusion since in occlusion, the target is still in the visible range of the sensor but
is temporarily hidden. However, in out-of-view, the target disappears from the visible
range altogether. In such cases, the model loses information of the target, making it harder
to re-detect.

Occlusion: One of the most challenging scenarios is occlusion, where the target under
observation has their body parts or movements hidden.

Numerous performance measures have been suggested, which have become popular
in the visual tracking community. However, none of them have been singled out as a
de facto standard. In most cases, standard datasets are used for comparative results.
However, since our purpose was to analyze the tracker in a real-time environment, we
collected our own dataset using different subjects from different scenarios in order to test
the robustness against, for example, occlusions, out-of-view, etc. Table 1 gives a more
detailed description of the number of datasets collected for individual scenarios. In total,
they averaged approximately 6000 images collected using Kinect V2 and were manually
annotated to generate ground truth. Inspired by previous work [22], we determine a
general definition for the description of the object state in a dataset of N sequences as:

S = {(Ct, xt, yt)}N
t=1 (19)

where xt, yt ∈ C denotes a center of the object and Rt denotes the region of the object at
any time t. Hence, for any particular example and at any particular time t, the center can
be denoted as:

Ct = (xt, yt) (20)

A subject in any particular tracking algorithm is tested against the ground-truth
(the true value of the object location). We define our ground truth annotations as ∆G ={

xg, yg, wg, hg
}

and tracker’s predicted annotation as ∆t = {xt, yt, wt, ht} where x, y, w, h
are the top-left x co-ordinates, top-left y coordinates, width, and height, respectively, of the
subject in question.

Table 1. Details about the RGB dataset collected using Microsoft Kinect V2.

Scenarios Subjects Data (No of Frames)
Clutter 6 1677

Deformation 6 1494
Normal 6 900

Occlusion 6 663
Motion 6 784

Out of view 6 620
Total 6138

5. Results of Performance Analysis Using Experimental Dataset
5.1. Center Error

Center error is one of the oldest measures [23,24] and is still relatively popular. It
measures the difference between the target’s predicted center from the tracker and the
ground-truth center. Mathematically, it can be calculated using the Bhattacharya method as:

Centre Error =
√
(x1 − x2)

2 + (y1 − y2)
2

where the center for the ground-truth bounding box can be defined as CG = (x1, y1) the
predicted bounding box can be defined as CT = (x2, y2). The resulting error can be plotted
against the sequence of frames as a graph as can be seen from Figure 6. It requires less
annotation effort and hence can be used for quick analysis.
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Figure 6. Reasons for the sensitivity of center error due to GT and prediction annotations.

Observation: The plots for the center error for all six scenarios can be seen in Figure 7.
We observe that in cases of deformation, occlusion, and out-of-view, the center error was
relatively higher as compared to other scenarios, for all datasets. In the case of motion, the
center errors are low in the beginning but tend to increase after 40% of the frames have
been tracked, indicating it may be more robust for short-term tracking than in the long
term. In the case of clutter, one dataset did not perform well, indicating that the tracker
may be sensitive to additional factors. The tracker performed best for the general scenario,
indicating that given ideal scenarios (no occlusion, clutter, slow speed), KCF works well.
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5.2. Intersection of Union

The intersection of Union (IoU) is an evaluation metric used for calculating the match
between the ground truth and predictions. In other words, a higher value of IoU implies
that the coordinates xt, yt, wt, ht of the tracked bounding box (prediction) are going to
closely match the coordinates xg, yg, wg, hg of the subject location (ground truth). It is
computed using:

IoU =
Area o f Overlap
Area o f Union

IoU can be seen as a metric to measure the accuracy of the tracker. IoU rewards more
to the prediction parameters (co-ordinates), which overlap heavily with the ground-truth
parameters (coordinates). The results for the IoU for each scenario for all datasets are
shown in Figure 8. The values of the y-axis denote IoU where 0 denotes no overlap and
1 denotes 100% overlap. A threshold for 0.5 is set to make a distinction for desired and
undesired values of IoU. Any value above the threshold would imply that there is 50% or
more overlap between the ground truth and the trackers’ prediction, and hence the tracker
is performing well.
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Figure 8. Plots for Intersection of Union for (Top, L–R) clutter, deformation, motion and (Bottom, L–R) normal, occlusion,
out-of-view (best viewed when zoomed in).

Observation: Ignoring the few inconsistent outliers due to datasets, it was generally
observed that the tracker performs best in ideal scenarios. It was most unstable in the case
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of occlusion and out-of-view scenarios. In the case of deformation, the performance was
initially better; however, it was degraded as the subject continued to undergo deformation
over time. In the case of out-of-view scenarios, the tracker failed abruptly, indicating that
once the subject goes out of view of the camera, it is never recovered.

5.3. Precision Curve

Precision is another evaluation metric that provides information about what propor-
tion of positive identifications was actually correct. Formally, it is defined as:

Precision :
TP

TP + FP

where True Positive (TP) is an outcome where the algorithm correctly predicts the positive
class i.e., in our case, the algorithm correctly predicts the subjects where the subject exists.
On the contrary, False Positive (FP) in an outcome where the model/algorithm incorrectly
predicts the positive class i.e., the algorithm predicts the subject where it does not exist.
Hence, the higher the precision, the better the prediction. In general practice, a precision
value below a certain threshold is not desired.

Observation: From Figure 9, we observe that precision is lowest for occlusion scenar-
ios, although depending on the dataset and when the subject was occluded, the precision
may decrease at different times. The value of precision can also be seen in Table 2 where
the average precision is 70%, the lowest among all scenarios. It is closely followed by
deformation at 75 %, where precision was dependent on subject movements, but it may
recover over time. The out-of-view scenario performs poorly too. It is better than occlusion
and deformation scenarios because the subject is tested under normal scenarios initially
and it is only towards the end where it goes out of the view of the camera. As can be seen
from the plot, it never recovers, indicating that the tracker does not have the ability to
re-identify the subject once it goes out of view and returns. For scenarios such as clutter
and ideal cases, the tracker seems to perform well.
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Table 2. Precision and average precision over the sequence of datasets for each scenario/environment.

Clutter Deformation Motion Normal Occlusion Out-of-View
Dataset-1 0.9808 0.9168 1.0 0.9718 0.4958 0.7480
Dataset-2 0.9841 0.6005 0.9123 1.0 0.7857 0.8717
Dataset-3 0.9843 0.7731 0.8852 0.9927 0.8436 0.8577
Dataset-4 0.7093 0.7274 0.8884 1.0 0.6784 0.8798
Average 0.9038 0.7544 0.9213 0.9911 0.7008 0.8393
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6. Results of Performance Analysis Using Public Benchmark
6.1. OTB-50 Benchmark Analysis

The OTB [25] methodology applies a no-reset experiment in which the tracker is
initialized in the first frame and runs unsupervised until the end of the sequence. KCF
is compared with other existing top-performing trackers available for comparison on
OTB50 [25] sequences, which are fully labeled and contain more than 26,000 frames. A
standard evaluation protocol is used to evaluate the 11 appearance variants. The results
are presented in the form of a Success Rate (SR). For the tracker bounding box rt and the
ground truth bounding box r0 of the target, the success rate (SR) is given by:

SR =
| rt ∩ r0|
| rt ∪ r0|

∗ 100

where ∩ and ∪ represent the intersection and union operators. The 11 appearance variants
or categories are illumination variation (IV), scale variation (SV), occlusion (OCC), defor-
mation (DEF), motion blur (MB), fast motion (FM), in-plane rotation (IPR), out-of-plane
rotation (OPR), out-of-view (OV), background clutter (BC), and low resolution (LR). For
comparison purposes, we used state-of-the-art trackers as mentioned in Table 3. The
CSK [18], KCF [8], and DSST [26] are the most popular correlation filter-based trackers,
while TLD [27] and Struck [28] are frequently used tracking-by-detection based algorithms.
There are other CF tackers that address many model issues such as unwanted boundary
and model degradation (DDCF [29]), scale change of target objects (SAMF [30]), and drift-
ing and long-tern failure (ELMACF [31]). With the increased popularity of attention paid
to mechanisms, trackers such as AFCN [32] utilized the dynamic properties of targets for
the best performance.

Table 3. The SR score of several state-of-the-art trackers, including KCF, on the 11 challenging scenarios. The best
performance in each tracker has been highlighted in bold.

IV IPR LR OCC OPR OV SV MB FM DEF BC
ELMACF [31] 55.7 59.1 38.1 62.5 62.2 51.3 52.8 58.1 54.0 64.0 59.6

ACFN [32] 55.7 56.5 35.2 60.4 60.0 62.4 59.2 52.1 52.7 63.2 54.6
FCN [33] 59.8 55.5 51.4 57.1 58.1 59.2 55.8 58.0 56.5 64.4 56.4

DDCF [29] 63.8 48.8 44.8 44.4 46.1 44.3 48.3 53.3 52.3 41.2 54.5
SAMF [30] 46.3 45.8 44.0 47.8 48.1 39.5 44.6 44.0 42.8 44.0 43.8
DSST [26] 51.7 44.0 37.3 43.2 40.2 32.3 41.7 40.5 36.6 40.9 49.1
KCF [8] 43.3 38.9 28.5 39.6 39.6 32.7 35.3 40.8 38.9 40.0 41.7

Struck [28] 33.0 37.6 31.9 33.2 33.5 32.7 35.9 39.9 40.4 32.3 35.6

6.2. VOT 2015 Performance Analysis

The VOT 2015 [34] challenge saw various competitive trackers tested against a diverse
dataset. Here, many variants of correlation filter-based trackers, and some specifically
around the KCF tracker, proved their competitiveness, robustness, and speed. For VOT
2015, three performance measures were used due to their understandability and inter-
pretability: (a) Accuracy, (b) robustness, and (c) speed. The accuracy measures how well
the bounding box predicted by the tracker overlaps with the ground-truth annotation for
the dataset. On the other hand, robustness measures how many times the tracker loses the
target. In particular, the raw accuracy (average overlap) and raw robustness (number of
failures per sequence) were computed for each tracker on each sequence. They were then
quantized in the interval [0, 9]. Raw robustness was clipped at nine failures to calculate the
quantized robustness, and the quantized accuracy was computed by 9 − [10∅], where ∅ is
the VOT accuracy.

It was observed that although CNN-based correlation trackers did achieve great
accuracy, the traditional correlation filter (especially KCF variants) performed best in speed.
The effectiveness of KCF-based trackers can be understood by the fact that the speed
of traditional KCF trackers (sKCF [34] and KCFv2 [34]) is almost 70–100% faster than
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CNN-based CF trackers. Table 4 shows various CF trackers and their results on the VOT
2015 challenge.

Table 4. Raw accuracy and raw robustness (defined by the average number of failures) and speed of various CF trackers.
The best performance is highlighted in bold.

Tracker Accuracy Robustness Speed
RAJSSC [34] 0.57 1.63 2.12
SRDCF [35] 0.56 1.24 1.99

DeepSRDCF [36] 0.56 1.05 0.38
NSAMF [34] 0.53 1.29 5.47
MKCF+ [38] 0.52 1.83 0.21
MvCFT [34] 0.52 1.72 2.24

LDP [37] 0.51 1.84 4.36
KCFDP [34] 0.49 2.34 4.80

MTSA-KCF [34] 0.49 2.29 2.83
sKCF [34] 0.48 2.68 66.22
KCF2 [34] 0.48 2.17 4.60

KCFv2 [34] 0.48 1.95 10.90

In VOT 2015, among other trackers, several were from the KCF tracker class, namely
SRDCF [35], DeepSRDCF [36], LDP [37], NSAMF [34] RAJSSC [34], and MvCFT [34].
RAJSSC is a KCF-based framework that focuses on making tracker rotation invariant,
NSAMF is an extension of the VOT 2014 top-performing tracker that uses color in addition
to edge features, SRDCF is a regularized KCF that reduces boundary effects in learning a
filter, and DeepSRDCF is its extension of [35] that uses CNN for feature extraction. Using
activations from the convolutional layer of a CNN to mitigate the need for task-specific fine
tuning, MKCF+ was built upon MKCF [38] and addresses the issue of model-drift using a
background modelling algorithm. MvCFT [34] addresses the problem of multiple object
views using a set of correlation filters. LDP, on the other hand, addresses the non-rigid
deformation by applying a deformable part-based correlation filter. KCFDP [34] uses an
EdgeBoxes algorithm to search for detection proposals nearby and finds the best target
candidate for the tracker. MTSA-KCF addresses the scaling issue of KCF using a simple
voting over-grid method. One of the limitations of KCF is the fixed size of the filter, and
this issue was addressed in sKCF [34], which builds upon KCF and uses an adjustable
Gaussian window function and a keypoint-based model for scale estimation. KCF2 [34]
and KCFv2 [34] are more simple modifications of KCF where the former uses online SVM
to enhance the robustness and the latter replaces the model update by linear interpolation
with a more robust update scheme.

6.3. VOT 2019 Performance Analysis

VOT 2019 [39] was different than previous challenges as the evaluation included the
standard VOT and other popular methodologies for both short-term trackers and long-term
trackers in a diverse dataset. The metrics for analysis were similar to VOT 2015. Table 5
shows the performance results of the correlation filter-based trackers in the VOT 2019
challenge. The expected average overlap (EAO) is an estimator of the average overlap a
tracker is expected to attain on a large collection of short-term sequences with the same
visual properties as the given dataset. Readers are referred to [34] for further details on the
average expected overlap measure.
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Table 5. The expected average overlap (EOA), raw accuracy (A), and raw robustness (R) for the experiments in the VOT
2019 challenge. The best performance is highlighted in bold.

Baseline Real-Time
EOA A R EOA A R

LSRDFT [39] 0.317 0.531 0.312 0.087 0.455 1.741
TDE [39] 0.256 0.534 0.465 0.086 0.308 1.274

SSRCCOT [39] 0.234 0.495 0.507 0.081 0.360 1.505
CSRDCF [40] 0.201 0.496 0.632 0.100 0.478 1.405
CSRpp [39] 0.187 0.468 0.662 0.172 0.468 0.727
FSC2F [41] 0.185 0.480 0.752 0.077 0.461 1.836
M2C2F [41] 0.177 0.486 0.747 0.068 0.424 1.896
TCLCF [39] 0.170 0.480 0.843 0.170 0.480 0.843

WSCF-ST [39] 0.162 0.534 0.963 0.160 0.532 0.968
DPT [42] 0.153 0.488 1.008 0.136 0.488 1.159

CISRDCF [39] 0.153 0.420 0.883 0.146 0.421 0.928
KCF [8] 0.110 0.441 1.279 0.108 0.440 1.294

Struck [28] 0.094 0.417 1.726 0.088 0.428 1.926

LSRDFT [39] and TDE [39] are CNN-based deep-tracking approaches equipped with
deep features. They differ in the way that LSRDFT uses a shortened interval of updating
in the correlation filter, while TDE utilizes an adaptive spatial selection scheme to learn
a robust model. SSRCCOT is a correlation filter-based tracking method that proposes
selective spatial regularization while training continuous convolution filters. CSRDCF [40]
(and its C++ implementation CSRcpp) improves DCF trackers by introducing spatial and
channel reliability. Its variant CISRDCF differs from the CSRDCF by independent feature
channel calculation and an iterative regularization process. Another CFT tracker ECO [41]
saw two variants, FSC2F and M2C2F, in the comparative analysis, where the former
employs a motion-aware saliency map to address robustness and the latter adaptively
utilizes multiple representative models of the tracked object for robustness. An attempt
was made to address the issue of the boundary effect by WSCF-ST [39]. An ensemble
of CF trackers also proved its robustness. TCLCF [39], which is an ensemble CF tracker,
uses a different correlation filter to track the same target. Being computationally faster, it
is great for embedded systems. There are other trackers that are either a variant of KCF
(Struck [28]) or use KCF in some way (DPT [42]) in their algorithm.

7. Discussion and Conclusions

The application of visual tracking in robotics and surveillance has made tremendous
progress in recent years. On one hand, there are deep learning-based trackers that propose
end-to-end learning and depend on high GPU power and frequent fine tunings. On the
other hand, there are correlation filter-based trackers that propose one-shot learning and
perform well in speed without GPU acceleration, hence are computationally efficient. The
research community has made significant progress in both fields, and it is the authors’
opinion that both signs of progress go together. CF-based visual trackers, in particular, have
been popular because of their speed (almost ~70–100% faster than CNN-based CF trackers)
and accuracy. One such state-of-the-art tracker was presented by the work of Henriques
et al. [8], which utilized a unique structure of image samples, making it computationally
very fast. The tracking algorithm, though fast, has its own weaknesses. This paper discusses
this state-of-the-art Kernelized correlation filter (KCF) in detail in all aspects associated
with its original inspiration, mathematical framework, and its experimental validation. The
authors believe that the core inspired ideas of using circulant matrices and a kernel trick
offer a natural approach for constructing a computationally efficient framework suited
to real-time tracking. The tracker is tested on a dataset collected by authors consisting of
6000+ images using the Kinect RGB camera. The current dataset consists of subjects being
observed from an elevation unlike the dataset used in [8], which consists of more uniform
data with subjects and cameras at the same level. The results from the tracker were subject
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to standard evaluation metrics. It performs well for scenarios such motion and clutter;
however, the performance is affected over a longer duration of time indicating that the
tracker performs best as a short-term tracker than a long-term tracker. It was observed that
the tracker was least robust to occlusion, irrespective of the size of the occlusion (person,
pillar etc.). It was followed by deformation when the subject changed its size (bend down,
sit etc.) in any given scenario. It was also observed that the tracker is unable to recover in
out-of-view scenarios when the subject goes out of the view of the camera and re-enters,
thereby affecting the tracker’s performance. In the future, we would like to expand our
work and test a more diverse dataset including (a) close up data for better tracking of faces
and hands and (b) level-headed data for people following robot applications.

The paper further shows the comparison of the OTB50 benchmark, VOT 2015, and
VOT 2019 challenges with other existing state-of-the-art trackers. The authors are hopeful
that a comprehensive comparison of the trackers will provide the research community with
a better understanding of the current research of KCF, KCF variants, and other CF-based
trackers. The preliminarily experiential study suggests many opportunities remain for
extending the core framework to offer a robust real-time tracking approach.

This tracker has shown great potential for improvements both in robustness and
accuracy. The authors aim to improve on this great work by using a better sampling
strategy, such as particle filtering techniques. The PF framework has proved advantageous
in the past in algorithm robustness due to its maximum likelihood estimation algorithm. It
implements a recursive Bayesian filter by Monte Carlo simulations. The tracker utilizes
the samples propagated based on the system dynamic model, and weighs samples by a
weight function. With more samples, it is expected that it can recover the true posterior
probability density, hence predicting the location with the highest likelihood of the correct
response in KCF. The authors also feel that integrating the tracker with depth features will
positively affect the tracker’s performance since the tracker will have the ability to better
differentiate between the subject and the background. The authors intend to use Kinect
RGB-D cameras for this feature extraction. The authors also realize that deep learning
methods have proved beneficial for the current research community [43–46] and intend
to explore the potential integration of correlation filters with deep-learning techniques to
make the best of both methods.
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Abbreviations

ROI Region of Interest
HOG Histogram of Gradient
KCF Kernelized Correlation Filter
CF Correlation Filter
FPS Frame Per Second
CFT Correlation Filter Tracker
BCCM Block-Circulant Circulant Matrix
LRR Linear Ridge Regression
IoU Intersection of Union
TP True Positive
FP False Positive
TN True Negative
FN False Negative
IV Illumination Variation
SV Scale Variation
OCC Occlusion
DEF Deformation
MB Motion Blur
FM Fast Motion
IPR In-Plane Rotation
OPR Out-of-Plane Rotation
OV Out-of-View
BC Background Clutter
LR Low Resolution
SR Success Rate
CNN Convolution Neural Network

Appendix A

Dual form of Ridge Regression

We know that learning a linear classifier

f (x) = wTx + b (A1)

also expanded as

f (x) =
[

w
b

]T[ x
1

]
= wTx + b (A2)

can be formulated as learning an optimization problem over w. This optimization problem
is known as the primal problem. Instead, we can learn a linear classifier by solving an
optimization problem over α. This is known as the dual problem and has been studied
extensively using Lagrangian Duality [47], and it can be used to derive the dual formula-
tions of the learning algorithms. This can be extended to ridge regression problems. Ridge
regression has a closed-form solution for its optimization problem and can be given by:

min
w

n

∑
i

(
wTxi − yi

)2
+ λ ||w ||2 (A3)

This optimization problem in w is a convex problem and can be solved by differentiat-
ing it w.r.t. w giving:

w =
(

XTX + λI
)−1

XTy (A4)



Technologies 2021, 9, 93 21 of 23

where X ∈ Rnxm is the data matrix. We can find its dual form solution by using the
Representer Theorem [48], which states that for a regularized risk minimization problem:

min
w

n

∑
i

L
(

wTxi , yi

)2
+ λ ||w ||2 (A5)

the solution can be given by:

w =
n

∑
i

αixi = XTα (A6)

To find the dual form of the solution given by Equation (A6), we aim to find a
relationship between Equations (A4) and (A6). Hence, we use the Sherman–Morrison–
Woodbury formula [49], which states:(

A−1 + BT B
)−1

BT= ABT
(

BABT + I
)−1

(A7)

Comparing the L.H.S. of Equation (A7):(
A−1 + BT B

)−1
BT

with (re-arranged) Equation (A4): (
λI + XTX

)−1
XT

we get:

A =
1
λ

, B = X (A8)

However, from Equation (A7), we know that:(
A−1 + BT B

)−1
BT= ABT

(
BABT + I

)−1

Therefore, if we use Equation (A8) to substitute A = 1/λ , B = X in the R.H.S. of
Equation (A7) i.e., ABT(BABT + I

)−1, we will get an equivalent of the closed-form solution

of ridge regression given by Equation (A4), which is in the form of
(

A−1 + BT B
)−1BT . The

substitution can be shown as:

ABT(BABT + I
)−1

Using A = 1
λ , B = X :

= 1
λ XT

(
X 1

λ XT + I
)−1

= XT (XXT + λI
)−1

(A9)

Hence, using the Sherman–Morrison–Woodbury formula and from Equation (A9), we
now have:

w = XT
(

XXT + λI
)−1

y

Comparing this with Equation (A6):

w =
n

∑
i

αixi = XTα (A10)

we have the dual form solution of ridge regression as:

α =
(
XXT + λI

)−1y
or α = (G + λI)−1y

(A11)
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where we have defined G as the Gram Matrix.

References
1. Mei, X.; Ling, H. Robust Visual Tracking Using L1 Minimization. In Proceedings of the 2009 IEEE 12th International Conference

on Computer Vision, Kyoto, Japan, 29 September–2 October 2009.
2. Hager, G.D.; Dewan, M.; Stewart, C.V. Multiple Kernel Tracking with SSD. In Proceedings of the 2004 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, (CVPR 2004), Washington, DC, USA, 27 June–2 July 2004.
3. Parameswaran, V.; Ramesh, V.; Zoghlami, I. Tunable Kernels for Tracking. In Proceedings of the 2006 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006.
4. Elgammal, A.; Duraiswami, R.; Davis, L.S. Probabilistic Tracking in Joint Feature-Spatial Spaces. In Proceedings of the 2003 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, Madison, WI, USA, 18–20 June 2003.
5. Viola, P.; Wells, W.M., III. Alignment by Maximization of Mutual Information PAUL. Int. J. Comput. Vis. 1997, 24, 137–154.

[CrossRef]
6. Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual Object Tracking Using Adaptive Correlation Filters. In Proceedings of

the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June
2010.

7. Chen, Z.; Hong, Z.; Tao, D. An Experimental Survey on Correlation Filter-Based Tracking. arXiv 2015, arXiv:1509.05520.
8. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-Speed Tracking with Kernelized Correlation Filters. IEEE Trans. Pattern

Anal. Mach. Intell. 2014, 37, 583–596. [CrossRef] [PubMed]
9. Yang, M.; Jia, Y. Temporal dynamic appearance modeling for online multi-person tracking. Comput. Vis. Image Underst. 2016, 153,

16–28. [CrossRef]
10. Xiang, Y.; Alahi, A.; Savarese, S. Learning to Track: Online Multi-Object Tracking by Decision Making. In Proceedings of the IEEE

International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015.
11. Pirsiavash, H.; Ramanan, D.; Fowlkes, C.C. Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, 20–25
June 2011.

12. Choi, W. Near-Online Multi-Target Tracking with Aggregated Local Flow Descriptor. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015.

13. Yadav, S.; Payandeh, S. Understanding Tracking Methodology of Kernelized Correlation Filter. In Proceedings of the 2018
IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON 2018), Vancouver, BC,
Canada, 1–3 November 2018; pp. 1330–1336.

14. Yadav, S.; Payandeh, S. Real-Time Experimental Study of Kernelized Correlation Filter Tracker Using RGB Kinect Camera. In
Proceedings of the 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON
2018), Vancouver, BC, Canada, 1–3 November 2018; pp. 1324–1329.

15. Smeulders, A.W.M.; Chu, D.M.; Cucchiara, R.; Calderara, S.; Dehghan, A.; Shah, M. Visual Tracking: An Experimental Survey.
IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1442–1468.
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