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ABSTRACT 
 
Bazedoxifene (BDF) is a selective estrogen receptor modulator (SERM) that has been approved by 
the FDA for the treatment of post-menopausal osteoporosis in association with conjugated 
estrogens. BDF shares many of the pharmacological effects of tamoxifen with the advantage of not 
being an ER agonist in uterus and decreasing the risk for endometrial carcinoma induced by 
tamoxifen. 
Interestingly, BDF has shown anti-tumoral actions in tissues and tumors that are hormone-
independent. This means that BDF is not only a SERM. The better known of these mechanisms are  

1) Inhibition of the IL6-IL6R-GP130-STAT 3 axis (IL6: interleukin 6; IL6R: interleukin 6 receptor; 
GP130: glycoprotein 130; STAT3: Signal Transducers and Activators of Transcription-3. 

2) Modulation of the Hippo-YAP pathway. 
3) Inhibition of AOX1 (aldehyde oxidase 1) 

The first two are neatly anti-tumoral. The third one is sort of controversial. 
This review is focused on the non-hormonal anti-tumor mechanisms of BDF. Its repurposing for the 
treatment of malignancies, other than breast cancer, is analyzed. 
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1. INTRODUCTION 
 
At the end of the XIX century the Scottish 
surgeon George Beatson, based on the 
observation of the ovarian influence on the 
breast of animals, removed both ovaries in three 
patients with breast cancer. To his surprise all 
the three improved. He had no idea about 
hormones or estrogens [1], but unknowingly the 
first step in the relationship between estrogens 
and breast cancer started to be disclosed. 
 
At the beginning of the 1980s a firm suspicion on 
the role of estrogen replacement therapy in 
breast cancer developed in the scientific 
community [2,3]. All the evidence showed that 
hormone replacement therapy in 
postmenopausal women increased the risk of 
breast cancer and that estrogen depletion could 
be an important mechanism for its treatment. 
Research was oriented towards the discovery of 
an anti-estrogen compound. Tamoxifen, not 
being the first, was found to be quite effective as 
an anti-estrogen in breast [4].  
 
On October 2013 the Food and Drug 
Administration (FDA) approved bazedoxifene 
(Bazedoxifene CAS#198481-32-2). The FDA 
approved the new medication Duavee ®, 
comprised of Bazedoxifene (BDF) and 
conjugated estrogens as a preventive treatment 
for postmenopausal flushes and osteoporosis. 

BDF has been previously approved by the 
European Medicines Agency in 2009. The 
addition of BDF to the conjugated estrogens 
decreases excessive growth of the uterine 
mucosa, lowering uterine cancer risk due to 
estrogens. Leaving aside the conjugated 
estrogens, our analysis will be limited to BDF as 
a possible anticancer drug.  
 
BDF is an indole derivative (Fig. 1) acting as a 
selective estrogen receptor modulator (SERM) 
and selective estrogen receptor degrader 
(SERD) with mixed agonist and antagonist 
actions on the estrogen receptor (ER) according 
to tissue specificity. 
 
It has ER antagonistic effects on breast and 
uterus, while tamoxifen being an antagonist in 
breast is an agonist in uterus. BDF binds the 
estrogen receptors (ER) in responsive tissues, 
such as breast, endometrium, bone, and liver. 
BDF bound to ER translocates to the nucleus 
where it may act as an antagonist in breast and 
endometrium blocking the effects of estrogen-ER 
complex. It can also act as an agonist in liver, 
modifying lipid metabolism decreasing total and 
LDL cholesterol [5]. Effects on bone are mainly 
anti- resorption increasing mineral density. BDF’s 
main pharmacological characteristic is its tissue 
specificity. It is an estrogen antagonist in some 
tissues and at the same time an agonist in 
others. 

 

 
 

Fig. 1. Chemical structure of the hybrid SERM/SERD bazedoxifene 
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BDF is used in the following situations: 
 

1) Prevention and/or treatment of breast 
cancer [6]. 

2) Prevention and/or treatment of post-
menopausal osteoporosis [7,8,9,10]. 

3) Treatment of menopausal symptoms such 
as hot flashes (associated with conjugated 
estrogens) [11,12,13]. 

 

The objective of this review is to analyze BDF for 
the treatment of cancer in general, including but 
not exclusively breast cancer. The other two 
indications, namely osteoporosis and hot flashes 
will not be considered here. (Reviewed by Peng 
et al. [14], Banzal et al. [15], and Parish et al. 
[16])  
 

2. NON-HORMONAL ANTICANCER 
ACTIONS OF BAZEDOXIFENE 

 

The mechanism of action of bazedoxifene in non-
hormonal cancer has not been fully cleared, but 
evidence has been accumulating in this sense. It 
is a SERM and a SERD, but acts also on 
hormone-independent breast cancer [17] 
showing that there must be other actions 
involved. 
 

In the first place, as a SERM it has effects that 
are superior to that of tamoxifen rendering it 
useful in the treatment of tamoxifen-resistant 
breast cancer [18,19]. Resistance to tamoxifen is 
acquired through mutations of the estrogen 
receptor alpha (ERα). BDF has the ability to 
degrade these mutant forms of ERα [20], 
therefore it is also a SERD. These mutations are 
quite common after cancer treatment [21]. 
 
BDF potentiated anti-tumoral action of paclitaxel 
in breast cancer, increasing apoptosis, 
decreasing cell viability, migration and colony 
formation [22]. It was shown to be an inhibitor of 
triple negative breast cancer cells growth. This 
was accomplished by an independent activity 
from ER through inhibition of the IL6-GP130 
pathway [23,24,25]. The inhibition of this axis has 
an anticancer role in breast cancer and also in 
other hormonal-independent tumors.  
 
Three BDF effects related with non-hormonal 
cancers were clearly identified: 
 

4) Inhibition of the IL6-IL6R-GP130-STAT 3 
axis (IL6: interleukin 6; IL6R: interleukin 6 
receptor; GP130: glycoprotein 130; 
STAT3: Signal Transducers and Activators 
of Transcription-3. 

5) Modulation of the Hippo-YAP pathway. 
6) Inhibition of AOX1 (aldehyde oxydase 1) 

 

2.1 Inhibition of the IL6-IL6R-GP130-STAT 
3 Axis 

 
The mechanisms involved in this pathway are:  
 

1) binding of IL-6 to the IL-6 receptor (IL-6R);  
2) thus inducing activation of the receptor 

with  
3) homodimerization and recruitment of 

glycoprotein 130 (GP130);  
4) while IL-6 R is not a signaling molecule, 

GP130 is the actual signaling glycoprotein 
[26];  

5) this pro-tumoral signaling plays a role in 
growth and metastasis of breast cancer 
cells [27] and other tumors. 

 
STAT3 is one of the main downstream protein 
targets, through the JAK-STAT axis. Fig. 2. 
 
As shown in Fig. 2 there are many pro-tumoral 
pathways initiated by the signaling of IL6-IL6R 
besides the JAK-STAT pathway. Therefore, IL6-
IL6R-GP130 can be considered an oncogenic 
cytokine hub. 
 
Fig. 2 shows membrane-bound IL6R activation 
and signaling. However, there is a second 
mechanism involved that seems to be at least, or 
more important than membrane-bound IL6R 
activation. This is the activation of the soluble 
form of IL6R.  
 
Soluble IL6R (sIL6R) has two origins [28]: 
 

a) alternative splicing of the IL6R primary 
transcript [29]; 

b) limited proteolysis and shedding of the 
membrane bound IL6R [30]. 

 
Uniprot [31] says that “the restricted expression 
of the IL6R limits classic IL6 signaling to only a 
few tissues such as the liver and some cells of 
the immune system. Whereas the binding of IL6 
and soluble IL6R to IL6ST stimulates 'trans-
signaling' ” [32]. It is GP130 that explains the 
pleiotropic effects of cytokines like IL-6. BOX1. 
This explains how IL6 is able to produce effects 
in cells lacking IL-6R. This process has been 
called transignaling. The common intermediate 
signaling molecule in both cases is GP130. 
Blocking of IL-6 impedes both mechanisms 
leading to GP130 signaling, namely, classic 
membrane IL-6R binding and transignaling. 
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BOX 1: TWO MECHANISMS OF IL-6 ACTIVITY 
1) Binding of membrane bound IL-6R and signaling through GP130 
2) Binding to soluble IL-6R and signaling through membrane bound GP130 

 
 

Fig. 2. Oncogenic pathways of the IL6-IL6R-GP130-STAT3 axis at the membrane level. This 
figure is based on references [33,34,35,36,37,38,39,40,41,42], IL-6 is a cytokine that affects the 
immune system, inflammation, hematopoiesis, and oncogenesis. It regulates cell growth, gene 
activation, proliferation, survival, and differentiation. Signaling of IL6 requires the IL6 receptor 

and GP (Glycoprotein) 130, Binding of IL-6 to its receptor initiates cellular events including 
activation of JAK (Janus Kinase) and Ras-mediated signaling. Activated JAK phosphorylates 
and activates STAT transcription factors, particularly STAT3. Activated STAT3 translocates 

into the nucleus to activate transcription of genes containing STAT3 response elements. 
STAT3 is essential for GP130-mediated cell survival and G1 to S cell-cycle-transition signals. 

STAT3 was found to be constitutively activated in many tumors [43]. The Ras-mediated 
pathway activates MAP kinases downstream. Also PI3K-AKT axis is activated.  (PI3K: 

phosphoinositol 3 kinase; AKT: protein kinase B) 
 

The IL6-IL6R-GP130-STAT3 axis has been 
described by Chen et al. [44] as a pro-tumoral 
“vicious” forward cycle driving the tumor, in which 
IL6 induces STAT3 expression and STAT3 
increases IL6. BOX 2 
 

 

This pathway has been found to be active in 
pancreatic cancer and BDF has been proposed 
as part of the treatment of this cancer, where it 
seems to down-regulate the IL6/PG130/STAT3 
pathway [45,46,47,48]. In pancreatic cancer, the 
evidence indicates that the anti-cancer 
mechanism is independent of the hormonal 
effects of BDF on the ERα. The IL6-GP130-
STAT3 signaling axis seems to be an important 
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tumor driver in many cancers [49,50,51,52,53], 
including pancreatic cancer. BDF has the     
ability to disrupt this axis by interfering the IL6R-
GP130 relationship, thus blocking GP130 
signaling.  
 
This axis is also operative in other tumors where 
BDF decreased their growth, such as 
rhabdomyosarcoma [54], head and neck cancer 
[55], triple negative breast cancer [56], 
gastrointestinal cancer [57] including colon 
cancer [58] and gastric cancer [59], 
medulloblastoma [60], osteosarcoma [61],       
and hepatocellular carcinoma [62], among 
others. 
 
Down-regulation of the IL-6R-GP130 signaling 
has shown synergy with classical oncological 
treatments such as 5-fluorouracyl in colon cancer 
[63], paclitaxel in breast cancer, and targeted 
treatments like lapatinib in breast cancer [64], 
and palbociclib also in metastatic breast cancer 
[65]. 
 
The persistence of high GP130-STAT signaling 
in human rhabdomyosarcoma was found to be 
involved in resistance to cisplatin, doxorubicin 
and MEK inhibitors [66]. BDF suppressed the 
resistance. 
 
There is no evidence of BDF actions on human 
lung cancer. However, in a Drosophila lung 
tumor model BDF showed anti-tumor properties 
and synergism with afatinib [67].  
 

2.2 Modulation of the Hippo-yap Pathway 
 
Hippo is a protein kinase that controls growth, 
proliferation and apoptosis through a 
phosphorylation cascade that inactivates 
Yes‐associated protein (YAP). Mutations of 
Hippo produce a loss of control of organs 
growth/size through the unrestricted activity of 
YAP [68].  
 
There is evidence of its important oncogenic 
effects in Ewing sarcoma [69], glioblastoma [70], 
cervix cancer [71], among others. In glioblastoma 
BDF had the ability to penetrate the blood brain 
barrier and showed synergistic anti-tumoral 
effects with paclitaxel. Yap (yes-associated 
transcription factor coactivator) signaling 
promotes migration and progression in 
glioblastoma [72] and in malignant tumors in 
general [73]. It has not been clearly established 
the level at which BDF interferes with the Hippo-
Yap pathway. 

2.3 Inhibition of AOX1 
 
Aldehyde oxidase 1 is an enzyme that intervenes 
in the detoxification process of aldehydes and 
the production of ROS (reactive oxygen species) 
such as hydrogen peroxide (H2O2) and 
superoxide [74]. It is mainly expressed in liver, 
kidney, adrenal gland, and to a lesser extent in 
ovary, testis, prostate and pancreas. 
 
Chen et al. found that BDF, but also some other 
SERMS had an inhibitory effect on AOX1 [75]. 
 
AOX1 is involved in the development of colon 
cancer [76]. However, the role of AOX1 in cancer 
is controversial. For example, down-regulated 
expression of AOX1 promoted bladder cancer 
progression [77]. 
 

2.4 Reduction of VEGF, VEGFR2 and 
COX2 

 

Hou et al. [78] found in a rat endometriosis model 
that BDF had the ability to reduce proteins 
related with angiogenesis such as VEGF, 
VEGFR2 and COX2. There is no proof that this 
happens also in human tumors. These effects 
may be hormone-dependent, however, the 
authors also found concomitantly decreased 
levels of IL1, IL2, IL6, and TNFα. Thus, the 
reduction of VEGF, VEGFR2 and COX2 can be a 
consequence of the IL6 pathway inhibition.  
 

2.5 Aryl Hydrocarbon Receptor Activation 
 
BDF is able to activate the aryl hydrocarbon 
receptor (AHR) in breast cancer cells whether 
ERα positive or negative [79]. AHR is a cytosolic 
transcription factor regulating stem cell 
maintenance and cell differentiation and is 
activated by different natural and synthetic 
ligands. Ligand-activation of AHR allows its 
translocation into the nucleus where it regulates 
specific genes, many of them related with 
metabolism [80]. AHR is involved in the 
regulation of many pathways related with 
proliferation, cell motility and differentiation [81]. 
AHR participates in different stages of 
carcinogenesis and its progression [82]. The 
results of AHR activation is a controversial issue, 
because it produces pro- and anti-tumoral 
effects. And to further complicate the issue, 
effects may differ according to the activating 
ligand. A group of substances, such as MCDF (6-
methyl-1,3,8-trichlorodibenzo-p-dioxin), are at the 
same time AHR agonists and exert 
antiestrogenic activity [83]. BDF probably 
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belongs to this group where the AHR agonism is 
associated with antiestrogenic effects. 
 

3. RENAL CELL CARCINOMA 
 
There are no publications about the use of BDF 
in renal cell carcinoma (RCC). In male rats, the 
prolonged BDF administration caused renal 
tubular tumors [84]. However, BDF was not 
found to be genotoxic [85]. A high serum level of 
IL6 was predictive of recurrence in RCC [86]. 
  

4. DISCUSSION 
 
Bazedoxifene is a SERM and a SERD that is 
useful for the treatment of breast cancer through 
its blocking of the ERα. Besides this hormonal 
action it showed other anti-cancer non hormone-
dependent effects.  
 
The IL-6/GP130/STAT3 signaling pathway is 
essential for the survival and progression of 
some cancers. Furthermore, a well known 
oncoprotein like STAT3 is activated by this 
signaling pathway in such a manner that a 
forward loop between IL-6-STAT3-IL6 has been 
found. We may say that these tumors are IL-6 
dependent and IL6 driven. In these kind of 
tumors BDF has shown efficacy as an associated 
drug to classical chemotherapies or targeted 
treatments. 
 
BDF is an effective inhibitor of the IL6 signaling 
pathway. Therefore, its usefulness goes beyond 
hormone-dependent tumors. 
 
BDF is not a stand alone drug. It needs to be 
associated with other chemotherapeutic drugs. It 
also showed ability to reverse multiple drug 
resistance in heavily treated cases. 
 
However, there are no ongoing experimental 
protocols with this drug in cancer treatment other 
than breast. (Clinicaltrials.gov has 48 registered 
studies as of October 2020. Most of them are for 
menopausal symptoms and osteoporosis. Six 
studies are for breast cancer. There are no 
studies for other type of cancers). 
 
In patients with high serum IL-6 levels a 
correlation was found between clinico-
pathological features, survival and IL-6 level. 
This has been confirmed in many types of 
malignant tumors, such as prostate [87,88,89], 
colorectal [90,91,92], lung [93], breast [94], 
gastric [95], ovary [96], head and neck [97], 
among others. 

Does this mean that these tumors are IL-
6/GP130/STAT3 driven? 
 

Probably not, in many cases. It is not possible to 
determine if the serum IL-6 increase is causally 
related with the tumor [98] Furthermore, it can be 
increased by hypoxia, whether generalized or at 
the tumor level [99,100,101,102]. However, it is 
evident that in these increased serum IL-6 
tumors the cytokine is playing an important role 
and it is not an innocent bystander. 
 

IL-6 increase at the tumor level, whether cause 
or consequence needs to be taken care of 
because it has notorious pro-tumor activities 
besides the IL-6/IL-6R/GP130/STAT3 pathway. 
Some of these pro-tumoral effects are: 
 

1) promotion of epithelial-mesenchymal 
transition [103,104]; 

2) producing immuno evasion through 
phosphorylation of  programmed death 
ligand-1 (PDL-1) [105]; 

3) promotion of migration, invasion and 
metastasis [106,107,108]; 

4) contribution to chemoresistance [109,110]; 
5) promotion of stem cell like properties 

[111,112]; 
6) contribution to cancer progression through 

the osteopontin-NF-kB pathway [113]; 
7) inducing an inflammatory pro-tumoral 

environment [114,115]; 
8) stimulating angiogenesis [116] by  

a) increasing vascular endothelial growth 
factor (VEGF) [117,118],  

b) stimulating circulating blood-derived 
progenitor endothelial vascular 
cells[119], and  

c) basic fibroblast growth factor (bFGF) 
induction [120]; 

9) contribution to cancer cachexia 
[121,122,123]; 

10) promotion of myeloid-derived suppressor 
cells [124]; 

11) promotion of the cyclooxygenase 2 
(COX2)/prostaglandin E2 (PGE2) /β-
catenin signaling [125]. 

 
BDF on the other hand is a non-toxic drug that 
can be added to any treatment protocol without 
enhancing patients toxicity with the added value 
of its synergy with classical or targeted 
treatments. Importantly, BDF administered at 
usual doses lacks toxicity [126,127,128, 
129,130,131]. 
 

The lack of clinical trials on this matter should 
change and BDF should come into the 
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therapeutic perspective once its benefits are 
further confirmed with well planned prospective 
clinical trials. 
 

5. CONCLUSIONS 
 
There are a group of tumors in which the IL-
6/GP130/STAT3 is a driver pathway. In these 
tumors the association of the non-toxic SERM 
BDF should improve treatment results. The 
difficulty lies in determining when a tumor is 
driven by this pathway. At this stage of our 
knowledge the serum IL-6 level is not a proof in 
this sense. Probably, those tumors with normal 
serum IL-6 levels are not driven by the IL-6 
pathway. However, the tumors that express high 
IL-6, GP130 and STAT3 in the specimen should 
be considered for associating BDF to the 
treatment protocol. There is evidence that BDF 
can be beneficial also in tumors that are not 
driven by the IL-6/GP130/STAT3. 
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