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Abstract

We proposed a new class of distributions with two additional positive parameters called the
Inverse Lomax-G (IL-G) class. A special case was discussed, by taking Weibull as a baseline.
Different properties of the new family that hold for any type of baseline model are derived
including moments, moment generating function, entropy for Renyi, entropy for Shanon, and
order statistics. The performances of the maximum likelihood estimates of the parameters
of the sub-model of the Inverse Lomax-G family were evaluated through a simulation study.
Application of the sub-model to the Breaking strength data clearly showed its superiority over
the other competing models.
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1 Introduction

The distribution of Inverse Lomax (IL) is part of a distribution of Beta forms. Other family members
include, among others, Pareto (1), logistics, Dagum, generalized second-type beta distributions, and
Singh maddala [1]. In several fields, such as Actuarial Science and Economics, IL distribution has
since gained more attention (see [1]), Geophysical data (see [2]), Survival analysis (see [3]), and
Medical Science (see [4] and [5]).

Some attempts have been made to define new families of probability distributions which strengthen
well-known distribution families while providing greater flexibility in practical data modeling.
Following from the T-X approach by [6], we define the cumulative distribution function (cdf)
of the new family of distributions as

F (x) =

∫ N(H(x))

b

l(t1)dt1 (1.1)

where N(H(x)) is the function of the baseline cdf H(x) of any random variable (RV) X that satisfies
the following conditions below:
(a) N(H(x)) ∈ [b, c]
(b) N(H(x)) Is non-decreasing, monotonically differentiable
(c) N(H(x)) ⇒ b as x ⇒ −∞ and N(H(x)) ⇒ c as x ⇒ ∞. Let T1 be a RV which is continuous
with a probability density function (pdf) l(t1) defined on the closed interval [b, c].

Some of the generalized families of distributions based on this approach in the literature include:
Weibull G family by [7], Lomax Generator of distributions by [8], Odd Generalized Exponential
family by [9], Odd Lindley-G family by [10], Gompertz-G family by [11], Odd Frechet G family
by [12], Power Lindley G family by [13], Topp Leone Exponentiated-G by [14], and Odd Chen-G
family by [15].

Inverse Lomax (IL) distribution has both scale and shape parameters which makes it more flexible
in modeling datasets. In order to increase its flexibility and usage, we wish to generalize the IL
model. The probability density function (pdf) and cdf of the IL distribution are given by

h(x;α, β) =
αβ

x2

(
1 +

β

x

)(−α−1)

(1.2)

H(x;α, β) =

(
1 +

β

x

)−(α)

; x > 0, α, β > 0 (1.3)

The objective of this paper is to propose a new family of distributions called the Inverse Lomax-
G family of distributions which has the capacity of providing more robust compound probability
distributions when modeling real life data set. This new family adds two additional parameters to
the baseline distribution. This article is structured as follows: The Inverse Lomax-G family (IL-G)
is defined in Sec. 2. In Sec. 3 a special sub-model of the IL-G is derived. A mixture representation of
the cdf of the IL-G is presented in Sec. 4, while some of the IL-G’s properties including the quantile
function, order statistics, moments, moment generating function, and Entropies are discussed in
Sec. 5. In Sec. 6, the estimation of the parameters of the IL-G is conducted using the Maximum
Likelihood method. A Monte Carlo simulation study is used to estimate the bias and mean squared
error of the MLE estimates of the parameters of the sub-model in Sec. 7. The application of the
Inverse Lomax Weibull (ILW) and its competitors to the Breaking strength data is discussed in
Sec. 8, while Sec. 9 conludes the paper.
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2 The Inverse Lomax-G Family

In this section, we derive the distribution of the Inverse Lomax-G Family. The pdf, cdf, hazard
function (hf), reversed hazard function, survival function, and cumulative hf are displayed.

Let H(x; υ) and h(x; υ) be the baseline cdf and pdf, and υ be a vector of parameters, let l(t1)
be as defined in Eqt. 1.2, then the cdf F (x;α, ϑ) = F (x;ϑ) of the IL-G family of distribution is
defined as

F (x;ϑ) =

∫ H(x;υ)
1−H(x;υ)

0

l(t1)dt1 =

(
1 +

βH̄(x; υ)

Hx; υ)

)−α

; x > 0, α, β, υ > 0 (2.1)

where ϑ = (α, β, υ)T , H̄(x; υ) = 1 − H(x; υ) and also α and β are the two additional parameters
that are added to make the baseline distribution much more flexible. The corresponding pdf f(x;ϑ)
of IL-G family obtained by differentiating Eqt. 2.1 as given below

f(x;ϑ) =
βαh(x; υ)

[H(x; υ)]2

(
1 +

βH̄(x; υ)

Hx; υ)

)−(1+α)

(2.2)

The hazard function (hf), reversed hazard function rhf(x), survival function (s), and cumulative
hazard functions C(x) are given below:

hf(x;ϑ) =
αβh(x; υ)

[H(x; υ)]2

(
1 +

βH̄(x; υ)

Hx; υ)

)−(1+α)
[
1−

(
1 +

βH̄(x; υ)

Hx; υ)

)−α
]−1

(2.3)

r(x;ϑ) =
αβh(x; υ)

[H(x; υ)]2
(
1 + βH̄(x;υ)

H(x;υ)

) (2.4)

s(x;ϑ) = 1−
(
1 +

βH̄(x; υ)

Hx; υ)

)−α

(2.5)

C(x;ϑ) =

∫ x

−∞
p(q)dq = −log[s(x)] = −log

[
1−

(
1 +

βH̄(x; υ)

Hx; υ)

)−α
]

(2.6)

The quantile function (qf) of IL-G family can be derived by inverting Eqt. 2.1 as given below

Q(U) = H−1

{
β

U (− 1
α
) + β − 1

}
(2.7)

where H−1(.) is quantile function (qf) of any baseline distribution, U is uniformly distributed i.e
U ∼ U(0, 1), and Eqt. 2.7 can be used to draw samples for the purpose of simulation studies.

3 Special Sub model

Suppose that the parent distribution is Weibull. Then h(x; θ, λ) = λθxθ−1 exp{−λxθ} andH(x; θ, λ) =
1 − exp{−λxθ}. With x > 0, λ, θ > 0, the Inverse Lomax Weibull (ILW) distributon has the cdf
given as

FILW (x) =

(
1 +

β

exp{λxθ} − 1

)−α

(3.1)

The ILW distribution becomes Inverse Lomax Exponential (ILExp) distribution when θ = 1 and
an Inverse Lomax Rayleigh (ILR) distribution when θ = 2. The corresponding pdf of Eqt. (3.1) is
given below:

fILW (x) =
αβλθxθ−1 exp{−λxθ}
[1− exp{−λxθ}]2

(
1 +

β

exp{λxθ} − 1

)−(1+α)

(3.2)
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The quantile function, rhf(x), C(x), and hf(x), are given by

Q(U) =

 log

[
U

−( 1
α

)
+β−1

U
−( 1

α
)−1

]
λ


1
θ

(3.3)

hILW (x) =
θλαβxθ−1 exp{−λxθ}

(
1 + β

exp{λxθ}−1

)−(1+α)[
1−

(
1 + β

exp{λxθ}−1

)−α
]
[1− exp{−λxθ}]2

(3.4)

HILW (x) = −log

[(
1 +

β

exp{λxθ} − 1

)−α
]

(3.5)

rILW (x) =
θβαλxθ−1 exp{−λxθ}

(
1 + β

exp{λxθ}−1

)−(1+α)[(
1 + β

exp{λxθ}−1

)−α
]
[1− exp{−λxθ}]2

(3.6)

Fig. 1. Density and hf plots of ILW distribution with θ = 1 and λ = 1 and varying α
and β

Fig. 1 illustrates different density and hazard forms of the ILW distribution. By fixing the parameters
of the baseline distribution and varying the additional two parameters, α and β, the plots show the
additional flexibility induced by the addition of these two parameters to the weibull distribution.

4 Mixture Representations

Here, we present the power series expansion of the IL-G family by expanding Eqt. 2.1.
using the binomial expansion

(1 + x)−t =

∞∑
c=0

(
−t
c

)
x−t−c
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(mathworld.wolfram.com/BinomialCoefficient.html)

F (x;ϑ) =

(
1 +

βH̄(x; υ)

Hx; υ)

)−α

=

∞∑
i=0

(
−α
i

)[
βH̄(x; υ)

Hx; υ)

]−(α+i)

(4.1)

F (x;ϑ) =

∞∑
i=0

(
−α
i

)
β−(α+i)H̄(x; υ)−(α+i)H(x; υ)(α+i) (4.2)

since

H̄(x; υ)−(α+i) =

∞∑
j=0

Γ(α+ j + i)

j!Γ(α+ i)
H(x; υ)j

Then, Eqt. (4.2) can also be written as

F (x;ϑ) =

∞∑
i,j=0

(
−α
i

)
Γ(α+ j + i)

j!Γ(α+ i)
β−(α+i)H(x; υ)(α+i+j) (4.3)

F (x;ϑ) =

∞∑
i,j=0

σ(i,j)Π(i,j)(x; υ) (4.4)

where σ(i,j) =

(
−α
i

)
Γ(α+j+i)
j!Γ(α+i)

β−(α+i) and Π(i,j)(x; υ) Is the exp-G family cdf with parameter

power (i+ α+ j). The corresponding IL-G pdf is given by

f(x;ϑ) =

∞∑
i,j=0

σ(i,j)π(i,j)(x; υ) (4.5)

where π(i,j)(x; υ) = (α+ i+ j)h(x; υ)H(x; υ)(α+i+j−1).

5 Mathematical Properties of IL-G

We derived some of the mathematical properties of the IL-G family.

5.1 Moments and Moments Generating Function (mgf)

Suppose the random variable X comes from IL-G family with parameter space ϑ, then the rth

moment is given by

E(Xr) =

∫ ∞

0

xrf(x)dx =

∫ ∞

0

xr
∞∑

i,j=0

σ(i,j)π(i,j)(x; υ)dx (5.1)

=

∞∑
i,j=0

σ(i,j)

∫ ∞

0

xr(α+ j + i)h(x; υ)H(x; υ)(i+j+α−1)dx (5.2)

=

∞∑
i,j=0

σ(i,j)E(Zr
(i,j)) (5.3)

where Zr
(i,j) Denotes the power-parameter Exp-G distribution (α+ i+ j − 1).

The mgf of IL-G RV is defined as

MX(q) =

∫ ∞

−∞
exp{qx}f(x)dx (5.4)
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By expanding Eqt. 5.4 using taylor series,

MX(q) =
∞∑
r=0

qr

r!

∫ ∞

−∞
xrf(x)dx (5.5)

Substituting Eqt. (5.3) in to the defination of MX(q) yields

MX(q) =
∞∑
r=0

qr

r!
E(Xr) (5.6)

5.2 Order Statistics

Order statistics are used in other areas of statistical theory and procedures to classify outliers
in statistical quality control systems. We derive the pdf from the pth order statistic of the IL-G
family of distributions in closed form. Suppose X1, X2, X3,X4 . . . Xn is a random sample from a
distribution with pdf f(x) and let X1:n, X2:n, X3:n, X4:n . . . Xn:n denotes the corresponding order
statistics obtained from this sample. Then

fp:n (x;ϑ) =
f(x)

B1(p, n− p+ 1)
F (x)p−1 [1− F (x)]n−p (5.7)

where f(x) and F (x) are the pdf and CDF of the IL-G distribution as in Eqt. (2.2) and Eqt. (2.1)
respectively. Using the fact that

[1− F (x)]n−p =

n−p∑
i=0

(−1)i
(

n− p
i

)
F (x)i (5.8)

By substituting Eqt. (5.8) in Eqt. (5.7) we have

fp:n (x;ϑ) =
f(x)

B1(p, n− p+ 1)

n−p∑
i=0

(−1)i
(

n− p
i

)
F (x)i+p−1 (5.9)

also,

F (x)i+p−1 =
∞∑
j=0

(
−α(i+ p− 1)

j

)
β−α(i+p−1)−j

[
H̄(x; υ)

H(x; υ)

]−α(i+p−1)−j

(5.10)

Eqt. (5.9) can be simplified as

fp:n (x;ϑ) = Ω(ijk)h(x; υ)H(x; υ)α(i+p)+j+k+l−1 (5.11)

where

Ω(ijk) =
αβ−[aα(i+p)+k+k+j]

B1(p, n − p + 1)

n−p∑
i=0

∞∑
j,k,l=0

(−1)
i
(

n − p
i

)(
−α(p + i − 1)

j

)(
−(1 + α)

k

)
Γ(α(p + i) − k − j + l − 1)

Γ(α(i + p) − k − j − 1)

(5.12)

B1(, ) is a beta function, and
h(.) also H(.) are the baseline pdf and cdf respectively.

5.3 Entropy

Here, we consider the Rényi entropy by [16] and Shannon entropy by [17]. One unknown variance
measure is called the entropy of a random variable X. The Rényi entropy for IL-G random variable
is provided by

IR(η) =
1

(1− η)
log

[∫ ∞

0

fη(x)dx

]
, η > 0 and η ̸= 1 (5.13)
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where from Eqt. (2.2)

fη(x) =

[
h(x;υ)αβ

[H(x;υ)]2

(
1 + βH̄(x;υ)

Hx;υ)

)−(1+α)
]η

Then, by expanding fη(x) using a similar process as in Sec. (4) and some simplifications, yields

IR(η) =
1

(1− η)
log

[
∞∑

i,j=0

ρ(i,j)

∫ ∞

0

h(x; υ)ηH(x; υ)η(α−1)+i+jdx

]
(5.14)

where ρ(i,j) = αηβ−(ηα+i)

(
−η(1 + α)

i

)
Γ(η(1+α)+j−i)
j!Γ(η(1+α)−i)

.

Shannon Entropy when η ↑ 1, is a special case of Rényi entropy given by

E {−log [f(x;ϑ)]} = −log(αβ) + E

[
−log

[
h(x; υ)

H(x; υ)2

]]
+ (1 + α)E

[
log

(
1 +

βH̄(x; υ)

Hx; υ)

)]
(5.15)

6 Estimation

We present the maximum likelihood estimates of the parameters of the IL-G distribution in this
section. Let x1, x2, x3, . . . , xn be the observed values of n observations independently drawn from
the ILG family with ϑ. The log-likelihood (ll) function for ϑ denoted by l(ϑ) can be expressed as

l(ϑ) = nlog(αβ) +

n∑
i=1

log (h(xi; υ))− 2

n∑
i=1

log (H(xiυ))− (1 + α)

n∑
i=1

log

(
1 +

βH̄(x; υ)

Hx; υ)

)
(6.1)

haven taken the partial derivatives of Eqt. (6.1) with respect to α, β, and υ, we derived U(ϑ) i.e
the Score Vector components are as follows

Uα(ϑ) =
n

α
−

n∑
i=1

log

(
1 +

βH̄(x; υ)

Hx; υ)

)
(6.2)

Uβ(ϑ) =
n

β
+

n∑
i=1

−(1 + α) H̄(xi;υ)
H(xi;υ)(

1 + βH̄(x;υ)
Hx;υ)

) (6.3)

Uυ(ϑ) =

n∑
i=1

(
h1(xi; υ)

h(xi; υ)

)
− 2

n∑
i=1

(
h(xi; υ)

H(xi; υ)

)
+

n∑
i=1

 (1 + α)βh(x; υ)

H2(xi; υ)
(
1 + βH̄(x;υ)

Hx;υ)

)
 (6.4)

Setting Eqts. (6.2, 6.3, and 6.4) to zero and also solving simultaneously yields the MLE (ϑ̂) =
(α̂, β̂, υ̂) of ϑ. However, these equations cannot be easily solved analytically. Therefore, statistical
software is employed to solve the equations numerically through iterative methods.

7 Simulation Studies

A Monte Carlo simulation is conducted and the results of the bias and mean squared error of the
various estimated parameter values are presented in Tables 1 and 2. The Monte carlo simulation is
described as follows:

(a) For known parameter values i.e ϑ = (α, β, λ, θ)T , samples of different sizes from the Inverse
Lomax Weibull distribution were generated with small parameter values (α = .5, β = .8, λ = .7,
and θ = .6) and with relatively big parameter values (α = 5, β = 10, λ = 7, and θ = 6) using the
quantile function defined in Eqt. (3.3).
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(b) Using the maximum likelihood method, we compute the MLE of α̂i, β̂i, λ̂i, and θ̂i for the ith

replicate.

(c) Steps (a) and (b) are replicated N=500 times.

(d) The bias and MSE for each sample size n are computed as

ϑ̂ =
1

N

N∑
i=1

ϑ̂i, Bias(ϑ̂) = (ϑ̂− ϑ), MSE(ϑ̂) =
1

N

N∑
i=1

(ϑ̂i − ϑ)2 (7.1)

where ϑ̂i = (α̂i, β̂i, λ̂i, θ̂i) are the mle for the ith replicate. For both small and big parameter values,
the sample size n = 30, 50, 75, 200, 300, 500 are used to evaluate the behaviour of the bias, variance,
and mean squared error as the sample size increases.

It is clear from the simulation study that both bias and mean squared error decrease as the sample
size increases for both small and relatively big parameter values. Also, for relatively large sample
size, the bias appears very negligible for both small and relatively big parameter values, as shown
in Table 1. and Table 2.

Table 1. Simulation results for the ILW distribution with small parameter values

n Properties α=.5 β=.7 λ=.9 θ=.4

30 Bias 0.3533 1.5359 0.5527 0.1136
MSE 1.1681 9.7608 1.3789 0.2539
Var. 1.0433 7.4016 1.0734 0.2411
Est. 0.8533 2.3359 1.2527 0.7136

50 Bias 0.2538 1.2946 0.5639 0.0135
MSE 0.5421 7.3381 1.3247 0.1123
Var. 0.4777 5.6622 1.0067 0.1121
Est. 0.7538 2.0946 1.2639 0.6135

75 Bias 0.1577 1.0535 0.4876 -0.0073
MSE 0.1936 5.1485 1.0184 0.0836
Var. 0.1687 4.0386 0.7806 0.8433
Est. 0.6577 1.8535 1.1876 0.5927

200 Bias 0.1252 0.8796 0.4979 -0.0641
MSE 0.0717 3.0456 0.8092 0.0372
Var. 0.056 2.2719 0.5612 0.0331
Est. 0.6252 1.6796 1.1979 0.5359

300 Bias 0.0942 0.6233 0.3792 -0.0475
MSE 0.0464 1.8196 0.5768 0.032
Var. 0.0375 1.4311 0.4329 0.0298
Est. 0.5942 1.4233 1.0792 0.5525

500 Bias 0.0816 0.4833 0.3331 -0.0504
MSE 0.0464 0.9801 0.4249 0.0247
Var. 0.0375 0.7465 0.3139 0.0222
Est. 0.5942 1.2833 1.0331 0.5496
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Table 2. Simulation results for the ILW distribution with big parameter values

n Properties α=5 β=10 λ=7 θ=6

30 Bias 2.6185 -4.9519 -0.6999 3.9134
MSE 30.8643 49.8567 3.7481 37.5244
Var. 24.0076 25.3349 3.2581 22.2094
Est. 7.6185 5.048 6.3 9.9134

50 Bias 3.0295 -4.9676 -0.8143 3.2122
MSE 32.48 47.8544 3.2679 29.6492
Var. 23.3021 23.1776 2.6048 19.3307
Est. 8.0295 5.0324 6.1857 9.2122

75 Bias 3.2687 -4.8458 -0.7847 2.4964
MSE 32.3415 46.8771 2.7158 19.5839
Var. 21.6569 23.3953 2.0999 13.3521
Est. 8.2687 5.1542 6.2153 8.4964

200 Bias 2.9869 -4.6932 -0.7209 1.6219
MSE 25.957 43.4982 1.7507 9.7688
Var. 17.0351 21.4725 1.2309 7.1383
Est. 7.9869 5.3068 6.2791 7.6219

300 Bias 2.6608 -4.3656 -0.6686 1.3504
MSE 20.1019 42.8896 1.4626 6.6039
Var. 13.0219 23.8313 1.0156 4.7804
Est. 7.6608 5.6344 6.3314 7.3504

500 Bias 1.5085 -2.4509 -.3457 .6299
MSE 8.8700 32.4786 .6288 2.0385
Var. 6.5943 26.4716 .5092 1.6417
Est. 6.5085 7.5491 6.6543 6.6299

8 Application

We demonstrate the usefullness of the ILW distribution to the breaking strength of 100 Yarn as
reported by [10]. The data-set consists of 63 measurements of the strengths of 1.5 cm glass fibres,
which were initially collected by United Kingdom National Physical Laboratory staff is as presented
below:

0.55, 0.74, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13, 1.30, 1.25, 1.27, 1.28,1.29, 1.48, 1.36, 1.39,
1.42, 1.48, 1.51, 1.49, 1.49, 1.50, 1.50,1.55, 1.52, 1.53, 1.54, 1.55, 1.61, 1.58,1.59, 1.60, 1.61, 1.63,1.61,
1.61, 1.62, 1.62, 1.67, 1.64, 1.66, 1.66, 1.66, 1.70, 1.68,1.68, 1.69, 1.70, 1.78, 1.73, 1.76, 1.76, 1.77,
1.89, 1.81, 1.82,1.84, 1.84, 2.00, 2.01, 2.24.

We used a maxLik package developed by [18] in R and used by [19]. The goodness-of-fit (gof)
statistics used to compare the models’ performance are the Akaike Information Criterion (AIC),
AIC with correction for small sample sizes (AICc), and the Bayesian Information Criterion (BIC).
Smaller values of the statistics i.e AIC, AICc, and BIC statistics indicates better model fittings.
The competing models (distribution) that are used with the ILW are:

(a) The Weibull-Weibull (ww) by [7] with cdf
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Fww(x;α, β, θ) = 1− exp

{
−α

(
exp

{
θxλ

}
− 1

)β
}

x > 0

(b) The Odd Lindley Weibull (OddLW) by [10] with cdf

FOddLW (x;α, β, λ) = (1 + α)−1 exp
{
−α

(
α+ exp

{
(λx)β

})}
{
(1 + α+ α2) exp

{
α exp

{
(λx)β

}}
− exp {α(1 + α)}

[
1 + α exp

{
(λx)β

}]}
x > 0

(c) The Lomax Weibull (LW) by [8] with cdf

FLW (x;α, β, λ, θ) = 1−
{

β

β + (λx)θ

}α

x > 0

(d) The baseline Weibull (w) with cdf

Fw(x;λ, θ) = 1− exp
{
−λxθ

}
x > 0

The comperators are all extensions of the baseline weibull distribution function, withWeibull-Webull
and Lomax Weibull each having four parameters like the new Inverse Lomax Weibull distribution.

The histogram of the Breaking Strength data, and estimated pdf of the ILW and the other competing
distributions are presented in Fig. 2. The graph confirms the results of the AIC, AICc, and BIC
statistics presented in Table 3 that the ILW distribution fitted the Breaking Strength data better
than the other distributions.
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Fig. 2. Fitted distributions to Breaking Strength data

As shown in Table (3), the ILW distribution apears to be the best with minimum AIC values, and
AICc. Its ranked number 1 outperforming the OddLW by [10] that also used the same data set.
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Table 3. MLEs and Standard Errors in parenthesis and -ll, AIC, BIC, AICc for the
data set

Model α β λ θ -ll AIC BIC AICc
ILW 0.8702 12.3997 0.4801 3.6445 11.8329 31.6658 40.2383 32.3555

(0.2231) (7.1987) (0.2082) (0.6083) – – – –
OddLW 0.0491 – 1.1021 0.4921 14.1935 34.3874 40.8164 34.7938

(0.0871) – (0.5271) (0.4941) – – –
W – – 5.7811 1.6281 15.2071 34.1412 40.9001 34.6142

– – (0.5761) (0.0371) – – – –
WW 3.2796 2.4913 0.1895 1.8858 14.6773 37.3546 45.9271 38.0443

(6.1346) (12.3435) (1.1737) (9.6246) – – – –
LW 11.9908 3.5595 6.2205 0.51042 15.4438 38.8877 47.4601 39.5774

(0.0001) (1.2542) (0.6532) (0.0287) – – – –

9 Conclusion

In this paper, we propose and evaluate a new class of distributions called the Inverse Lomax-G (IL-
G) Family of Distributions. This family can extend several widely known models. For illustrative
purpose, we considered Weibull as base line distribution. Using power series expansion, we derived
some of its properties such as an expansion for density function. Some of the derived properties
include Moments, Moment generating function, quantile function, order statistics, and entropies.
The ILW (by taking Weibull as baseline distribution) parameters were estimated using MLE. The
Monte Carlo Simulation results showed that the bias of the MLEs became negligible when sample
sizes are greater than 100. The analysis of the Breaking Strength data indicated the superiority of
this family of distribution over the competing families.
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