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Abstract: This research investigates the potential of using bedded salt formations for underground
hydrogen storage. We present a novel artificial intelligence framework that employs spatial data
analysis and multi-criteria decision-making to pinpoint the most appropriate sites for hydrogen
storage in salt caverns. This methodology incorporates a comprehensive platform enhanced by a
deep learning algorithm, specifically a convolutional neural network (CNN), to generate suitability
maps for rock salt deposits for hydrogen storage. The efficacy of the CNN algorithm was assessed
using metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Square
Error (RMSE), and the Correlation Coefficient (R2), with comparisons made to a real-world dataset.
The CNN model showed outstanding performance, with an R2 of 0.96, MSE of 1.97, MAE of 1.003,
and RMSE of 1.4. This novel approach leverages advanced deep learning techniques to offer a unique
framework for assessing the viability of underground hydrogen storage. It presents a significant
advancement in the field, offering valuable insights for a wide range of stakeholders and facilitating
the identification of ideal sites for hydrogen storage facilities, thereby supporting informed decision-
making and sustainable energy infrastructure development.

Keywords: underground hydrogen storage; deep learning; site selection; convolutional neural
networks; sustainable energy storage

1. Introduction

Hydrogen is increasingly recognized as a leading eco-friendly fuel, poised to become
a crucial clean energy carrier [1–3]. The growing efficiency and reduced costs of renewable
energy sources (RESs) are driving down electricity production costs, yielding significant
medium-term benefits. Converting excess, low-cost renewable electricity into hydrogen
not only facilitates storage for future use but also enhances the economic efficiency of
renewable energy systems [4–6].

Despite their advantages, RESs are plagued by intermittency, underscoring the neces-
sity for efficient hydrogen storage solutions [7,8]. Depleted hydrocarbon reservoirs, rock
salt deposits, and aquifers offer promising solutions for large-scale hydrogen storage [9,10].
However, initial evaluations of these formations frequently overlook essential surface and
subsurface factors, which may affect their suitability for storage.

In recent years, the use of artificial intelligence algorithms, particularly machine learn-
ing (ML), has surged, providing powerful computational tools for simulating complex
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phenomena across various academic fields [11–13]. Tools renowned for their ability to
handle nonlinear scenarios without requiring statistical data assumptions exemplify this
trend [14,15]. Combining ML with Geographic Information Systems (GIS) provides ex-
ceptional insights into identifying optimal sites for underground hydrogen storage (UHS).
Despite the abundance of reviews on UHS [16–22], comprehensive evaluations of storage
potential and technical aspects are still essential [23–26]. Salt caverns, in particular, have
emerged as prime candidates for UHS, evidenced by their industrial applications in the
petrochemical sector and successful operational examples in locations such as the UK and
the USA [27]. Research worldwide continues to highlight the significant hydrogen storage
potential of rock salt deposits [28–34] which, due to their size and adaptable shape, are
suitable for storing large hydrogen volumes.

Zhu et al. [35] conducted an assessment on the viability of utilizing salt mines in
China for salt cavern hydrogen storage (SCHS). They developed an evaluation framework
using the Entropy-Weighted Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS) to aid in selecting optimal SCHS sites. The Entropy Weight Method (EWM) was
employed to determine the weights of evaluation criteria, and TOPSIS was used to assess
SCHS suitability. Their study also factored in the hydrogen storage capacity of the selected
site and the demand for SCHS.

Huang et al. [36] introduced a preliminary site selection system for UHS in salt caverns,
demonstrating its application in Pingdingshan, China. They put forward a four-factor
model for site selection and outlined a preliminary framework specifically designed for
salt cavern hydrogen storage.

Tarkowski et al. [37] examined the hydrogen storage capacity of salt caverns and deep
aquifers in Poland in relation to the demand for hydrogen storage, incorporating a detailed
case study. Their analysis highlights the significant potential in geological formations and
presents key findings from a techno-economic assessment of prospective scenarios for
deploying underground renewable hydrogen storage facilities.

Du et al. [38] conducted an in-depth exploration of hydrogen geologic storage (HGS) in
China, focusing on its potential for large-scale energy storage to mitigate peak demand and
enhance the stability of intermittent renewable energy sources. They highlighted several
significant challenges, such as hydrogen’s low density and viscosity, intricate interactions
with geological formations and microorganisms, and the lack of essential parameters within
potential reservoirs.

Caglayan et al. [32] presented a comprehensive study on the technical feasibility of utiliz-
ing salt caverns for hydrogen storage across Europe. Their research included an assessment
of the suitability of subsurface salt structures in Europe based on criteria such as size, land
suitability, and storage capacity. They also estimated the potential for hydrogen storage in
various onshore and offshore scenarios, considering different distances from the shore.

The technological challenges of underground hydrogen storage in salt caverns ne-
cessitate a thorough evaluation of cavern dimensions, the properties of rock salt, and
their influence on storage capacity [39–44]. Factors such as the thickness and depth of
rock salt deposits significantly influence site selection criteria. A practical approach to
determining optimal sites must integrate environmental, technical, economic, and social
considerations [45,46]. Integrating GIS and ML has substantially benefited site selection
and impact assessment across diverse domains [15,46–52].

Our study introduces a novel artificial intelligence framework to create suitability maps
for hydrogen storage in rock salt deposits. This pioneering approach leverages deep learning
and spatial data analysis to enhance the accuracy of determining hydrogen storage potential.
By providing stakeholders with a robust decision-support tool, this methodology can poten-
tially transform the process of identifying optimal locations for hydrogen storage facilities.

2. Materials and Methods

This research established a detailed methodology for pinpointing optimal locations
for UHS within rock salt formations, with particular emphasis on the Na1 rock salt deposit
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in the Fore-Sudetic Monocline region of southwest Poland. The Na1 rock salt deposit,
part of the PZ1 cyclothem, is characterized by its significant thickness and favorable
geological properties, making it a prime candidate for underground hydrogen storage.
Located in the Fore-Sudetic Monocline in southwest Poland, this deposit is more than a
hundred meters thick in places, with certain areas reaching up to 300 m. The Na1 layer
is composed of several types of rock salt interspersed with anhydrite layers, indicating a
complex depositional environment. The rock salt’s substantial thickness and purity are
advantageous for creating stable storage caverns, while the presence of anhydrite and other
interlayers provides additional structural integrity. These geological characteristics make
the Na1 deposit an ideal site for assessing hydrogen storage capacity.

2.1. Methodology Overview

This approach incorporated Multi-Criteria Decision Analysis (MCDA), artificial intel-
ligence (AI) algorithms, and GIS spatial analysis. The Analytic Hierarchy Process (AHP)
was used to methodically deconstruct this complex problem into manageable parts, encom-
passing the definition of evaluation criteria, the assignment of weights to these criteria, and
the determination of a definitive ranking among site alternatives.

Methodological Steps

1. Definition of Evaluation Criteria: Parameters were established to effectively select
sites for underground hydrogen storage (UHS).

2. Integration of AI Algorithms: A deep-learning algorithm (CNN) was implemented
on a unified platform to enhance analysis capabilities.

3. Data Segmentation: Criteria-based data were divided into training and testing sets to
validate model performance.

4. Performance Assessment: The algorithm’s effectiveness was evaluated using standard
error metrics and the Correlation Coefficient (R2).

5. GIS Visualization: Spatial distribution of potential UHS sites was mapped using GIS
to visualize geographical data effectively.

6. Suitability Mapping: A UHS suitability map was generated based on outputs from
the selected algorithm, aiding in decision-making processes.

7. Final Algorithm Formulation: A standardized protocol was developed for future
research applications to ensure consistency and replicability.

We considered two main groups of criteria for choosing suitable areas: exclusion criteria
and evaluation criteria. Exclusion criteria helped us eliminate certain areas from further analy-
sis, such as protected areas like natural reserves, including national forests, special protection
areas, protected areas, conservation areas, and ecological sites. Evaluation criteria helped
us classify the remaining areas by assessing factors like storage capacity, water reservoirs,
accessibility, natural gas pipelines, geological exploration, energy consumption, and land use.

To create the maps, we developed twelve maps for each criterion mentioned above.
The storage capacity map depicted hydrogen energy that could be stored in the rock salt
bed per area, corresponding to the storage capacity after the first filling of the cavern. The
water reservoir map included a hydrological representation of rivers and reservoirs at each
location. The accessibility map highlighted infrastructure such as roads and railroads. The
natural gas pipeline map indicated the accessibility to the existing gas pipeline network. The
geological exploration map identified areas with salt caverns, the target geological formations
for hydrogen storage, and included deep borehole locations. The energy consumption map
displayed energy consumption data for the study area. The land use map illustrated landscape
elements, including residential buildings, restricted areas, recreational areas, industrial zones,
cropland, forests, grassy areas, and barren and shrubland. Additionally, five exclusion criteria
maps showed protected areas around the rock salt deposits, including national forests, special
protection areas, protected areas, conservation areas, and ecological sites.

All twelve maps were developed with an exact resolution of 100 points per km2,
meaning each pixel in the raster had dimensions of 100 × 100 m. Thus, we had 12 values for
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each point in the study area. The next step involved transforming the basic maps to quantify
individual criteria and presenting them as raster maps with numerical values. These values
served as the starting point for calculations using artificial intelligence aimed at identifying
the best locations for underground hydrogen storage facilities in salt caverns within the
analyzed area. Maps showing roads, gas pipelines, water, and borehole locations required
transformation based on proximity maps, indicating the distance between selected elements
at each point. However, maps like storage capacity, land use, and energy consumption did
not require transformation due to their numerical nature. Raster maps consist of pixels
with assigned coordinates and values of the analyzed criteria.

We normalized the values from the raster maps to facilitate comparative analysis
without applying any weight to these values. Twelve standardized raster maps were used
as input features for machine learning (ML) analysis. This dataset was divided into a
training set and a validation–testing set. The suitability map developed by Lankof and
Tarkowski [53] was employed as the target for ML algorithm calibration. The ML algorithm
with the highest accuracy was selected for final implementation. The resultant suitability
map for underground hydrogen storage within the rock salt layer was generated based on
the data processed by the chosen ML algorithm.

This research utilizes a deep learning algorithm, a subset of artificial intelligence (AI)
focused on developing systems capable of learning from experience. Machine Learning
(ML), an essential component of AI, employs methods that allow systems to autonomously
enhance their performance by discerning patterns in raw data, essential for tasks like
detection and classification. Advances in big data and AI technologies have significantly
influenced geological sciences, enabling the evaluation of potential UHS sites within ge-
ological structures using AI. The computational model employs a convolutional neural
network (CNN), which includes several layers: input, fully connected, convolutional,
output, activation functions, pooling, and a flattening layer. The convolutional layers
extract features from input spectra using N filters, producing N feature maps. These feature
maps then pass through an activation function layer—such as sigmoid, exponential linear
units (ELUs), or rectified linear units (ReLUs)—to introduce nonlinearity, while a pooling
layer reduces feature map dimensionality to prevent overfitting and enhance computa-
tional speed. The fully connected layer, resembling a multi-layer perceptron, connects
each neuron to every element in the preceding layer, thus integrating and processing the
information comprehensively.

2.2. Layers
2.2.1. Fully Connected Layer

In this network, the fully connected (FC) layer linearly maps the input vectors. Neu-
rons in adjacent layers are connected pairwise (Figure 1).
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2.2.2. Convolutional Layer

A convolutional layer convolves a specific filter with the inputs by sliding it spatially
over the spectra. The filter performs a stepwise dot product with a local spectra window,
using a stride of 1. To maintain consistent input and output sizes, the input spectra are
padded. Typically, the convolutional layer follows the fully connected layers (Figure 2).
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Figure 2. The architecture of a convolutional neural network.

2.2.3. Preprocessing and Convolutional Layers

Preprocessing methods such as Savitzky–Golay derivatives and detrending in spec-
troscopic calibration effectively shift the input spectra’s weighted mean. These classical
preprocessing techniques can be replaced by a well-trained convolutional layer, which can be
adjusted through backpropagation, eliminating the need to manually select specific prepro-
cessing techniques. Instead, the optimization algorithm identifies the most effective filter.

2.2.4. Filter Characteristics

Given that the input vectors are 1D spectra, the filter is also a 1D vector, with its
bandwidth corresponding to the resolution of the input spectra. To enhance the model’s
flexibility, multiple parallel convolutional channels can be implemented. However, tun-
ing multiple convolutional filters requires an adequate number of training samples. For
simplicity, this study considered a single channel with one convolutional layer.

2.3. Activation Functions

The outputs of each hidden layer, including convolutional and fully connected layers,
are modified by activation functions to introduce nonlinearity. Here, we discuss the
relationship between the input x and the output y through various activation functions.

The sigmoid function calculates the element-wise sigmoid of x, as follows in Equation (1):

y =
1

1 + exp(−x)
(1)

Historically, the sigmoid function has been widely used in neural networks due to its
biological interpretability. However, it can cause gradient vanishing; during backpropa-
gation, the gradient flow is near zero when x is far from zero. Additionally, the sigmoid
function is non-zero-based, leading to inefficient parameter updates.

The hyperbolic tangent (Tanh) function computes the element-wise hyperbolic tangent
of x at Equation (2):

y = tanh(x) (2)

This function zero-centers the output within the range [−1, 1], which mitigates the
gradient vanishing problem.

Rectified linear units (ReLUs) apply an element-wise rectification to the input, setting
all negative input values to zero at Equation (3):

y =

{
x, x ≥ 0
0, otherwise

(3)
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A ReLU does not saturate and converges faster than both tanh and sigmoid. However,
it is not zero-based, and a problem known as “dead ReLU” can occur, where neurons
with negative input always output zero. This issue can arise from poor learning rates
or initialization.

Exponential Linear Units (ELUs) are similar to ReLUs but have an exponential compo-
nent for negative inputs:

y =

{
x, x ≥ 0

exp(x)− 1, otherwise
(4)

ELUs retain the advantages of ReLUs while avoiding “dead” neurons, as they do not
output a constant zero for negative inputs. This results in more efficient weight updates due
to the near-zero-centered output and a negative saturation regime that offers robustness
against noise. The main drawback of ELUs is the slower computation of the exponential
function, particularly in large networks.

2.4. Regularization

In this model, the number of parameters exceeds the number of observations, making
regularization crucial to prevent overfitting.

2.4.1. L2 Regularization

L2 regularization is one of the most common techniques in machine learning. It
encourages the model to utilize all neurons by penalizing the sum of the squared weights,
represented as 1

2 λw2, where w denotes the weight and λ is the regularization parameter.
The gradient of L2 regularization is λw, causing each weight to gradually decrease towards
zero while maintaining its current sign.

2.4.2. Dropout

Dropout is another effective method to prevent overfitting in neural networks (Figure 3).
During training, it randomly activates a subset of neurons in the fully connected layers,
updating the parameters of only the selected neurons. Dropout is not applied during testing.
This technique is both simple and effective, and widely used in contemporary neural
networks. The principles and relationships of dropout, along with other regularization
methods, have been well documented in recent studies.
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2.5. Performance Evaluation Metrics

The convolutional neural network (CNN) is structured with multiple layers: a
one-dimensional convolutional layer, a pooling layer, a flattening layer, and a final out-
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put layer. The convolutional layer employs 32 kernels, each of uniform size (3 × 3), and
operates with a batch size of 32. The outputs from this layer are subsequently processed
by a ReLU activation function to introduce non-linearity. To attenuate sensitivity and
diminish the dimensionality of feature maps, max pooling is utilized, which selects the
maximal values from the convolved features. To identify suitable sites for UHS in salt
caverns, we implemented the convolutional neural network (CNN) algorithm utilizing
input parameters as explained in Section 2.1 as exclusion criteria and evaluation criteria,
and the Analytic Hierarchy Process (AHP) output based on Lankof and Tarkowski [54]. A
representative subset consisting of 1000 systematically distributed points was extracted
from the study area for this study. The dataset was bifurcated into training (80%) and
testing (20%) segments to facilitate a rigorous validation of the model’s efficacy.

The CNN algorithm underwent training and testing, and its performance was rig-
orously evaluated using MSE, MAE, RMSE, and R2. These metrics (Equations (5)–(8))
were essential for assessing the algorithm’s effectiveness and ensuring its accuracy before
comprehensive application to the dataset. The primary objective was to pinpoint optimal
sites for UHS, where n represents the total number of observations, yi

observed denotes the
ith observed value, and yi

predicted is the corresponding predicted value.

MSE =
1
n

n

∑
i=1

(yi
observed − yi

predicted)
2

(5)

MAE =
1
n

n

∑
i=1

|yi
observed − yi

predicted| (6)

RMSE =

√
1
n∑n

i=1 (y
i
observed − yi

predicted)
2 (7)

R2 = 1 −
∑i

(
yi

observed − yi
predicted

)2

∑i

(
yi

observed − yi
predicted

)2 (8)

Figures 4–6 illustrate the CNN’s performance for both the training and testing datasets,
showing a significant reduction in errors throughout the learning process. Upon completion
of training, the CNN model achieved high accuracy, evidenced by an R2 value of 0.96, an
MSE of 1.97, an MAE of 1.003, and an RMSE of 1.4. The error function was a key metric in
evaluating the predictive model’s performance.

Energies 2024, 17, 3677 8 of 13 
 

 

Rଶ = 1 − ∑  ୧ ൫𝑦୭ୠୱୣ୰୴ୣୢ − 𝑦୮୰ୣୢ୧ୡ୲ୣୢ ൯ଶ∑  ୧ ൫𝑦୭ୠୱୣ୰୴ୣୢ − 𝑦୮୰ୣୢ୧ୡ୲ୣୢ ൯ଶ (8)

Figures 4–6 illustrate the CNN’s performance for both the training and testing da-
tasets, showing a significant reduction in errors throughout the learning process. Upon 
completion of training, the CNN model achieved high accuracy, evidenced by an R2 value 
of 0.96, an MSE of 1.97, an MAE of 1.003, and an RMSE of 1.4. The error function was a 
key metric in evaluating the predictive model’s performance. 

 
Figure 4. The validation loss of the CNN model. 

 

Figure 4. The validation loss of the CNN model.



Energies 2024, 17, 3677 8 of 13

Energies 2024, 17, 3677 9 of 14 
 

 

 

 

 
Figure 5. Prediction error evaluation for the CNN model. 

 
Figure 6. Accuracy of the CNN model. 

Figure 5. Prediction error evaluation for the CNN model.

Energies 2024, 17, 3677 9 of 13 
 

 

 
Figure 5. Prediction error evaluation for the CNN model. 

 
Figure 6. Accuracy of the CNN model. 

The analysis showed that after 100 epochs, the estimated metrics for Mean Absolute 
Error and Root Mean Square Error were approximately 1.003 and 1.4, respectively. The 
observed decrement in both MAE and RMSE values demonstrates the method’s high pre-
diction accuracy. 

3. Results and Discussion 
This study introduces an advanced application of AI to strategically identify optimal 

sites for UHS within bedded rock salt formations. While multi-criteria decision analysis 
has conventionally been employed in site-selection studies, especially in assessing various 
salt structures for hydrogen storage, this research employs a novel AI-driven approach to 
accurately pinpoint prime UHS sites. 

The deep learning (DL) methodology, specifically utilizing a convolutional neural 
network (CNN) algorithm, autonomously learns and makes inferences from data without 
the need for explicit programming. The integration of AHP and DL methodologies offers 
complementary strengths and addresses inherent weaknesses. AHP relies on expert judg-
ment to define evaluation rules, which can sometimes produce models that are opaque 
and challenging to validate. Conversely, the efficacy of DL depends heavily on the quality 
and quantity of the input data, the choices of algorithms, and the parameter settings. In-
adequate choices in these domains can result in overfitting or underfitting, thereby dimin-
ishing the model’s predictive accuracy on novel datasets. This paper discusses the 

Figure 6. Accuracy of the CNN model.



Energies 2024, 17, 3677 9 of 13

The analysis showed that after 100 epochs, the estimated metrics for Mean Absolute
Error and Root Mean Square Error were approximately 1.003 and 1.4, respectively. The
observed decrement in both MAE and RMSE values demonstrates the method’s high
prediction accuracy.

3. Results and Discussion

This study introduces an advanced application of AI to strategically identify optimal
sites for UHS within bedded rock salt formations. While multi-criteria decision analysis
has conventionally been employed in site-selection studies, especially in assessing various
salt structures for hydrogen storage, this research employs a novel AI-driven approach to
accurately pinpoint prime UHS sites.

The deep learning (DL) methodology, specifically utilizing a convolutional neural
network (CNN) algorithm, autonomously learns and makes inferences from data without
the need for explicit programming. The integration of AHP and DL methodologies offers
complementary strengths and addresses inherent weaknesses. AHP relies on expert judg-
ment to define evaluation rules, which can sometimes produce models that are opaque and
challenging to validate. Conversely, the efficacy of DL depends heavily on the quality and
quantity of the input data, the choices of algorithms, and the parameter settings. Inade-
quate choices in these domains can result in overfitting or underfitting, thereby diminishing
the model’s predictive accuracy on novel datasets. This paper discusses the synergistic
application of AHP and DL to enhance decision-making in the context of UHS site se-
lection, providing a robust framework for integrating expert knowledge with machine
learning insights.

In this study, the dataset was partitioned into training and testing subsets to facilitate
the development and validation of the model. Twelve distinct input data layers were
utilized, including Geological Exploration, Accessibility, Conservation Area, Ecological
Site, Water Reservoir, Land Use, Energy Consumption, Natural Gas Pipelines, Protected
Area, Special Protection Area, Natural Forest, and Storage Capacity. These layers were
systematically processed through an AI algorithm to determine optimal underground
hydrogen storage (UHS) sites within Poland (Figure 7).
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Upon evaluating multiple machine learning (ML) algorithms, the most effective model
was selected and subsequently implemented across the entire study area. The results indi-
cated that the deep learning (DL) model not only achieved higher accuracy but also demon-
strated greater computational efficiency than the Analytic Hierarchy Process (AHP) model.
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These findings underscore the potential of AI to enhance the efficiency and accuracy of
UHS site selection processes, offering a significant advancement over traditional methods.

Our research emphasizes the profound impact of the chosen methodology on the
generation of suitability maps, showcasing its effectiveness in rapidly identifying optimal
locations for UHS. Comparing the outputs derived from DL with the findings presented by
Lankof and Tarkowski [54] affirms the high accuracy of the algorithms used.

The dataset was transformed into a raster map, culminating in a visual representation
that effectively showcases the potential of various locations for UHS. This suitability map
clearly delineates areas within the rock salt strata, making it easier to identify prospective
sites. The most favorable locations, characterized by high storage capacity and positive
evaluations across all considered criteria, are predominantly situated in the central-western
part of the study area.

Additionally, the map underscores regions of high suitability based on a synthesis
of criteria. In the western regions of the monocline, the most advantageous areas feature
significant storage capacities and extensive geological investigations. Conversely, the
eastern sectors of the surveyed region exhibit high suitability due to factors such as high
energy demand, comprehensive geological exploration, and proximity to existing gas
pipeline infrastructure. This nuanced visualization aids stakeholders in making informed
decisions about site selection for UHS facilities.

4. Conclusions

This research employed a convolutional neural network to identify viable under-
ground hydrogen storage (UHS) sites across Poland. A comprehensive dataset incor-
porating variables such as storage capacity, energy usage, transportation infrastructure,
proximity to water sources, pipelines, boreholes, and land utilization was leveraged to de-
velop a robust AI-driven framework. The performance of the deep learning (DL) model was
compared against the Analytic Hierarchy Process (AHP). The findings demonstrated that
the CNN offered superior accuracy and computational efficiency, indicating its effectiveness
in enhancing the site selection process for UHS facilities.

The findings offer valuable insights and strategic options for stakeholders such as
renewable energy producers, geological services, policy makers, and the chemical and
petrochemical industries, all key to the development of UHS facilities. Furthermore, the
implications of this study are significant for governmental and European Union institutions
involved in renewable energy storage infrastructure development. Moreover, the findings
substantially enrich the scientific community’s discussion on hydrogen storage solutions,
supplying empirical data vital for informing policy decisions.

The adaptability of the proposed DL method highlights its potential for broader
employment in selecting underground energy storage sites, with the ability to customize
it to specific regional criteria. Future research should focus on conducting comparative
analyses of these advanced AI methods against conventional site selection techniques.
Such studies are crucial for identifying new sustainable UHS sites, optimizing the site
selection process, enhancing operational efficiencies, and conserving time and resources
in forthcoming UHS initiatives. This approach not only promises to refine the accuracy
of site evaluations, but also aims to streamline the decision-making process in the energy
storage sector.
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49. Mrówczyńska, M.; Skiba, M.; Sztubecka, M.; Bazan-Krzywoszańska, A.; Kazak, J.K.; Gajownik, P. Scenarios as a Tool Supporting
Decisions in Urban Energy Policy: The Analysis Using Fuzzy Logic, Multi-Criteria Analysis and GIS Tools. Renew. Sustain. Energy
Rev. 2021, 137, 110598. [CrossRef]

50. Ayodele, T.R.; Ogunjuyigbe, A.S.O.; Odigie, O.; Munda, J.L. A Multi-Criteria GIS Based Model for Wind Farm Site Selection Using
Interval Type-2 Fuzzy Analytic Hierarchy Process: The Case Study of Nigeria. Appl. Energy 2018, 228, 1853–1869. [CrossRef]

51. Atici, K.B.; Simsek, A.B.; Ulucan, A.; Tosun, M.U. A GIS-Based Multiple Criteria Decision Analysis Approach for Wind Power
Plant Site Selection. Util. Policy 2015, 37, 86–96. [CrossRef]

52. Feizizadeh, B.; Jankowski, P.; Blaschke, T. A GIS Based Spatially-Explicit Sensitivity and Uncertainty Analysis Approach for
Multi-Criteria Decision Analysis. Comput. Geosci. 2014, 64, 81–95. [CrossRef] [PubMed]

https://doi.org/10.1016/j.ijhydene.2018.09.212
https://doi.org/10.1016/j.egyr.2021.12.002
https://doi.org/10.1023/B:ATEN.0000041203.24874.65
https://doi.org/10.1016/j.fuel.2022.125636
https://doi.org/10.1016/j.energy.2020.117348
https://doi.org/10.1016/j.ijhydene.2019.12.161
https://doi.org/10.1016/j.est.2022.105109
https://doi.org/10.1016/j.ijhydene.2022.11.292
https://doi.org/10.1016/j.renene.2024.120143
https://doi.org/10.1002/dug2.12069
https://doi.org/10.1016/j.apenergy.2023.122268
https://doi.org/10.1016/j.rser.2024.114366
https://doi.org/10.3390/app11010423
https://doi.org/10.1016/S0148-9062(99)00062-5
https://doi.org/10.1016/j.apenergy.2012.11.037
https://doi.org/10.1007/s12665-017-6414-2
https://doi.org/10.2516/ogst/2020040
https://doi.org/10.24425/ams.2020.133198
https://doi.org/10.3390/en14206793
https://doi.org/10.1038/s41598-017-07881-7
https://doi.org/10.1016/j.marpetgeo.2016.06.010
https://doi.org/10.1016/j.est.2018.04.019
https://doi.org/10.1016/j.rser.2020.110598
https://doi.org/10.1016/j.apenergy.2018.07.051
https://doi.org/10.1016/j.jup.2015.06.001
https://doi.org/10.1016/j.cageo.2013.11.009
https://www.ncbi.nlm.nih.gov/pubmed/25843987


Energies 2024, 17, 3677 13 of 13

53. Derakhshani, R.; Lankof, L.; GhasemiNejad, A.; Zaresefat, M. Artificial Intelligence-Driven Assessment of Salt Caverns for
Underground Hydrogen Storage in Poland. Sci. Rep. 2024, 14, 14246. [CrossRef]

54. Lankof, L.; Tarkowski, R. GIS-Based Analysis of Rock Salt Deposits’ Suitability for Underground Hydrogen Storage. Int. J.
Hydrogen Energy 2023, 48, 27748–27765. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41598-024-64020-9
https://doi.org/10.1016/j.ijhydene.2023.03.415

	Introduction 
	Materials and Methods 
	Methodology Overview 
	Layers 
	Fully Connected Layer 
	Convolutional Layer 
	Preprocessing and Convolutional Layers 
	Filter Characteristics 

	Activation Functions 
	Regularization 
	L2 Regularization 
	Dropout 

	Performance Evaluation Metrics 

	Results and Discussion 
	Conclusions 
	References

