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Abstract 
 

Mathematical modeling has enabled epidemiologist to understand best the dynamics of infectious diseases, 

their impact and future predictions on their transmission and existence. Deterministic Susceptible–

Vaccinated–Exposed-Infectious-Recovered (SVEIR) model on HIV-1 Coronavirus co-infection was 

formulated based on piecewise linear dynamical systems with constant delay. Delay here accounts for the 

time lapse between exposure and when the symptoms of the disease appear. Basic reproduction number 𝑅𝑜 is 

the threshold parameter on which the growth or reduction of the disease is based and calculated using Next 

Generation Matrix approach. Disease Free Equilibrium is attained when reproduction number is less or equals 

to one. The Disease Free Equilibrium is globally asymptotically stable whenever the reproductive number is 

less or equal to one and unstable otherwise and it is showed using Lyapunov function. Numerical simulation 

is performed using Matrix Laboratory (MatLab) dde23 solver to authenticate the analytic results. Graphical 

representation is then done so as to highlight on future disease dynamics and interventions. Time-delay, 

vaccination and chemotherapy plays a major role in stabilizing disease free equilibrium. 
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1 Introduction 
 

There is a widespread concern worldwide over the emergence of new infectious disease that have wrecked 

havoc on human population. Human immunodeficiency virus 1 (HIV-1) and coronavirus disease are infectious 

diseases that have been of great concern to both scientists and medical practitioners in the recent past. The main 

purpose of this study was to investigate the impacts of protection with quarantine, CoVid-19 vaccination, HIV-1 

and CoVid-19 chemotherapy, controlling and prevention strategies on transmission dynamics of HIV-1 and 

AIDs and CoVid-19 co-infection. A mathematical modeling approach was thus used in which a deterministic 

Susceptible-Vaccinated-Exposed-Infected-Removed (SVEIR) HIV-1 Covid-19 co-infection model was 

formulated. The model considers the time lag that occurs between exposure of the Coronavirus disease and 

when the disease appears and its effects. Delay differential equations (DDEs) with constant delay were 

formulated. [1,2,3,4,5,6,7]. 

 

According to [8,9,10,11,12] HIV and COVID-19 co-infection model with ABC-fractional operator approach 

was formulated to investigate an epidemic prediction of combined HIV-COVID-19 co-infection. Numerical 

simulations carried out established that the disease would stabilize at a later stage when enough protection 

strategies are taken. A mathematical model on HIV and COVID-19 co-infection with optimal control strategies 

were formulated and analyzed by [13,14,15,16,17]. The analysis suggested that COVID-19 only prevention 

strategy is the most effective strategy and it averted about 10,500 new co-infection cases. Further, 

[18,19,20,21,22] studied analysis of COVID-19 and comorbidity specifically diabetes mellitus co-infection 

model with optimal control. The model showed backward bifurcation caused by parameter accounting for 

susceptibility for Covid-19 and rate of reinfection. According to [23,24,25,26] they constructed and examined 

HIV/AIDS and Pneumonia co-infection model with control measures such as pneumonia vaccination and 

treatment of pneumonia and HIV/AIDS infections. Numerical simulations on the model showed that pneumonia 

treatment and vaccination played a major role in reducing pneumonia and co-epidemic disease growth while at 

the same time decreasing the growth rate of HIV infection to the AIDS stage. A mathematical model for cholera 

and COVID-19 co-infection which describes the transmission dynamics of COVID-19 and cholera in Yemen 

was studied by [27,25,28,29]. The results showed that preventive measures such as number of chlorine water 

tablets, lockdown, social distancing and number of tests played a key role in reducing spread of the disease. 

COVID-19 and tuberculosis co-dynamics model with optimal control strategies carried out by [30,13,31,22] 

suggested that COVID-19 prevention, treatment and control of co-infection yields a better outcome in terms in 

terms of the number of COVID-19 cases prevented at a lower percentage of the total cost of this strategy. 

Ordinary differential equations constructed by [32,33,34,35] modeled bifurcation and optimal control analysis of 

HIV/AIDS and COVID-19 co-infection model with numerical simulation. The main purpose of this paper was 

to investigate the impacts of COVID-19 protection with quarantine, COVID-19 treatment, HIV protection and 

HIV treatment prevention and controlling strategies on the transmission dynamics of HIV/AIDS and COVID-19 

co-infection in the community with mathematical approach. The 𝑅0  value of the SQEIRP model is 3.78, 

meaning that one patient can lead to approximately three additional infections.  

 

In this study, a deterministic SVEIR HIV-1 Coronavirus co-infection model was formulated to take into account 

the time lag that occurs between the exposure of a Coronavirus disease and its effects. Delay differential 

equations DDEs with constant delay were formulated. Local and global stability of disease free equilibrium, 

bifurcation analysis and type of bifurcation were taken into account. 

 

2 Methodology  
 

In the study, the total population were partitioned into twelve compartments basing on their infection status: 

susceptible class to both HIV-1 and Coronavirus disease (𝑆), individuals vaccinated against Coronavirus disease 

(𝑉), individuals not vaccinated against Coronavirus disease ( 𝑉𝑛), Exposed class (𝐸), Exposed class with HIV-1 ( 

𝐸ℎ), Exposed class with AIDs ( 𝐸𝐴), symptomatic infected individuals with AIDs ( 𝐼𝑠𝐴), symptomatic infected 

class with HIV-1 ( 𝐼𝑠ℎ), asymptomatic infected class with HIV-1 ( 𝐼𝑎ℎ), Quarantined class with HIV-1 ( 𝑄ℎ), 

Hospitalized class (𝐻) and Removed class (𝑅). Other parameters considered are:  
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Recruitment rate (𝜙2), rate of progression from S to V (𝛽3), Rate of progression from 𝑆 to 𝑉𝑛  (𝛽4),rate of 

progression from 𝑉 to 𝐸 (𝛼3),Rate of progression from𝑉𝑛 to 𝐸 (𝛼4), Rate of progression from 𝑉 to 𝑅 (𝛼5),Rate 

of progression from 𝐸 to 𝐸ℎ  (𝜔3) ,Rate of progression from 𝐸 to 𝐸𝐴  (𝜔4) , Rate of progression from 𝐸𝐴 to 

𝐼𝑠𝐴  (𝜔5),Rate of progression from 𝐸ℎ  to 𝐼𝑠ℎ  (𝜔6), Rate of progression from 𝐸ℎ  to 𝐼𝑎ℎ (𝜔7),Rate of progression 

from 𝐻 to 𝑅  (𝛾2) ,Rate of progression from 𝐼𝑠ℎ  to 𝑄𝑛 (𝛾3) ,Rate of progression from 𝐼𝑠𝐴  to 𝐻 (𝛾4) ,Rate of 

progression from 𝐼𝑎ℎ  to 𝐻( 𝛾5), Rate of progression from 𝑄ℎ  to 𝑅 (𝛿4),Rate of progression from 𝑄ℎ  to 𝐻 (𝛿5), 

Natural death rate (𝜇) and time delay (𝜏). 

 

 
 

Fig. 1. SVEIR co-infection model 

 

 
𝑑𝑆

𝑑𝑡
= ∅2 − 𝜇5𝑆 − 𝛽2𝑆 − 𝛽3𝑆  

𝑑𝑉

𝑑𝑡
= 𝛽2𝑆 − 𝜇6𝑉 − 𝛼2𝑉𝜏 − 𝛼4𝑉𝜏  

𝑑𝑉𝑛

𝑑𝑡
= 𝛽3𝑆 − 𝜇7𝑉𝑛 − 𝛼3𝑉𝑛𝜏  

𝑑𝐸

𝑑𝑡
= 𝛼2𝑉𝜏 + 𝛼3𝑉𝑛𝜏 − 𝜇8𝐸 − 𝜔2𝐸𝜏 − 𝜔3𝐸𝜏  

𝑑𝐸𝐴

𝑑𝑡
= 𝜔3𝐸𝜏 − 𝜇9𝐸𝐴 − 𝜔4𝐸𝐴𝜏  

𝑑𝐸ℎ

𝑑𝑡
= 𝜔2𝐸𝜏 − 𝜇10𝐸ℎ − 𝜔5𝐸ℎ𝜏 − 𝜔6𝐸ℎ𝜏       System 1 (*) 

𝑑𝐼𝑠ℎ

𝑑𝑡
= 𝜔5𝐸ℎ𝜏 − 𝜇11𝐼𝑠ℎ − 𝛾1𝐼𝑠ℎ𝜏   

𝑑𝐼𝑎ℎ

𝑑𝑡
= 𝜔6𝐸ℎ𝜏 − 𝜇12𝐼𝑎ℎ − 𝛾2𝐼𝑎ℎ𝜏   

𝑑𝐼𝑠𝐴

𝑑𝑡
= 𝜔4𝐸𝐴𝜏 − 𝜇13𝐼𝑠𝐴 − 𝛾3𝐼𝑠𝐴𝜏   

𝑑𝑄ℎ

𝑑𝑡
= 𝛾1𝐼𝑠ℎ𝜏 − 𝛿1𝑄ℎ𝜏 − 𝛿2𝑄ℎ𝜏 − 𝜇14𝑄ℎ  

𝑑𝐻

𝑑𝑡
= 𝛾2𝐼𝑠𝐴𝜏 + 𝛾3𝐼𝑎ℎ𝜏 + 𝛿2𝑄ℎ𝜏 − 𝜇15H − Γ1𝐻𝜏  

𝑑𝑅

𝑑𝑡
= 𝛿1𝑄ℎ𝜏 + Γ1𝐻𝜏 + 𝛼4𝑉𝜏  − 𝜇16R  

 

 

2.1 Model preliminary analysis 
 

2.1.1 Properties of solutions of the model 

 

Positivity and boundedness of the model is shown before doing result analysis for biological reasons. 

Transformation of population of cell is well elaborated such that cell numbers remain positive and bounded and 

existence of solutions are underscored by these properties.  
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Let’s define a positive quadrant space ∁=  ∁1([−𝜏, 0];  ℝ12) equipped with the norm ∥ Φ ∥= sup Φ(𝑡)𝑡∈[𝜏,0] as a 

Banach space of continuous functions mapping the [−𝜏, 0] into ℝ12 with the topology of uniform convergence. 

Let the positive initial conditions of system 1 (*) at a time 𝑡 = 𝑡0be 

 

 𝑆(𝑡0) = 𝑆0  ≥ 0, 𝑉(𝑡0) = 𝑉0  ≥ 0, (𝑉𝑛(𝑡0) = 𝑉𝑛0
 ≥ 0, 𝐸(𝑡0) = 𝐸0  ≥ 0, 𝐸𝐴(𝑡0) = 𝐸𝐴0

 ≥ 0, 𝐸ℎ(𝑡0) = 𝐸ℎ0
 ≥

0, 𝐼𝑠ℎ(𝑡0) = 𝐼𝑠ℎ0
 ≥ 0, 𝐼𝑎ℎ(𝑡0) = 𝐼𝑎ℎ0

 ≥ 0, 𝐼𝑠𝐴(𝑡0) = 𝐼𝑠𝐴0
 ≥ 0, 𝑄ℎ(𝑡0) = 𝑄ℎ0

 ≥ 0, 𝐻ℎ(𝑡0) = 𝐻ℎ0
 ≥

0, 𝑅(𝑡0) = 𝑅0  ≥ 0, 𝑡0 ∈  [−𝜏, 0]             (1)  

 

In this case, we define a positive quadrant space of solutions as  

 

ℝ+0 = {(𝑆, 𝑉, 𝑉𝑛 , 𝐸, 𝐸𝐴, 𝐸ℎ , 𝐼𝑠ℎ , 𝐼𝑎ℎ , 𝐼𝑠𝐴 , 𝑄ℎ , 𝐻ℎ , 𝑅)|𝑆 ≥ 0, 𝑉 ≥ 0, 𝑉𝑛 ≥ 0, 𝐸 ≥ 0, 𝐸𝐴 ≥ 0, 𝐸ℎ ≥  0, 𝐼𝑠ℎ ≥ 0, 𝐼𝑎ℎ ≥
0, 𝐼𝑠𝐴 ≥ 0, 𝑄ℎ ≥,𝐻ℎ ≥ 0, 𝑅 ≥ 0}               (2) 

 

ℝ+ = {{𝑆, 𝑉, 𝑉𝑛, 𝐸, 𝐸𝐴, 𝐸ℎ , 𝐼𝑠ℎ , 𝐼𝑎ℎ , 𝐼𝑠𝐴 , 𝑄ℎ , 𝐻ℎ , 𝑅}|𝑆 > 0, 𝑉 > 0, 𝑉𝑛 > 0, 𝐸 > 0, 𝐸𝐴 > 0, 𝐸ℎ >  0, 𝐼𝑠ℎ > 0, 𝐼𝑎ℎ >
0, 𝐼𝑠𝐴 > 0, 𝑄ℎ >,𝐻ℎ > 0, 𝑅 > 0}             (3)  

 

By fundamental theory of differential equations it can be shown that there exists a unique solution 
(𝑆(𝑡), 𝑉(𝑡), 𝑉𝑛(𝑡), 𝐸(𝑡), 𝐸𝐴(𝑡), 𝐸ℎ(𝑡), 𝐼𝑠ℎ(𝑡), 𝐼𝑎ℎ(𝑡), 𝐼𝑠𝐴(𝑡), 𝑄ℎ(𝑡), 𝐻ℎ(𝑡), 𝑅(𝑡))  of the system 1(*) with initial 

data in ℝ+ as follows: 

 

From system 1 (*), by integrating we have 

 

𝑠(𝑡) = 𝑆(0)𝑒∫ (𝜇5+𝛽2+𝛽3)
𝑡
0 𝑑𝜂 + ∫ (𝜙1 + (𝜇5 + 𝛽2 + 𝛽3))𝑆(𝜉)𝑒∫ (𝜇5+𝛽2+𝛽3)

𝑡
0 𝑑𝜂𝑑𝜉

𝑡

0
        (4) 

 

From (4) it’s clearly seen that 𝑆(𝑡) > 0 hence positive. 

 

Similarly, it can be shown that 

 

 (𝑉(𝑡) > 0, 𝑉𝑛(𝑡) > 0, 𝐸(𝑡) > 0, 𝐸𝐴(𝑡) > 0, 𝐸ℎ(𝑡) > 0, 𝐼𝑠ℎ > 0, 𝐼𝑎ℎ > 0, 𝐼𝑠𝐴 > 0, 𝑄ℎ > 0,𝐻ℎ > 0, 𝑅 > 0)     (5) 

 

Using (4) positivity immediately follows from the above integral forms. 

 

For boundedness we define;  

 

𝑁(𝑡) = 𝑆(𝑡) +  𝑉(𝑡) + 𝑉𝑛(𝑡) +  𝐸(𝑡) + 𝐸𝐴(𝑡) + 𝐸ℎ(𝑡) + 𝐼𝑠ℎ(𝑡) + 𝐼𝑎ℎ(𝑡) + 𝐼𝑠𝐴(𝑡) + 𝑄ℎ(𝑡) + 𝐻ℎ(𝑡) +  𝑅(𝑡)       (6) 

 
𝑑𝑁(𝑡)

𝑑𝑡
=

𝑑(𝑆(𝑡)+ 𝑉(𝑡)+ 𝑉𝑛(𝑡)+ 𝐸(𝑡)+𝐸𝐴(𝑡)+𝐸ℎ(𝑡)+𝐼𝑠ℎ(𝑡)+ 𝐼𝑎ℎ(𝑡)+𝐼𝑠𝐴(𝑡)+ 𝑄ℎ(𝑡)+ 𝐻ℎ(𝑡)+ 𝑅(𝑡))

𝑑𝑡
        (7) 

 

Thus,  

 
𝑑𝑁(𝑡)

𝑑𝑡
≤ ∅2 − ∑𝜇. Where ∑𝜇 = 𝜇1 + 𝜇2 + ⋯+ 𝜇12.          (8) 

 

This implies that 𝑁(𝑡) is bounded and so  

 
(𝑆(𝑡), 𝑉(𝑡), 𝑉𝑛(𝑡), 𝐸(𝑡), 𝐸𝐴(𝑡), 𝐸ℎ(𝑡), 𝐼𝑠ℎ(𝑡), 𝐼𝑎ℎ(𝑡), 𝐼𝑠𝐴(𝑡), 𝑄ℎ(𝑡), 𝐻(𝑡), 𝑅(𝑡)).  

 

2.3 Computation of basic reproductive number 𝑹𝟎 
 

Fig. 1. SVEIR co-infection model. 

 

In system 1 there are seven infection classes: 𝐸,𝐸𝐴,𝐸ℎ ,𝐼𝑠ℎ ,𝐼𝑎ℎ ,𝐼𝑠𝐴 , 𝑄ℎ . Therefore, at disease free equilibrium 

(DFE) the matrix of new infection is given by matrices 𝐹 and 𝑉. 
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ℱ𝑖 =

[
 
 
 
 
 
 
(𝜔2 + 𝜔3)𝐸𝜏

𝜔4𝐸𝐴𝜏

(𝜔5 + 𝜔6)𝐸ℎ𝜏

𝛾1𝐼𝑠ℎ𝜏

𝛾2𝐼𝑎ℎ𝜏

𝛾3𝐼𝑠𝐴𝜏

𝛿2𝑄ℎ𝜏 ]
 
 
 
 
 
 

 𝒱𝑖 =

[
 
 
 
 
 
 

−𝜇8𝐸
−𝜇9𝐸𝐴

−𝜇10𝐸ℎ

−𝜇11𝐼𝑠ℎ
−𝜇12𝐼𝑎ℎ

−𝜇13𝐼𝑠𝐴
𝛿2𝑄ℎ𝜏 − 𝜇14𝑄ℎ]

 
 
 
 
 
 

  

 

Differentiating partially with respect to state variables we have: 

 

𝐹 =

[
 
 
 
 
 
 
 
 
(𝜔2 + 𝜔3)𝑒

−𝜆𝜏 0 0 0 0 0 0

0 𝜔4𝑒
−𝜆𝜏 0 0 0 0 0

0 0 (𝜔5 + 𝜔6)𝑒
−𝜆𝜏 0 0 0 0

0 0 0 𝛾1𝑒
−𝜆𝜏 0 0 0

0 0 0 0 𝛾2𝑒
−𝜆𝜏 0 0

0 0 0 0 0 𝛾3𝑒
−𝜆𝜏 0

0 0 0 0 0 0 𝛿2𝑒
−𝜆𝜏]

 
 
 
 
 
 
 
 

 

 

V=

[
 
 
 
 
 
 
−𝜇8 0 0 0 0 0 0
0 −𝜇9 0 0 0 0 0
0 0 −𝜇10 0 0 0 0
0 0 0 −𝜇11 0 0 0
0 0 0 0 −𝜇12 0 0
0 0 0 0 0 −𝜇13 0

0 0 0 0 0 0 𝛿1𝑒
−𝜆𝜏 − 𝜇14]

 
 
 
 
 
 

 

 

𝑉−1 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −

1

𝜇8
0 0 0 0 0 0

0 −
1

𝜇9
0 0 0 0 0

0 0 −
1

𝜇10
0 0 0 0

0 0 0 −
1

𝜇11
0 0 0

0 0 0 0 −
1

𝜇12
0 0

0 0 0 0 0 −
1

𝜇13
0

0 0 0 0 0 0 −
1

𝛿2𝑒
−𝜆𝜏 − 𝜇14]
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𝐹𝑉−1

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −

(𝜔2 + 𝜔3)𝑒
−𝜆𝜏

𝜇8

0 0 0 0 0 0

0 −
𝜔4𝑒

−𝜆𝜏

𝜇9

0 0 0 0 0

0 0 −
(𝜔5 + 𝜔6)𝑒

−𝜆𝜏

𝜇10

0 0 0 0

0 0 0 −
𝛾1𝑒

−𝜆𝜏

𝜇11

0 0 0

0 0 0 0 −
𝛾2𝑒

−𝜆𝜏

𝜇12

0 0

0 0 0 0 0 −
𝛾3𝑒

−𝜆𝜏

𝜇13

0

0 0 0 0 0 0 −
𝛿1𝑒

−𝜆𝜏

𝛿2𝑒
−𝜆𝜏 − 𝜇14]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

To find the eigenvalues we have; 

 

−
(𝜔2 + 𝜔3)𝑒

−𝜆𝜏

𝜇8

− 𝜆 0 0 0 0 0 0

0 −
𝜔4𝑒

−𝜆𝜏

𝜇9

− 𝜆 0 0 0 0 0

0 0 −
(𝜔5 + 𝜔6)𝑒

−𝜆𝜏

𝜇10

− 𝜆 0 0 0 0

0 0 0 −
𝛾1𝑒

−𝜆𝜏

𝜇11

− 𝜆 0 0 0

0 0 0 0 −
𝛾2𝑒

−𝜆𝜏

𝜇12

− 𝜆 0 0

0 0 0 0 0 −
𝛾3𝑒

−𝜆𝜏

𝜇13

− 𝜆 0

0 0 0 0 0 0 −
𝛿1𝑒

−𝜆𝜏

𝛿2𝑒
−𝜆𝜏 − 𝜇14

− 𝜆

 =  0 

 

Solving for eigenvalues we obtain; 

 

𝜆1
∗ = −

(𝜔2+𝜔3)𝑒−𝜆𝜏

𝜇8
 

𝜆2
∗ = −

𝜔4𝑒−𝜆𝜏

𝜇9
 

𝜆3
∗ = −

(𝜔5+𝜔6)𝑒−𝜆𝜏

𝜇10
 

𝜆4
∗ = −

𝛾1𝑒−𝜆𝜏

𝜇11
 

𝜆5
∗ = −

𝛾2𝑒−𝜆𝜏

𝜇12
 

𝜆6
∗ = −

𝛾3𝑒−𝜆𝜏

𝜇13
 

𝜆7
∗ = −

𝛿1𝑒−𝜆𝜏

𝛿2𝑒−𝜆𝜏−𝜇14
 

 

The dominant eigenvalue is  

 

𝜆7
∗ = −

𝛿1𝑒−𝜆𝜏

𝛿2𝑒−𝜆𝜏−𝜇14
 

Therefore, 𝑅0(𝑚𝑜𝑑𝑒𝑙 2.1) = 𝜆7
∗ = −

𝛿1𝑒−𝜆𝜏

𝛿2𝑒−𝜆𝜏−𝜇14
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2.4 Disease free equilibrium point and its stability 
 

To clearly understand the dynamics of HIV-1 Coronavirus co infection progresses, we study the stability of Fig. 

1. Mathematical epidemiology considers two equilibria points, Disease Free Equilibrium Point (DFE) and 

Endemic Equilibrium Point (EEP). In this study we analyzed disease free equilibrium point of the system 1 and 

studied their stabilities. An equilibrium point is attained by setting the right hand side of each equation of 

system1 to zero, then solving each equation algebraically for the constant solution. 

 

Disease free equilibrium point is a viable region in the solution of system1 in absence of viral infection and co 

infection. For our model, we see that DFE is set of (𝑆0, 𝑉0, 𝑉𝑛
0, 𝐸0, 𝐸𝐴

0, 𝐸ℎ
0, 𝐼𝑠ℎ

0 , 𝐼𝑎ℎ
0 , 𝐼𝑠𝐴

0 , 𝑄ℎ
0, 𝐻0, 𝑅0) =

(
𝜙2

∑𝜇
, 0,0,0,0,0,0,0,0,0,0,0) for Fig. 1 obtained by simple algebraic computation in the absence of viruses. 

 

2.4.1 Stability of disease free equilibrium 

 

The disease free equilibrium is the state of variable of the model in the absence of disease. Its stability can be 

tested using the eigenvalues of Jacobian matrix obtained at DFE, where at this point reproduction number is less 

than one. The linearization matrix of system1 is given by: 

 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
−𝜇5 − 𝛽2 − 𝛽3 0 0 0 0 0 0 0 0 0 0 0

𝛽2 −𝜇6 − 𝛼2𝑒
−𝜆𝜏 − 𝛼4𝑒

−𝜆𝜏 0 0 0 0 0 0 0 0 0 0

𝛽3 0 −𝜇7 − 𝛼3𝑒
−𝜆𝜏 0 0 0 0 0 0 0 0 0

0 𝛼2𝑒
−𝜆𝜏 𝛼3𝑒

−𝜆𝜏 −𝜇8 − 𝜔2𝑒
−𝜆𝜏 − 𝜔3𝑒

−𝜆𝜏 0 0 0 0 0 0 0 0

0 0 0 𝜔3𝑒
−𝜆𝜏 −𝜇9 − 𝜔4𝑒

−𝜆𝜏 0 0 0 0 0 0 0

0 0 0 𝜔2𝑒
−𝜆𝜏 0 −𝜇10 − 𝜔5𝑒

−𝜆𝜏 − 𝜔6𝑒
−𝜆𝜏 0 0 0 0 0 0

0 0 0 0 0 𝜔5 𝑒
−𝜆𝜏 −𝜇11 − 𝛾1𝑒

−𝜆𝜏 0 0 0 0 0

0 0 0 0 0 𝜔6𝑒
−𝜆𝜏 0 −𝜇12 − 𝛾2𝑒

−𝜆𝜏 0 0 0 0

0 0 0 0 𝜔4𝑒
−𝜆𝜏 0 0 0 −𝜇13 − 𝛾3𝑒

−𝜆𝜏 0 0 0

0 0 0 0 0 0 𝛾1𝑒
−𝜆𝜏 0 0 −𝛿1𝑒

−𝜆𝜏 − 𝛿2𝑒
−𝜆𝜏 − 𝜇14 0 0

0 0 0 0 0 0 0 𝛾3𝑒
−𝜆𝜏 𝛾2𝑒

−𝜆𝜏 𝛿2𝑒
−𝜆𝜏 −𝜇15 −Γ1𝑒

−𝜆𝜏

0 0 𝛼4𝑒
−𝜆𝜏 0 0 0 0 0 0 𝛿1𝑒

−𝜆𝜏 Γ1𝑒
−𝜆𝜏  −𝜇16 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

The system 1(*) is locally asymptotically stable if all the eigenvalues of linearization matrix of system 1 are 

negative. Clearly, the eigenvalues are: 

 

𝜆1
∗∗ = −(𝜇5 + 𝛽2 + 𝛽3)  

𝜆2
∗∗ = −(𝜇6 + (𝛼2 + 𝛼4)𝑒

−𝜆𝜏)  

𝜆3
∗∗ = −𝜇7 − 𝛼3𝑒

−𝜆𝜏  

𝜆4
∗∗ = −(𝜇8 + (𝜔2 + 𝜔3)𝑒

−𝜆𝜏)  

𝜆5
∗∗ = −𝜇9 − 𝜔4𝑒

−𝜆𝜏  

𝜆6
∗∗ = −(𝜇10 + (𝜔5 + 𝜔6)𝑒

−𝜆𝜏)  

𝜆7
∗∗ = −𝜇11 − 𝛾1𝑒

−𝜆𝜏  

𝜆8
∗∗ = −𝜇12 − 𝛾2𝑒

−𝜆𝜏  

𝜆9
∗∗ = −𝜇13 − 𝛾3𝑒

−𝜆𝜏  

𝜆10
∗∗ = −𝜇14 + ((𝛿1 + 𝛿2)𝑒

−𝜆𝜏)  

𝜆11
∗∗ = −𝜇15 − Γ1𝑒

−𝜆𝜏  

𝜆12
∗∗ = −𝜇16  

 

For model 1; it’s clear that the dominant eigenvalue is 

 

 𝜆10
∗∗ = −𝜇14 + ((𝛿1 + 𝛿2)𝑒

−𝜆𝜏)  

 

Theorem 1. 

 

Disease free equilibrium is stable whenever 𝑅0 <  1 otherwise unstable. 

 

Proof 

 

𝜆10
∗∗  should be negative. This can only be negative if; 

 

𝛿1𝑒
−𝜆𝜏 < 𝛿2𝑒

−𝜆𝜏 − 𝜇14  
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Clearly,  

 
𝛿1𝑒−𝜆𝜏

𝛿2𝑒−𝜆𝜏−𝜇14
< 1   

 

Therefore 𝑅0 <  1 is attained for DFE to be stable. 

 

2.5 Local and global stability analysis 
 

Local stability analysis of disease free equilibrium points  

 

Local stability of disease free equilibrium point is the point where if the system is put somewhere nearby the 

equilibrium point, it will move itself to the equilibrium point in some time. 

 

Global stability analysis of disease free equilibrium points  

 

Global stability of system 1(*) was done by constructing Lyapunov functions for disease free equilibrium point. 

 

Theorem 2: 

 

If 𝑅0 < 1 then the disease free equilibrium of system 1(*) is globally asymptotically stable, otherwise unstable 

if 𝑅0 > 1. 

 

Proof 

 

𝜈(𝑆, 𝑉, 𝑉𝑛 , 𝐸, 𝐸𝐴, 𝐸ℎ , 𝐼𝑠ℎ , 𝐼𝑎ℎ , 𝐼𝑠𝐴 , 𝑄ℎ , 𝐻ℎ , 𝑅) = (𝑆 − 𝑆0)2 + (𝑉 − 0)2 + ⋯+ (𝑅 − 0)2 System 2  

 

= (𝑆 − 𝑆0)2 + 𝑉2 + ⋯+ 𝑅2  

 

From system 2 

 

𝑆 =
∅2

𝜇5+𝛽2+𝛽3
 implying that 𝑆 > 0 hence positive. It follows that 

 

 𝑉 =  𝑉𝑛 = 𝐸 = ⋯ = 𝑅 > 0  

 

The time derivative of system 2 is 

 
𝑑𝜈

𝑑𝑡
(𝑆, 𝑉, 𝑉𝑛 , 𝐸, 𝐸𝐴, 𝐸ℎ , 𝐼𝑠ℎ , 𝐼𝑎ℎ , 𝐼𝑠𝐴 , 𝑄ℎ, 𝐻ℎ , 𝑅) = 2(𝑆 − 𝑆0)

𝑑𝑆

𝑑𝑡
+ 2𝑉

𝑑𝑉

𝑑𝑡
+ ⋯+ 2𝑅

𝑑𝑅

𝑑𝑡
  

 

At Disease Free Equilibrium Point, 𝑉 =  𝑉𝑛 = 𝐸 = ⋯ = 𝑅 =  0 hence the equation above becomes 𝜈̇ =  2(𝑆 −
 𝑆0). For global stability 𝑆 <  𝑆0 so that 𝜈̇ < 0 .If 𝑆 ≤  𝑆0 then 𝜈̇ ≤ 0 implying that 𝑅0 ≤ 1 hence the Disease 

Free Equilibrium Point is globally stable. 

 

3 Main Results 
 

Analytic solutions can be demonstrated using analytic results with specific numerical examples. The model 

equation (1) is considered. A numerical simulation of the model is calculated using list of parameters and their 

estimated values given in the Table 1. The values have been obtained from [23,32,33]. In simulation of the 

model system (1), the following initial values in each compartment at the onset of infection is assumed to apply; 
(𝑆(0), 𝑉(0), 𝑉𝑛(0), 𝐸(0), 𝐸𝐴(0), 𝐸ℎ(0), 𝐼𝑠ℎ(0), 𝐼𝑎ℎ(0), 𝐼𝑠𝐴(0), 𝑄ℎ(0), 𝐻(0), 𝑅(0)) =
(1000, 0, 0.01, 0.01, 500,30,0,0,0,0,0,0) on the interval [−𝜏, 0]. 
 

  



 
 

 

 
Pela et al.; J. Adv. Math. Com. Sci., vol. 39, no. 5, pp. 111-123, 2024; Article no.JAMCS.116815 

 

 

 
119 

 

Table 1. Table of variable, variable description and value 

 

Parameters Parameter description Value Source 

𝑆 susceptible class to both HIV-1 and Coronavirus 
disease (𝑆) 

2500 Fixed 

𝑉 Coronavirus disease vaccinated class (𝑉) 1000 Estimated 
𝑉𝑛 Coronavirus disease non-vaccinated class ( 𝑉𝑛) 1500 Estimated 
𝐸 Exposed class (𝐸) 100 Estimated 
𝐸𝐴 Exposed class with HIV-1 ( 𝐸ℎ)  10 Estimated 
𝐸ℎ  Exposed class with AIDs ( 𝐸𝐴) 10 Estimated 
𝐼𝑠𝐴 symptomatic infected class with AIDs ( 𝐼𝑠𝐴) 0 Assumed 
𝐼𝑠ℎ  symptomatic infected class with HIV-1 ( 𝐼𝑠ℎ) 0 Assumed 
𝐼𝑎ℎ  asymptomatic infected class with HIV-1 ( 𝐼𝑎ℎ) 0 Assumed 
𝑄ℎ  Quarantined class with HIV-1 ( 𝑄ℎ) 15 Estimated 
𝐻 Hospitalized class (𝐻)  20 Estimated 
𝑅 Removed class (𝑅) 5 Assumed 
𝜙2 Recruitment rate 2500 16 
𝛽3 Rate of progression from 𝑆 to 𝑉 0.20 Assumed 
𝛽4 Rate of progression from 𝑆 to 𝑉𝑛 0.002 14 
𝛼3 Rate of progression from 𝑉 to 𝐸 0.53 Estimated 
𝛼4 Rate of progression from𝑉𝑛 to 𝐸 0.45 Estimated 
𝛼5 Rate of progression from 𝑉 to 𝑅 0.50 Estimated 
𝜔3 Rate of progression from 𝐸 to 𝐸ℎ  0.4 Estimated 
𝜔4 Rate of progression from 𝐸 to 𝐸𝐴 0.05 Estimated 
𝜔5 Rate of progression from 𝐸𝐴 to 𝐼𝑠𝐴 0.043 Estimated 
𝜔6 Rate of progression from 𝐸ℎ  to 𝐼𝑠ℎ  0.045 Estimated 
𝜔7 Rate of progression from 𝐸ℎ  to 𝐼𝑎ℎ  0.3425 Estimated 
𝛾2 Rate of progression from 𝐻 to 𝑅 0.05 22 
𝛾3 Rate of progression from 𝐼𝑠ℎ  to 𝑄𝑛 0.3 16 
𝛾4 Rate of progression from 𝐼𝑠𝐴 to 𝐻 0.3 16 
𝛾5 Rate of progression from 𝐼𝑎ℎ  to 𝐻 0.38 16 
𝛿4 Rate of progression from 𝑄ℎ  to 𝑅 0.200 22 
𝛿5 Rate of progression from 𝑄ℎ  to 𝐻 0.3 Assumed 
𝜇 Natural death rate 0.019 < 𝜇 < 0.51 16 

 

 
 

Fig. 2. population vs time 
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Fig. 3. RO vs death rate 

 

 
 

Fig. 4. RO vs delta 

 

 
 

Fig. 5. Ro as a function of Tau 

 

4 Discussion 
 

Numerical results showed that death rate, time lag, vaccination and quarantine affected the growth of the disease 

as it is seen from reproduction number. Fig. 2 shows cell population with time, clearly the infected individuals 

curve were at zero initially then it increases steadily, it then reduces after some time when interventions like 

vaccination, quarantine and treatment were put in place. Further, the curve for susceptible individuals rises 
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steadily and stabilizes at higher value than the other curves. Figs. 3, 4 and 5 show how reproduction number is 

affected by death rate, quarantine and time lag respectively. When death rate and number of individuals being 

taken to quarantine is high then it means that the disease is growing. When time lag is 0.56days then the 

reproduction number is less than one and it means the disease is dying out. 

 

5 Conclusion 
 

Disease Free Equilibrium is attained when 𝑅0 <  1. This is affected by vaccination, time delay, quarantine and 

chemotherapy of both HIV-1 and CoVid-19. The study found out that if all other factors are kept constant then 

DFE is achieved when drug efficacy is above fifty percent. It is also clear that for τ > 0 DFE is stable and 

unstable otherwise.  
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