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Abstract

Populations evolve by accumulating advantageous mutations. Every population has some

spatial structure that can be modeled by an underlying network. The network then influ-

ences the probability that new advantageous mutations fixate. Amplifiers of selection are

networks that increase the fixation probability of advantageous mutants, as compared to

the unstructured fully-connected network. Whether or not a network is an amplifier

depends on the choice of the random process that governs the evolutionary dynamics.

Two popular choices are Moran process with Birth-death updating and Moran process

with death-Birth updating. Interestingly, while some networks are amplifiers under Birth-

death updating and other networks are amplifiers under death-Birth updating, so far no

spatial structures have been found that function as an amplifier under both types of updat-

ing simultaneously. In this work, we identify networks that act as amplifiers of selection

under both versions of the Moran process. The amplifiers are robust, modular, and

increase fixation probability for any mutant fitness advantage in a range r 2 (1, 1.2). To

complement this positive result, we also prove that for certain quantities closely related to

fixation probability, it is impossible to improve them simultaneously for both versions of the

Moran process. Together, our results highlight how the two versions of the Moran process

differ and what they have in common.

Author summary

The long-term fate of an evolving population depends on its spatial structure. Amplifiers

of selection are spatial structures that enhance the probability that a new advantageous

mutation propagates through the whole population, as opposed to going extinct. Many

amplifiers of selection are known when the population evolves according to the Moran

Birth-death updating, and several amplifiers are known for the Moran death-Birth

updating. Interestingly, none of the spatial structures that work for one updating seem

to work for the other one. Nevertheless, in this work we identify spatial structures that

function as amplifiers of selection for both types of updating. We also prove two negative
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results that suggest that stumbling upon such spatial structures by pure chance is

unlikely.

Introduction

Moran process is a classic stochastic process that models natural selection in populations of

asexually reproducing individuals, especially when new mutations are rare [1, 2]. It is com-

monly used to understand the fate of a single new mutant, as it attempts to invade a population

of indistinguishable residents. Eventually, the new mutation will either fixate on the whole

population, or it will go extinct. It is known that when the invading mutant has relative fitness

advantage r> 1 as compared to the residents, this fixation probability tends to a positive con-

stant 1 − 1/r as the population size N grows large.

On spatially structured populations, fixation probability of an invading mutant can both

increase or decrease. In the framework of evolutionary graph theory [3, 4], the spatial structure

is represented by a graph (network) in which nodes (vertices) correspond to individual sites,

and edges (connections) correspond to possible migration patterns. Each edge is assigned a

weight that represents the strength of the connection. Such network-based spatial structures

can represent island models, metapopulations, lattices, as well as other arbitrarily complex

structures [5–9]. Spatial structures that increase the fixation probability of a randomly occur-

ring advantageous mutant beyond the constant 1 − 1/r are called amplifiers of selection [10].

The logic behind the name is that living on such a structure effectively amplifies the fitness

advantage that the mutants has, as compared to living on the unstructured (well-mixed) popu-

lation. Identifying amplifiers is desirable, since they could potentially serve as tools in acceler-

ating the evolutionary search, especially when new mutations are rare [11, 12].

When run on a spatial structure, Moran process can be implemented in two distinct ver-

sions. They are called Moran Birth-death process and Moran death-Birth process. In the

Moran Birth-death process, first an individual is selected for reproduction with probability

proportional to its fitness, and the offspring then replaces a random neighbor. In contrast, in

the Moran death-Birth process, first a random individual dies and then its neighbors compete

to fill up the vacant site (see Fig 1). Both the Moran Bd-updating [1, 3, 13] and the Moran dB-

updating [14–17] have been studied extensively. While essentially identical on the unstruc-

tured population, the two versions of the process yield different results when run on most spa-

tial structures [18–20].

In the world of the Bd-updating, amplifiers are ubiquitous [12, 21–24]. Almost all small spa-

tial structures function as amplifiers of selection [21]. A prime example of an amplifier under

the Bd-updating is the Star graph, which improves the mutant fixation probability to roughly 1

− 1/r2 [19, 25–27]. In particular, when r = 1 + ε, this is approximately a two-fold increase over

the baseline value 1 − 1/r given by the unstructured population. Moreover, certain large spatial

structures function as so-called superamplifiers, that is, they increase the mutant fixation prob-

ability arbitrarily close to 1, even when the mutant has only negligible fitness advantage r = 1 +

ε [28]. Many other superamplifiers are known, including Incubators [29], or Selection Reac-

tors [30].

In contrast, in the world of dB-updating, only a handful of amplifiers are known [31]. Per-

haps the most prominent examples are the Fan graphs (see Fig 2) that increase the fixation

probability of near-neutral mutants by a factor of up to 1.5 [32]. Interestingly, all dB-amplifiers

are necessarily transient, meaning that the provided amplification effect disappears when the

mutant fitness advantage exceeds a certain threshold [33]. In particular, large Fan graphs
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increase the fixation probability of the invading mutants for r 2 (1, φ), where φ� 1.618 is the

golden ratio, but decrease it when r> φ [32].

Unfortunately, the Fan graphs do not function as amplifiers when we instead consider

them under Bd-updating (see Fig 2). This is unexpected, since amplification in the Bd-world is

so pervasive. And it begs a question. Do there exist spatial structures that function as amplifiers

both under the Bd-updating and under the dB-updating? That is, do there exist structures for

which the amplification effect is robust with respect to the seemingly arbitrary choice of which

version of the Moran process we decide to run?

In this work, we first show three negative results that indicate that the requirements for Bd-

amplification and dB-amplification are often conflicting. First, we show that known amplifiers

of selection under the Bd-updating are suppressors of selection for the dB-updating and vice

versa. Second, we prove that simultaneous Bd- and dB-amplification is impossible under neu-

tral drift (r = 1) when the initial mutant location is fixed to a specific starting node. Third, we

define a quantity that corresponds to the probability of “mutants going extinct immediately”.

We then prove that, roughly speaking, no graph improves this quantity as compared to the

complete graph under both Bd- and dB-updating. Thus, improving fixation probability under

both Bd- and dB-udpating as compared to the complete graph might seem unlikely.

Fig 1. Moran Birth-death and death-Birth processes on a population structure. a, Each node is occupied by a resident

with fitness 1 (blue), or a mutant with fitness r� 1 (red). Thicker edges denote higher edge weights (stronger interactions). b,

In Moran Birth-death process, a random individual reproduces, and the produced offspring migrates along a random edge.

c, In Moran death-Birth process, a random individual dies, and the vacancy is filled by a random neighbor. In both cases,

edges with higher weight are selected more often, and fitness plays a role in the Birth step but not in the death step.

https://doi.org/10.1371/journal.pcbi.1012008.g001

Fig 2. Known amplifiers are suppressors for the other process. a, We consider four graphs on N = 11 nodes, namely the Complete graph K11, the star graph S11, the

Fan graph F11, and the smallest known undirected amplifier D11 (see [17]). b, Under Bd-updating, the only amplifier for r 2 {1.01, . . ., 1.1} is the Star graph S11. c,

Under dB-updating, the only amplifier for r 2 {1.01, . . ., 1.1} is the Fan graph F11. Values computed by numerically solving the underlying Markov chains.

https://doi.org/10.1371/journal.pcbi.1012008.g002
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Despite those negative results, we identify a class of population structures that function as

amplifiers of selection under both Birth-death and death-Birth updating, for any mutation that

grants a relative fitness advantage r 2 (1, 1.2). We also present numerical computation that

illustrates that the amplification strength is substantial.

Model

Here we formally introduce the terms and notation that we use later, such as the evolutionary

dynamics of Moran Birth-death and Moran death-Birth process, the fixation probability, and

the notion of an amplifier.

Population structure

The spatial structure of the population is represented as a graph (network), denoted GN = (V,

E), where V is a set of N nodes (vertices) of GN that represent individual sites, and E is a set of

edges (connections) that represent possible migration patterns for the offspring. The edges are

undirected (two-way) and may be weighted to distinguish stronger interactions from the

weaker ones, see Fig 1a. The weight of an edge between nodes u and v is denoted w(u, v). If all

edge weights are equal to 1 we say that the graph is unweighted. At any given time, each site is

occupied by a single individual, who is either a resident with fitness 1, or a mutant with fitness

r� 1. The fitness of an individual at node u is denoted f(u).

Moran process

Moran process is a classic discrete-time stochastic process that models the evolutionary

dynamics of selection in a population of asexually reproducing individuals. Initially, each node

is occupied either by a resident or by a mutant. As long as both mutants and residents co-exist

in the population, we perform discrete time steps that change the state of (at most) one node at

a time.

There are two versions of the Moran process (see Fig 1). In the Moran Birth-death process,
we first select an individual to reproduce (randomly, proportionally to the fitness of the indi-

vidual), and then the offspring migrates along one adjacent edge (randomly, proportionally to

the weight of that edge) to replace the neighbor. Formally, denoting by F = ∑u f(u) the total fit-

ness of the population, node u gets selected for reproduction with probability f(u)/F, and then

it replaces a neighbor v with probability pu! v = w(u, v)/∑v0 w(u, v0).
In contrast, in the Moran death-Birth process, we first select an individual to die (uniformly

at random), and then the neighbors compete to fill in the vacancy (randomly, proportionally

to the edge weight and the fitness of the neighbor). Formally, node v dies with probability 1/N
and it gets replaced by a node u with probability pu! v = f(u) � w(u, v)/(∑u0 f(u0) � w(u0, v)). We

note that in both versions we capitalize the word “Birth” to signify that fitness plays a role in

the birth step (and not in the death step).

Fixation probability and amplifiers

If the graph GN that represents the population structure is connected then the Moran process

eventually reaches a “homogeneous state”, where either all nodes are occupied by mutants (we

say that mutants fixated), or all nodes are occupied by residents (we say that mutants went
extinct). Given a graph GN, a mutant fitness advantage r� 1, and a set S� V of nodes initially

occupied by mutants, we denote by rBd
r ðGN ; SÞ the fixation probability, that is, the probability

that mutants eventually reach fixation, under Moran Birth-death process. We are particularly

interested in the fixation probability of a single mutant who appears at a node selected
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uniformly at random. We denote this fixation probability under uniform initialization by

rBd
r ðGNÞ ¼

1

N

P
v2V r

Bd
r ðGN ; fvgÞ. We define rdB

r ðGN ; SÞ and rdB
r ðGNÞ analogously.

In this work we focus on population structures that increase the fixation probability of

invading mutants. The base case is given by an unweighted complete graph KN that includes

all edges and represents an unstructured, well-mixed population. It is known [4, 20, 21] that

rBd
r ðKNÞ ¼

1 �
1

r

1 �
1

rN

and rdB
r ðKNÞ ¼

N � 1

N
�

1 �
1

r

1 �
1

rN� 1

: ð1Þ

Given a graph GN and a mutant fitness advantage r� 1, we say that GN is a Bdr-amplifier if

rBd
r ðGNÞ > rBd

r ðKNÞ. We define dBr amplifiers analogously, that is, as those graphs GN that sat-

isfy rdB
r ðGNÞ > rdB

r ðKNÞ. Similarly, suppressors are graphs that decrease the fixation probability

as compared to the complete graph.

Results

First, we present three negative results that illustrate that the two worlds of Birth-death and

death-Birth updating often present contradictory requirements when it comes to enhancing

the fixation probability of a single newly occurring mutant. Nevertheless, as our main contri-

bution in the positive direction, we then present population structures that are both Bdr-ampli-

fiers and dBr-amplifiers for a range of mutant fitness advantages r 2 (1, 1.2).

Negative results

In this section, we present results that suggest that finding simultaneous Bdr- and dBr- amplifi-

ers is not easy. First, we show empirically that known amplifiers for one process are suppres-

sors for the other process. Second, we show that in the neutral regime (r = 1), any fixed vertex

is a “good” starting vertex for the mutant in at most one of the two processes. Finally, we show

that for any starting vertex, the chance of not dying immediately can be enhanced in at most

one of the two processes (see below for details).

Known amplifiers for one process. In this section we examine spatial structures that are

known to amplify under one of the two versions of the Moran process, in order to see whether

they amplify under the other version of the Moran process.

First, we consider the smallest known unweighted dB-amplifier [17], which is a certain

graph on N = 11 nodes (see Fig 2). We call the graph D11. The graph D11 is an extremely weak

dBr-amplifier in a range of approximately r 2 (1, 1.00075), where it increases the fixation prob-

ability by a factor less than 1.0000001× (see [17, Fig 1]). For r 2 (1.01, 1.1) the graph D11

appears to function as a very slight suppressor under both dB-updating and Bd-updating. In

particular, at r = 1.1 we obtain rBd
r ðD11Þ=r

Bd
r ðK11Þ≐ 0:996 and rdB

r ðD11Þ=r
dB
r ðK11Þ≐ 0:997.

Next, we examine the star graph S11 on 11 vertices which, to our knowledge, is the strongest

unweighted amplifier for Bd-updating at this population size. The Star graph is a clear Bdr-

amplifier for r 2 (1.01, 1.1), but an equally clear dBr-suppressor in that range.

The situation is reversed for the Fan graph F11 [32]. While the Fan graph clearly functions

as an amplifier under the dB-updating when r 2 (1.01, 1.1), it lags behind the baseline given by

the complete graph under the Bd-updating.

Neutral regime (r = 1). The second negative result pertains to the case of neutral muta-

tions (r = 1). Recall that rBd
r ðGN ; vÞ and rdB

r ðGN ; vÞ denote the fixation probabilities when the

initial mutant appears at node v. The following theorem states that for neutral mutations
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(r = 1), no initial mutant node increases the fixation probability both for Birth-death and

death-Birth updating.

Theorem 1. Let GN be a graph and v an initial mutant node. Then at least one of the follow-
ing is true:

1. rBd
r¼1
ðGN ; vÞ < rBd

r¼1
ðKNÞ; or

2. rdB
r¼1
ðGN ; vÞ < rdB

r¼1
ðKNÞ; or

3. rBd
r¼1
ðGN ; vÞ ¼ rBd

r¼1
ðKNÞ and rdB

r¼1
ðGN ; vÞ ¼ rdB

r¼1
ðKNÞ.

The idea behind the proof is that for neutral evolution there are explicit formulas for fixa-

tion probabilities rBd
r ðGN ; vÞ and rdB

r ðGN ; vÞ on any undirected graph GN [34, 35]. The result

then follows by applying Cauchy-Schwarz inequality. See Supplementary Information for

details. In Supplementary Information, we also note that Theorem 1 does not generalize to the

case when instead of having one initial mutant node we start with an initial subset S of k� 2

nodes occupied by mutants.

Immediate extinction and forward bias. In order to present our third and final negative

result, we need to introduce additional notions and notation. When tracking the evolutionary

dynamics on a given graph GN with a given mutant fitness advantage r� 1, it is often useful to

disregard the exact configuration of which nodes are currently occupied by mutants, and only

look at how many nodes are occupied by mutants.

One example of this is the celebrated Isothermal theorem [3] which states that once N and r
are fixed, the fixation probability under the Moran Birth-death process on any regular graph is

the same. Here, a graph is regular if each node has the same total weight of adjacent edges.

Examples of regular graphs include the complete graph, the cycle graph, or any grid graph

with periodic boundary condition.

The intuition behind the proof of the Isothermal theorem is that for any regular graph RN,

the Moran Birth-death process can be mapped to a random walk that tracks just the number

of mutants, instead of their exact positions on the graph. It can be shown that this random

walk has a constant forward bias, that is, the probabilities p+ (resp. p−) that the size of the

mutant subpopulation increases (resp. decreases) satisfy p+/p− = r, for any number of

mutants in any particular mutant-resident configuration. A natural approach to construct

amplifiers is thus to construct graphs for which this forward bias satisfies an inequality p+/p−

� r for the Moran Birth-death process and an analogous inequality for the Moran death-

Birth process. Our final negative result shows that this goal can not be achieved already in

the first step.

Formally, consider the Moran Birth-death process on a graph GN with a single initial

mutant placed at node u. Let gBdr ðGN ; uÞ be the probability that the first reproduction event that

changes the size of the mutant subpopulation is the initial mutant reproducing (as opposed to

the initial mutant being replaced by one of its neighbors). In other words, gBdr ðGN ; uÞ is the

probability that the first step that changes the configuration of the mutants does not eliminate

the initial mutant, leaving the options of later mutant extinction or mutant fixation.

For the complete graph KN (and any single mutant node) it is not hard to show that

gBdr ðKNÞ ¼ g
Bd
r ðKN ; uÞ ¼ r=ðr þ 1Þ for any node u. Moreover, by a slight extension of the Iso-

thermal theorem, we have gBdr ðRN ; uÞ ¼ r=ðr þ 1Þ for any regular graph RN and any node u.

For Moran death-Birth process, we define gdBr ðGN ; uÞ and gdBr ðKNÞ analogously. To construct a

graph that is both a Bd- and a dB-amplifier, a natural approach is to look for a graph and an

initial mutant node u such that gBdr ðGN ; uÞ > gBdr ðKNÞ and gdBr ðGN ; uÞ > gdBr ðKNÞ. However, the

following theorem states that no such graphs exist.
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Theorem 2. Let GN be a graph, u an initial mutant node, and r� 1. Then at least one of the
following is true:

1. gBdr ðGN ; uÞ < gBdr ðKNÞ; or

2. gdBr ðGN ; uÞ < gdBr ðKNÞ; or

3. gBdr ðGN ; uÞ ¼ gBdr ðKNÞ and gdBr ðGN ; uÞ ¼ gdBr ðKNÞ.

The proof relies on the notion of the temperature of a node. Formally, given a graph GN =

(V, E) we first define a (weighted) degree of a node v as deg(v) = ∑v0: (v, v0)2E w(v, v0). Then,

given a node u, we define its temperature T(u) as

TðuÞ ¼
X

v:ðv;uÞ2E

wðv; uÞ
degðvÞ

:

The temperature of a node represents the rate at which the node is being replaced by its

neighbors in the Moran Birth-death process when r = 1. Nodes with high temperature are

replaced often, whereas nodes with low temperature are replaced less frequently. Building on

this, it is straightforward to show that if a node u has above-average temperature, then

gBdr ðGN ; uÞ < gBdr ðKNÞ, that is, in Moran Birth-death process with a single mutant at u the for-

ward bias is lower than the forward bias on a complete graph. To complete the proof, we then

show that for any node u with below-average temperature, we have gdBr ðGN ; uÞ < gdBr ðKNÞ. Our

proof of the latter claim uses Jensen’s inequality for a certain concave function. See Supple-

mentary Information for details.

Positive result

Despite the above negative results, in this section we identify population structures AN that

substantially amplify the fixation probability under both Birth-death updating and death-Birth

updating when the number N of nodes is sufficiently large.

The structures AN are composed of two large chunks ABd and AdB that are connected by a

single edge, see Fig 3a for an illustration. The chunk AdB is a Fan graph [32], which is to our

knowledge the strongest currently known dB-amplifier. The chunk ABd could be any of the

many strong Bd-amplifiers. For definiteness, in Fig 3a we use a Fan-like structure with a nodes

in a central hub and b blades of two nodes each surrounding it. The single connecting edge has

a very low edge weight so that the two chunks interact only rarely. For population size

N = 1001, the resulting weighted graph is both a Bdr-amplifier and a dBr-amplifier for any r 2
(1, 1.09), see Fig 3b.

Similarly, we identify large population structures that serve as both Bdr-amplifiers and dBr-

amplifiers for any r 2 (1, 1.2).

Theorem 3 (Simultaneous Bd- and dB-amplifier). For every large enough population size
N there exists a graph AN such that for all r 2 (1, 1.2) we have

rBd
r ðANÞ > rBd

r ðKNÞ and rdB
r ðANÞ > rdB

r ðKNÞ:

In what follows we provide intuition about the proof of Theorem 3. The fully rigorous

proof is relegated to Supplementary Information. Let e be the edge connecting the two chunks,

u its endpoint in ABd, and v its endpoint in AdB.

First, observe that since e has a low weight, the two chunks evolve mostly independently.

This means that, with high probability, each chunk resolves to a homogeneous state in between

any two interactions across the chunks. In particular, if the initial mutant appears in the chunk
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where it is favored (e.g. if it appears in the chunk ABd when Bd-updating is run), the mutants

fixate on that chunk with reasonable probability. If that occurs, we say that mutants are “half

done”.

Once the mutants are half done, the next relevant step occurs when the two chunks interact.

There are two cases. Either a mutant at u reproduces and the offspring migrates along e to v, or

a resident at v reproduces and the offspring migrates along e to replace the mutant at u. In

both cases, the individual (mutant or resident) who “invades” the other half eventually either

succeeds in spreading through that half, or they fail at doing that. If the latter occurs, we are

back at the situation in which mutants are half done and the situation repeats. By bounding all

the relevant probabilities, we show that once half done, mutants are overwhelmingly likely to

fixate, as opposed to going extinct.

We highlight an interesting phenomenon that occurs in our proof. As we run the evolution-

ary dynamics, we can look at the flow along the connecting edge e. Thanks to the edge weights,

it turns out that the direction of the flow along e flips depending on whether we run the Moran

Birth-death process or the Moran death-Birth process. In particular, under the Bd-updating

the edge e is used mostly in the direction from u to v. That is, many individuals migrate from u
to v, whereas few individuals migrate from v to u. Under dB-updating the situation reverses.

That is, many individuals migrate from v to u, whereas few of them migrate from u to v. Thus,

under the Bd-updating the ABd chunk is effectively upstream of the chunk AdB, whereas under

the dB-updating the AdB chunk is effectively upstream of the chunk ABd. This asymmetry is a

key factor that contributes to the fact that once the mutants are half done, they are likely to fix-

ate on the whole graph (see Fig 4).

What remains in the proof is to balance out the sizes of the two chunks. For small r> 1, the

strongest known dB-amplifiers are roughly 3

2
� stronger than the Complete graph (in terms of

the fixation probability). Thus, in order to achieve amplification under dB-updating, we need

the chunk AdB to take up at least 2/3 of the total population size. The chunk ABd then takes up

at most 1/3 of the total population size. In order to achieve Bd-amplification, fixation probabil-

ity on ABd under Bd-updating must therefore be at least 3× larger than that on the Complete

graph. Interestingly, a Star graph is not strong enough to do that (for r� 1 and large

Fig 3. Simultaneous Bd- and dB-amplifier AN. a, The graph AN is composed of two large chunks ABd and AdB that

are connected by a single edge. The chunk AdB is a Fan graph with f nodes. The chunk ABd is a fan-like graph with a
vertices in a central hub and b blades of two nodes each. The total population size is N = a + 2b + f (here a = b = 5,

f = 11, and N = 26). The edge weights are defined such that different circled units within the chunks interact only

rarely, and the chunks themselves interact even more rarely. b, Here we consider graph AN with population size

N = 1001 and (a, b, f) = (30, 85, 801). The fixation probabilities under Bd- and dB-updating are computed by

numerically solving the underlying Markov chain. We find that the inequality rBd
r ðANÞ > rBd

r ðKNÞ is satisfied for r 2 (1,

1.09) and the inequality rdB
r ðANÞ > rdB

r ðKNÞ is satisfied for r 2 (1, 1.2). In particular, at r = 1.05 the ratios satisfy

rBd
r ðANÞ=r

Bd
r ðKNÞ > 1:44 and rdB

r ðANÞ=r
dB
r ðKNÞ > 1:14.

https://doi.org/10.1371/journal.pcbi.1012008.g003

PLOS COMPUTATIONAL BIOLOGY Amplifiers for the Moran process with both Birth-death and death-Birth updating

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012008 March 29, 2024 8 / 12

https://doi.org/10.1371/journal.pcbi.1012008.g003
https://doi.org/10.1371/journal.pcbi.1012008


population size N it is only roughly 2× stronger than the Complete graph), but sufficiently

strong Bd-amplifiers do exist (e.g. any superamplifier).

Discussion

Population structure has a profound impact on the outcomes of evolutionary processes and, in

particular, on the probability that a novel mutation achieves fixation [3, 36]. Population struc-

tures that increase the fixation probability of beneficial mutants, when compared to the case of

a well-mixed population, are known as amplifiers of selection.

Somewhat surprisingly, to tell whether a specific spatial structure is an amplifier or not, one

needs to specify seemingly minor details of the evolutionary dynamics. The well-studied

Moran process comes in two versions, namely Moran process with Birth-death updating and

Moran process with death-Birth updating. While many spatial structures are amplifiers under

the Bd-updating [21], only a handful of amplifiers under the dB-updating are known [31].

Moreover, none of the dB-amplifiers that we checked amplify under the Bd-updating.

In this work we help explain this phenomenon by proving mathematical results which illus-

trate that the two objectives of amplifying under the Bd-updating and amplifying under the

dB-updating are often contradictory. Thus, one might be tempted to conclude that perhaps

there are no population structures that amplify in both worlds, that is, regardless of the choice

of the underlying dynamics (Bd or dB). Nevertheless, we proceed to identify population struc-

tures that serve as amplifiers of selection under both Bd-updating and dB-updating.

The amplifiers we identify in this work have several interesting features. First, they are

robust in the sense that they amplify selection under both the Bd-updating and the dB-updat-

ing. Second, they provide amplification for any mutant fitness advantage r in a range r 2 (1,

1.2), which covers many realistic values of the mutant fitness advantage, and the amplification

is non-negligible (for instance, for r = 1.05 the fixation probability increases by 14% and 44%,

respectively. see Fig 3). Third, the amplifiers are modular. That is, they consist of two large

chunks that serve as building blocks and that interact rarely. For definiteness, in this work we

Fig 4. Interactions between ABd and AdB. a, The edge weights in the chunks ABd (red) and AdB (blue) are shown as a

function of t (here t� 1 is large). The connecting edge has weight 1/t3, all other edges with endpoint u have total

weight 1/t and all other edges with endpoint v have total weight 1. For each of two versions of the Moran process, the

rates at which the offspring migrate from u to v and from v to u can be calculated and are listed in the table. b, Under

Birth-death updating, the migration rate pu! v from u to v is roughly t× larger than the migration rate pv! u from v to

u, so the chunk ABd is upstream of the chunk AdB, and a mutant who has fixated over AdB is likely to fixate over ABd

too. c, In contrast, under death-Birth updating we have pv! u� t � pu! v, hence the chunk AdB is upstream of ABd.

https://doi.org/10.1371/journal.pcbi.1012008.g004
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specified the two chunks and their relative sizes, but each chunk can be replaced by an alterna-

tive building block and the relative sizes can be altered. For example, the best currently known

dB-amplifiers amplify by a factor of 1.5× for r� 1 and continue to amplify for r in a range r 2
(1, φ), where φ ¼ 1

2
ð
ffiffiffi
5
p
þ 1Þ � 1:618 is the golden ratio [32]. If better dB-amplifiers are

found, they can be used as a building block in place of one of the chunks to improve the range

r 2 (1, 1.2) for which the resulting structure amplifies in both worlds.

In this work, our objective was to increase the fixation probability of an invading mutant in

both worlds (Bd-updating and dB-updating). An interesting direction for future work is to

optimize other quantities in both worlds.

One such quantity is the duration of the process until fixation occurs [37–39]. For example,

achieving short fixation times in combination with increasing the fixation probability does not

appear to be easy. Our proofs rely on the existence of small edge weights to separate the time

scales at which different stages of the process happen. While using more uniform edge weights

might still lead to the same outcome, the proofs would need to become more delicate. A possi-

ble approach to identify structures that serve as fast amplifiers in both worlds would be to find

unweighted amplifiers, because then the time would be guaranteed to be at most polynomial

[40, 41]. The first step in this direction would be to identify large and substantially strong

unweighted dB-amplifiers. There are promising recent results in this direction [31].

Looking beyond fixation time, there are other relevant quantities such as the recently intro-

duced rate at which beneficial mutations accumulate [42]. Existing research suggests that the

two versions of the Moran process behave quite differently in terms of the fixation probability

[21], but quite similarly in terms of the fixation time [40, 41]. Which of those two cases occurs

for other relevant quantities remains to be seen.

Supporting information
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