
Citation: Wang, Z.; Bu, D.; Tian, W.;

Cui, B. Analyzing and Discovering

Spatial Algorithm Complexity

Vulnerabilities in Recursion. Appl. Sci.

2024, 14, 1855. https://doi.org/

10.3390/app14051855

Academic Editor: Chilukuri K. Mohan

Received: 13 January 2024

Revised: 17 February 2024

Accepted: 20 February 2024

Published: 23 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Analyzing and Discovering Spatial Algorithm Complexity
Vulnerabilities in Recursion
Ziqi Wang *,† , Debao Bu †, Weihan Tian and Baojiang Cui

School of Cyberspace Security, Beijing University of Posts and Telecommunications, Bejing 100876, China
* Correspondence: wangziqi@bupt.edu.cn
† These authors contributed equally to this work.

Abstract: The algorithmic complexity vulnerability (ACV) that may lead to denial of service attacks
greatly disrupts the security and availability of applications, and due to the widespread use of
third-party libraries, its impact may be amplified through the software supply chain. The existing
work in the field is dedicated to abstract loop or iterative patterns and fuzzing the entire application
to discover algorithm complexity vulnerabilities, but they still face efficiency and effectiveness issues.
Our research focuses on: (1) proposing a representation and extraction method for code features
related to algorithmic complexity vulnerabilities, helping analysts quickly understand program logic;
(2) providing a new ACV detecting model, focusing on the spatial complexity anomalies caused by
deep recursion structures, and proposing a new filtering method; and (3) aiming at the difficulty of ef-
ficiently generating complex-data-type-related payloads using existing symbol execution techniques,
a call-chain-guided payload construction method is proposed. We tested third-party components
in the open-source Java Maven Repository, identified many unexposed vulnerabilities, and eight of
them received Common Vulnerabilities and Exposures (CVE) identifiers, and demonstrated that our
method can discover more algorithmic complexity vulnerabilities compared to existing tools with
better performance.

Keywords: spatial algorithm complexity vulnerability; recursion structure; call chain

1. Introduction

An algorithmic complexity vulnerability is an inappropriate design or implementation
of algorithmic logic that can lead to attackers carefully constructing malicious inputs,
triggering abnormal resource consumption or time consumption, and resulting in a denial
of service [1]. The most typical such kind of denial of service (DoS) attack is Zip bomb [2],
such as 42.zip [3], which may appear to be only 42 KB, but after decompression, it can
scale to several PB of data, causing enormous pressure on the decompression program
and resources, resulting in spatial ACV. The Regular Expression Denial of Service (ReDoS)
vulnerability [4–9], is another type of vulnerability caused by improper filtering rules
on regular expressions, allowing attackers to consume a significant amount of time and
resources for software or library regular matching operations by submitting specific inputs.
The recent occurrence in Ruby, such as CVE-2023-36617 [10], is a typical example.

As above, compared to traditional memory crash vulnerabilities that can be tested
through blind fuzzing methods, algorithm complexity vulnerabilities are more closely
integrated with algorithm design and implementation, which leads to traditional blind
fuzzing methods being more inefficient. At the same time, due to the extensive use of
open-source components including logging framework and blockchain smart contrast
provided by third-party repositories in modern software development, such as Maven and
GitHub, software developers unintentionally introduce code with algorithmic complexity
vulnerabilities developed by others, further expanding the threats of ACV. This also makes

Appl. Sci. 2024, 14, 1855. https://doi.org/10.3390/app14051855 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14051855
https://doi.org/10.3390/app14051855
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5089-8918
https://orcid.org/0000-0002-9302-8525
https://doi.org/10.3390/app14051855
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14051855?type=check_update&version=1

Appl. Sci. 2024, 14, 1855 2 of 19

it difficult for existing analysis methods to analyze algorithmic complexity vulnerabilities
hidden in open-source components.

At present, researchers have proposed solutions to the above problems. Liu et al.,
proposed Acquirer [11], which combines static and dynamic methods to generate control
flow and data flow graphs of the program, identify potential algorithm complexity issues,
and use dynamic testing techniques to verify the resource consumption of the program,
thereby discovering and verifying temporal ACVs. Awadhutkar et al. proposed DIS-
COVER [12], a static analysis tool that calculates the time complexity of a loop by analyzing
the number of iterations in the loop, internal operations in the loop body, and nested
structures. Blair et al., proposed HotFuzz [13], which compensates for the shortcomings
of traditional fuzzing methods in discovering ACVs by introducing temporal and spatial
guidance, in order to discover more spatial and temporal features associated with different
inputs. Through directional fuzzing testing, more ACVs are discovered. Li et al., proposed
a dynamic path search approach that combines dynamic symbol execution and constraint-
based path exploration techniques to explore the execution path of a program, and detects
ACVs based on path coverage information and pathological inputs [14].

In order to address the challenges faced by detecting ACV and address the gap in
related field mentioned above, we propose a three-step ACV detection and verification
workflow. First, we propose a static analysis method based on analyzing Java bytecode,
analyzing various complex iterations and other conditional operations, APIs such as I/O,
exception handling mechanisms, etc., in order to provide detailed information for analysts
to perform high-level abstraction and filter suspicious vulnerability code call chains. Sec-
ondly, to compensate for the shortcomings of existing ACV detecting models, a brand new
Java ACV model related to exception handling mechanism in deep recursion process is
proposed. The existing methods have strong randomness and require a large amount of
manual verification, ignore the underlying causes of vulnerabilities, such as Java language
features, which reduces the efficiency of analysis. Finally, we propose a ACV verification
and payload generation method. Most existing symbolic execution techniques are used
in the stage of initial filtering suspicious code with ACVs. However, applying symbolic
execution to the payload generation stage also has certain limitations, such as lack the
ability to support complex data types. A call-chain-based and manually assisted payload
generation method is proposed, which can more efficiently accelerate the vulnerability
verification and payload generation.

To demonstrate the ability of our proposed method to detect ACVs in open-source
repositories, we conducted an analysis on Maven, the most popular third-party component
repository in Java. During the experiment, we identified a large number of vulnerability
call chains with algorithmic complexity risks and conducted manual verification. We
constructed corresponding payloads and provided vulnerability reports to the project
maintainers. Among them, eight were officially recognized and assigned CVE numbers.
In addition, other vulnerability call chains have been manually confirmed to affect the
reliable operation of the algorithm, but have not yet been submitted to the maintainers.
Compared to the State-of-the-Art (SOTA), it has also achieved significant improvements.

In summary, the main contributions of our work are listed as follows:

• A static analysis method for filtering program call chain. We provide optional static
analysis methods, including sensitive call chain filtering based on the Root framework
and graph based analysis, supporting abstract understanding of program algorithm
and logic, and supporting the construction and application of vulnerability models.

• A new model for detecting algorithm complexity vulnerabilities. An ACV model
related to Java deep recursion and exception handling mechanisms has been proposed,
and a call chain filtering and analysis method has also been proposed. This model
have been overlooked in existing research, but still remain an important cause of
spatial algorithm complexity vulnerabilities.

• Payload generation guided by vulnerable call chains. Applying symbolic execution
and constraint solving to payload generation instead of path solving still has cer-

Appl. Sci. 2024, 14, 1855 3 of 19

tain shortcomings. A vulnerable call chains guided payload generation method is
proposed to achieve faster vulnerability verification, and improve the efficiency of
vulnerability exploitation.

• New algorithm complexity vulnerabilities. Based on the above work, detailed testing
was conducted on third-party components in the Maven Repository, discovering many
new 0-day vulnerabilities and obtaining eight CVE numbers.

The remaining parts of our paper are organized as follows: Section 2 summarizes
the work in related fields, Section 3 introduces the background and threat model of this
research, Section 4 introduces the main innovations of this paper, Section 5 describes and
introduces the experimental results, and Section 6 summarizes and prospects for the future.

2. Related Work

Awadhutkar et al. [12,15] noted that fully automated detection of algorithmic com-
plexity vulnerabilities is not feasible. Therefore, they proposed a tool named DISCOVER
to assist in detecting these vulnerabilities. Their workflow mainly consists of three stages:
First, they automate loop feature description based on the Termination Dependence Graph
(TDG) and Loop Projected Control Graph (LPCG). Subsequently, they filter for suspicious
loop patterns and further provide a catalog of loops to users for interactive auditing.

Blair et al. [13] introduced HotFuzz, a Guided Micro-Fuzzing method designed to
discover Algorithm Denial-of-Service vulnerabilities. They utilized genetic algorithms to
evolve arbitrary Java objects, aiming to trigger the worst-case performance of target meth-
ods. They defined Small Recursive Instantiation (SRI) to derive seed inputs represented as
Java objects for micro-fuzzing. Additionally, they employed EyeVM to track and analyze
the root causes of these vulnerabilities.

Wei et al. [16] introduced a pattern fuzzing method named Singularity, aimed at
uncovering the worst-case scenarios in given applications. The authors initially proposed
a Domain Specific Language-style approach, namely the Recurrent Computation Graph
(RCG) computational model, to express input patterns. Furthermore, they utilized a genetic
programming (GP) algorithm to manipulate RCGs for solving optimization problems,
thus generating more effective input patterns that trigger the worst performance. They
discovered availability vulnerabilities in real-world applications such as Google Guava
and JGraphT.

Liu et al. [11] proposed a hybrid method for detecting algorithmic complexity vulner-
abilities. This approach initially employs static methods to analyze loops and recursive
structures in the target Java source code, identifying potentially vulnerable loop constructs.
It then utilizes context information to guide critical path instrumentation, and constructs
test cases based on branch strategies. By employing dynamic selective symbolic execution
for path searching, it discovers cases that exhibit abnormal resource consumption, thereby
uncovering time complexity-related algorithmic complexity vulnerabilities.

Noller et al. [17] proposed a hybrid method that combines fuzz testing and symbolic
execution to detect time and space complexity algorithmic vulnerabilities. The main
contribution of this method lies in its initial development of a fuzz testing approach, aimed
at enhancing coverage and exploring paths with high resource consumption. To improve
the efficiency of fuzz testing, a symbolic execution technique is employed. On the one
hand, this technique explores potential high resource consumption paths through symbolic
execution. On the other hand, it guides fuzz testing to generate samples that satisfy branch
conditions, thereby enhancing the effectiveness of the approach.

Liu et al. [18] proposed a method for detecting and exploiting vulnerabilities related
to ReDoS. They developed a tool named Revealer, which also combines static and dynamic
analyses. Initially, they use static analysis tools to locate potentially vulnerable structures
in regular expressions. Subsequently, they dynamically validate whether these vulnerable
structures can be triggered. The dynamic method employed by the authors differs from
fuzz testing and is a relatively precise method of generating regular expressions. They
achieved performance improvements and detected a large number of new vulnerabilities.

Appl. Sci. 2024, 14, 1855 4 of 19

To sum up, current work in analyzing algorithmic complexity vulnerabilities mainly
includes two major approaches, i.e., static method and dynamic method. Static methods are
exemplified by loop characteristic analysis, which involves modeling and analyzing loop
features in algorithms to identify vulnerable loop patterns [12,15,19,20]. Dynamic methods
are represented by fuzzing techniques, which utilize input mutations and resource con-
sumption tracking to identify test cases that trigger abnormal resource usage [13,16,21–23].
Hybrid methods, combining static and dynamic analysis, has been proven to enhance
the efficiency of algorithmic complexity vulnerability detection and achieve better re-
sults [11,17,18,24].

However, most of these efforts face the following issues: insufficient abstraction of
the causes of algorithmic complexity vulnerabilities by dynamic methods, resulting in
relatively poor efficiency and capability in vulnerability detecting; inadequate support for
vulnerability detecting by static methods, requiring more subsequent manual analysis for
support; challenges in comprehensive vulnerability detection due to immature symbolic
execution tools by hybrid methods. In comparison to these efforts, the advantages of our
work lie in a generic workflow for detecting algorithmic complexity vulnerabilities, as well
as a specific, efficient spatial algorithmic complexity vulnerability detection model related
to recursive structures and exception handling. Based on this model, we can achieve rapid
vulnerability detection and validation.

3. Background

This section mainly describes the definition of ACV and the threat models we con-
cern about.

3.1. Algorithm Complexity Vulnerability

• Algorithm complexity. Algorithmic complexity (AC) [25,26] is a measure of how an
algorithm performs as the size of its input, denoted as ‘n’, increases. It is typically
divided into time complexity, which refers to the growth rate of the algorithm’s exe-
cution time with respect to the input size, and space complexity, which relates to the
memory requirements of the algorithm. The analysis of algorithmic complexity mainly
focuses on the worst-case scenario as ‘n’ approaches infinity. This theoretical evalua-
tion helps in understanding the efficiency of algorithms, though actual execution time
may vary due to factors like processor speed and compiler optimizations.

• Algorithmic Complexity Attack. An Algorithmic Complexity Attack (ACA) [27–29]
is a form of cyber attack that exploits the worst-case performance of an algorithm
to exhaust system resources, leading to Denial of Service (DoS). Attackers can craft
inputs that trigger the most complex behavior of the backend algorithm, causing
the exhaustion of CPU, memory, or disk space. Examples of such attacks include
Zip bombs or specially crafted regular expressions causing ReDoS. These attacks
are efficient as they do not require substantial server resources, relying instead on
technical strategies to effectively disrupt services.

• Algorithmic complexity vulnerability. Algorithmic complexity vulnerabilities caused
by design flaws in program construction stage are exploited for complexity attacks,
triggering abnormal consumption of time or space resources. These vulnerabilities
often occur because developers focus on average-case performance during algorithm
selection and testing, overlooking potential resource exhaustion in worst-case scenar-
ios. Temporal complexity vulnerabilities can lead to Central Processing Unit (CPU)
exhaustion, while spatial complexity issues may consume all available Random Access
Memory (RAM) or disk space. Such vulnerabilities are relatively common in software
development due to a lack of consideration for extreme performance cases under
certain inputs. A simple example of ACV is shown in Listing 1, in which the regex
“(a+)+$” can perform poorly on certain inputs.

Appl. Sci. 2024, 14, 1855 5 of 19

Listing 1. A brief sample of ACV.

1 import java.util.regex.Matcher;
2 import java.util.regex.Pattern;
3

4 public class ReDoSExample {
5 public static void main(String[] args) {
6 String input = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaa!"; // Malicious input
7 System.out.println("Input matches: " + isValid(input));
8 }
9

10 public static boolean isValid(String input) {
11 // Regular expressions that may trigger catalogic backtracking
12 String regex = "(a+)+$";
13 Pattern pattern = Pattern.compile(regex);
14 Matcher matcher = pattern.matcher(input);
15 return matcher.matches();
16 }
17 }

3.2. Threat Model

Here, we mainly talk about two aspects, i.e., the threat for algorithm design and
implementation, and the threat for Java language features.

3.2.1. ACV Threat for Algorithm Design and Implementation

The safe and reliable design of the program and the reliable operation of the application
system have several elements:

• Appropriate algorithm implementation. Due to the wide application of third-party
libraries, the same algorithm logic may have different code implementations. Due
to the different programming abilities of developers, it is inevitable that artificial or
unintentional security problems may occur in the algorithm implementation.

• Use input sanitization. Sanitization involves removing any potentially dangerous
characters from user inputs, while validation ensures that the data conforms to the
expected format and type. By constraining the range of user inputs, the risk of
exploiting vulnerabilities can be effectively diminished [30,31].

• Implementation hard resource limits. In some cases, input sanitization is not always
effective, because some functions need to be more flexible to accept user input, and it
is difficult to fully limit the user’s input space. Therefore, hard resource constraints,
which specifically refers to limiting the size of user input data, can sometimes have a
better effect.

Therefore, the violation of the above principles may lead to ACV, which inspires our
ACV threat model.

• Threat for third-party components in the supply chain. A large number of components
in the supply chain implement similar functions or contain similar algorithm frag-
ments, but vulnerable code fragments may be introduced by developers intentionally
or unintentionally.

• Threat for input sanitization. Input sanitization defines the type of user input space and
discards or accepts certain types of characters. Within the limited scope, the attacker
can construct malicious samples and trigger unexpected algorithm logic, resulting in
abnormal consumption of time and space resources.

• Threat for hard resource constraints. Even if the type and size of user input space
are limited, it is still possible for attackers to use the complex algorithm call chain
to trigger the abnormal execution, circulation, and nesting of branches, resulting in
unexpected resource consumption.

Appl. Sci. 2024, 14, 1855 6 of 19

3.2.2. Java Language Features

• Java recursion, Java method recursion and stack overflow. In particular. In the design
of algorithm, there will be many structures such as loop, iteration, recursion, and
so on [32]. These structures facilitate software development and program under-
standing, but at the same time, they also bring some hidden dangers of security and
reliability. There may be many problems with the loop structure, such as undefined
boundaries [15]. In our work, we focus on the problem of recursive reference, be-
cause compared with other loop structures, its code is simpler, and it will consume
more resources and have greater impact in case of problems, which is also relatively
neglected by existing work. The default method stack size of Java generally only sup-
ports about 2000 method recursion calls, beyond which the stack overflow exception
will be triggered. If the class methods are recursive methods, by constructing specific
parameters, class methods can perform deep recursion and trigger stack overflow.

• Java exception and error handling mechanism. In Java, the program may encounter
various exceptions when running, such as divide by zero exception, null pointer
exception, array out of bounds exception, etc. [33]. When these exceptions occur,
the program will stop execution and throw exceptions. If the exception is not handled,
the program will terminate execution. Such handling mechanism is a very important
part of Java, for it can help us catch and handle various exceptions in programs.
Although errors should not be captured in general, but for some web applications,
security frameworks and custom exception handlers, developers may need to capture
and handle errors when developing some frameworks or underlying components to
better handle errors and ensure program stability, especially components on third-party
repositories and the cloud. Apache Tomcat and Spring framework are the two typical
examples. However, there are still many programs in open-source repositories that
have not considered catching and handling possible ACVs during the design phase.

As shown in Figure 1, this is our overall threat model, with the bolded parts represent-
ing the concepts and threat types provided in this paper. Open-source code repositories
such as Maven provide third-party components for developers to download and customize
to build applications. Suppose the average AC of a certain algorithm in such a compo-
nent is O(nlogn). However, due to careless coding or malicious tampering by developers,
the component may have ACV. Attackers can exploit this vulnerability by initiating ACA,
constructing malicious inputs, satisfying input sanitization conditions, and leveraging
programming language features to trigger the vulnerability. This could lead to direct
attacks on the component or the entire application through the component. The attacker
could reach the upper limit of hard resource constraints or exhaust all resources without
limits, resulting in an actual algorithmic complexity far exceeding O(nlogn).

Figure 1. Threat model described based on concepts we proposed.

Appl. Sci. 2024, 14, 1855 7 of 19

4. Methodology

The above background leads to our method design as follows:

• The analysis method for the third-party components of the supply chain. Statically
analyze the supply chain components, and then pave the way for the subsequent
vulnerability analysis. The analysis should include various features of the program, in-
cluding language independent features (intermediate representation, IR) and language
related features (such as exception handling mechanisms of Java languages).

• The filter method for vulnerable recursion structure. Based on the previous step,
the function call chain is filtered with the function entry accessible to user data and
ACV sensitive language processing mechanism as key retrieval principles. The ob-
tained call chain reveals the algorithm call logic that users may trigger ACV by
constructing malicious inputs.

• The exploitation method for ACV. Based on the control of input sanitization for user
input type and field, and the control of hard resource limits for input size, we verify the
vulnerability and generate the corresponding payload guided by the comprehension
of algorithm logic and the vulnerable call chain.

4.1. Overall Architecture

Our overall architecture as shown in Figure 2 includes three main parts: processing,
analysis, and verification. The processing part handles the third-party components of Java
(e.g., Maven Java Archive (JAR) files) and constructs the call chain. The analysis part is
based on our vulnerability model to detect the vulnerability code, including filtering the
recursion structure, analyzing the termination conditions and exception handling mecha-
nism. In the verification phase, the vulnerability is verified and exploited by generating
payload based on vulnerable call chain and the comprehension of language features.

Figure 2. Overall architecture.

4.2. Analysis Base Construction

Algorithm complexity vulnerability is a vulnerability related to algorithm logic design.
This vulnerability has nothing to do with specific programming language features, so this
type of vulnerability may appear in different languages, such as Java, Python, etc. Here,
we mainly discuss Java language, for other program languages, simply replacing the JAR
file with the corresponding source code or other code files, following the same follow-up
process and method, ACV detection can also be achieved. Language-independent interme-
diate representation is an abstract and programming language-independent representation
of programming code. By converting the source code into a language-independent interme-
diate representation, we can eliminate the characteristics strongly related to the language,
focus on the language independent algorithm logic and call structure, and help analysts
analyze vulnerabilities more efficiently.

We propose two ways to support the analysis of ACV:

• Code analysis based on the Soot framework [34,35].

Appl. Sci. 2024, 14, 1855 8 of 19

• Using the Soot framework as a foundation, we proposed a new intermediate represen-
tation analysis framework to support the visualization of function call structures in
graph format. Our framework supports the analysis of bytecode in JAR files, generat-
ing language-independent intermediate representations, and constructs dependency
and call relationship lists. These relations are then stored and represented using a
graph database. By leveraging the code graph, we can easily identify structural fea-
tures associated with ACVs, such as direct recursion and indirect recursion as shown
in Figure 3, aiding in the construction and summarization of vulnerability models,
further supporting the transfer of models to different programming languages [36].

Figure 3. (a) Direct recursion and (b) indirect recursion (for readability, we use PowerPoint to redraw
the vulnerable recursion examples according to the generated call graph).

4.3. Model-Based Vulnerable Call Chain Search

Here, we mainly introduce our new ACV detecting model. On the basis of fully
understanding the principle of vulnerability and the features of the programming language,
we propose a new spatial algorithm complexity vulnerability detecting model. Our main
design basis includes three parts: (1) aiming at the language-independent ACV features,
an analysis method for class methods is proposed; (2) according to the characteristics of
recursive structure, the analysis and judgment method of unsafe termination condition
is proposed; and (3) for the Java language features, we discover the vulnerable recursion
fragment that are not captured and processed by Java language-dependent exception and
error handling mechanism.

4.3.1. Class Method Recursive Structure

In order to improve the simplicity, efficiency and maintainability of the code, Java
introduces class methods. Furthermore, class methods have two designs: recursive and
non recursive. Recursive design can handle a large number of algorithmic logic problems
with simple code by calling itself (as shown in Listing 2). However, because each recursive
call needs to save the context information, when the recursive depth is too large, it may
lead to frequent method calls and stack operations, resulting in stack overflow ACVs.

Listing 2. Java class method recursion structure.

1 public class FactorialCalculator {
2 public int factorial(int n) { // A recursive method for calculating factorial
3 if (n <= 1) {
4 return 1;
5 } else {
6 return n * factorial(n - 1); // Recursive call
7 }
8 }
9

10 public static void main(String[] args) {
11 // Create an instance of FactorialCalculator
12 FactorialCalculator calculator = new FactorialCalculator();
13 int number = 5;
14 int result = calculator.factorial(number);
15 System.out.println("Factorial of " + number + " is: " + result);
16 }
17 }

Appl. Sci. 2024, 14, 1855 9 of 19

Most of the existing ACV detecting and even most vulnerability detecting methods
only support basic data types. Taking the vulnerability detecting method based on symbolic
execution technology as an example, most of the existing symbolic execution vulnerability
detecting methods for Java language only support basic data types, such as int and char,
while it is difficult to solve constraints for complex data types such as String or Object,
thus is not possible to better detect vulnerabilities related to class methods. Therefore, at this
stage, we mainly adopt static call chain feature analysis instead of symbolic execution,
supplementing the analysis of class methods recursion and then supporting the subsequent
vulnerability verification and utilization.

Our algorithm, as outlined in the pseudocode in Algorithm 1, is implemented using
the Soot framework. We start by acquiring all ActiveBodies from the JAR file. For each
unit within an ActiveBody, we analyze its type of call (Line 5). If these calls are of the
InvokeStmt type or the AssignStmt type, and contain a method call (Line 6), we then
conduct further analysis: we examine the method call, and if it is not within an exception
handling block (Line 9, will be detailed described in Section 4.3.3), we proceed to check the
stack used for storing method calls. If recursive calls are detected (Line 12), and there are
no limits on recursion depth (Line 13, will be detailed described in Section 4.3.2), we record
the current call stack. If no recursive calls are found, we push non-basic class methods and
non-abstract methods onto the stack and recursively analyze the called method (Line 19).

Algorithm 1 Discovering all vulnerable recursive structures.

Input: JAR file of the project to be tested
Output: Vulnerable recursive structures

1: use Soot framework to analyze Jar File to get sootMethod object
2: initialize sootMethodStack to store sootMethod
3: body← retrieve all active body of sootMethod
4: if unable to retrieve, exit
5: for each unit in the method’s body do
6: if unit is a instance of (InvokeStmt or (AssignStmt containing InovkeExpr)) then
7: calledMethod← Extract the called method from the unit
8: end if
9: if the calledmethod is within an exception handling block then

10: skip to the next unit
11: end if
12: if sootMethodStack contains calledmethod then
13: if the calledmethod does not have a recursion depth limitation then
14: record the current sootMethodStack for analysis
15: end if
16: else if then
17: if the calledmethod is neither a basic class method nor a abstract method then
18: add the called method to the sootMethodStack
19: recursively analyze the calledmethod
20: remove the method from the stack after analysis
21: end if
22: end if
23: end for

At the same time, our method supports the analysis of direct and indirect recursion.
On the call chain, direct recursion and indirect recursion have the following characteristics:
direct recursion has the characteristic of explicit self-calling in the figure, and indirect recur-
sion may achieve self calling through complex indirect calls. Figure 2a shows “methodB()”
directly recursively calling itself, while Figure 2b shows “methodA()” indirectly recur-
sively calling itself by calling “methodB()” and “methodC()”.

Appl. Sci. 2024, 14, 1855 10 of 19

4.3.2. Unsafe Recursion Termination Conditions

The termination condition is the key part of the recursive algorithm, which determines
when the recursion stops and returns the result. In recursive algorithms, the termination
condition is usually a conditional statement. When the condition is met, the recursion
will no longer continue to execute, but start to return results or perform other operations.
The existence of termination conditions is to prevent recursion from entering an infinite
loop and ensure that recursion ends eventually.

In general, termination conditions have two important characteristics:

• The termination condition must be attainable. That is to say, in the process of recursion,
after a series of recursive calls, the termination condition should be met finally.

• The termination condition should not include a recursive call, otherwise the recursion will
not end. The termination condition should be a explicit case without further recursion.

To match and detect whether there is a limit on the number of recursive levels, software
developers commonly use two methods to record and judge the recursion depth:

• Define a class attribute in the class corresponding to the recursive method to record the
recursion depth. Each time the recursive method proceeds to the next level, increment
this class attribute to update the recursion depth. Before executing the next recursive
method, compare this class attribute with a constant representing the maximum depth.
The recursive method can proceed to the next level if the depth is less than this
constant value.

• Include a variable to record the recursion depth as a parameter in the recursive method.
Each time the method recurses to the next level, increment this depth variable and
pass it to the next level of recursion. Before executing the next recursive method,
compare this variable with a constant representing the maximum depth. The recursive
method can proceed to the next level if it is less than this constant value.

The common features of these two methods are: (1) There is a variable that records
the depth of recursion, which increases in synchronism with each recursion level. (2) This
variable is compared with a constant value, and the next level of recursion is only allowed
if the variable is less than this constant value. Hence, the logic for judgment is as follows,
and the algorithm pseudocode is shown in Algorithm 2.

• Identify the variable in the recursive method that has ‘+1’ increment (Line 7).
• Determine whether this variable is a formal parameter of the recursive method or

comes directly or indirectly from a class attribute (Line 7).
• Check if this variable is compared with a constant value, and ensure that the call to

the next level of recursion is within the judgment logic that checks for the variable
being less than this constant value (Line 5).

4.3.3. Uncaptured Error

Based on the Java exception handling mechanism mentioned above, if a method’s nested
call does not capture errors such as “java.lang.throwable”, 7 “java.lang.error”,
or “java.lang.stackoverflowerror”, it may indicate the presence of error types that
are unforeseen or unhandled by the developer. This is particularly critical in the case of
“StackOverflowError”, as such uncaught errors can lead to algorithmic complexity vul-
nerabilities, potentially causing runtime errors that are not anticipated by the developers.

By utilizing Soot or our proposed method to analyze the call chains of all public
methods in Java third-party libraries, we can detect whether there are instances of recursion
without catching the aforementioned types of errors. With the help of our proposed
method, we can clearly identify the presence of recursive paths in the program (i.e., cases
where class methods reference themselves). If these recursive methods do not show
try-catch captures for errors like “java.lang.throwable”, “java.lang.error”, and
“java.lang.stackoverflowerror” at the statement level within the call chain context,

Appl. Sci. 2024, 14, 1855 11 of 19

it indicates that errors in recursion are not foreseen and handled by the developer but are
thrown by the JVM, which are worth our analysis and utilization.

Algorithm 2 Judging if there is constraint for recursion depth in a method body.

Input: body of the method to be analyzed
Output: boolean indicating if there is a recursion depth limit

1: hasDepthLimit← false
2: for each unit in the method’s body do
3: if unit is a type of conditional statement then
4: conditionalStatement← cast unit to conditional statement
5: if conditionalStatement is recursion depth check statement then
6: depthVar ← extract variable from conditionalStatement
7: if depthVar has increment and is (class attribute or parameter reference) then
8: hasDepthLimit← true
9: break

10: end if
11: end if
12: end if
13: end for
14: return hasDepthLimit

As illustrated in Algorithm 3, Line 1 iterates over each exception handling block (trap)
in the body and use a flag “isInTrap” to track whether the current iteration is inside a
trap (Line 4). Then, iterate over each unit (Line 5) in the body for checking whether the
unit is inside the exception and error handling block (Line 6–14). This function is further
used in Algorithm 1 mentioned in Section 4.3.1.

Algorithm 3 Determine if a recursion structure is captured by error handling mechanisms.

Input: body of the method and a sootMethod object to be analyzed
Output: boolean indicating if the sootMethod is within any exception handling block (trap)

1: for each trap in body’s traps do
2: startUnit← get the begin unit of the trap
3: endUnit← get the end unit of the trap
4: isInTrap← false
5: for each unit in body’s units do
6: if unit = startUnit then
7: isInTrap← true
8: end if
9: if isInTrap and the unit contains a call to sootMethod then

10: return true
11: end if
12: if unit = endUnit then
13: isInTrap← false
14: end if
15: end for
16: end for
17: return false

4.4. Recursion-Guided Payload Generation

Most current automated payload generation methods rely on symbolic execution and
constraint solving [37,38]. However, these techniques are more mature in the context of
C language, while symbolic execution technology for Java is still in a developmental and
exploratory stage. There is an urgent need for reliable and efficient test case generation tech-
niques and tools specifically for Java programs. At present, most Java symbolic execution
tools [39] can only support basic and simple data types, such as symbolic representation of

Appl. Sci. 2024, 14, 1855 12 of 19

int and char. However, they are still unable to fully symbolize complex data types like
string and object. This limitation restricts the use of symbolic execution for constraint
solving on specified vulnerability paths.

To address our targeted vulnerability types, i.e., spatial ACV, we propose a semi-
automatic, procedural, and standardized payload generation method to support rapid
vulnerability verification and exploitation. Our method process mainly includes:

• Analyzing the recursive method’s parameter processing logic. First, identify and
extract all statements involved in processing the parameters within the recursive
method according to the automatically filtered call chain. This includes all operations
from the start of the recursive method until the parameters are passed to the next level
of recursive calls.

• Constructing the initial actual parameter (argument). Based on the extracted parameter
processing logic, generate an initial actual parameter (the initial value of the parameter)
that should satisfy the conditions for at least one recursive call.

• Automatically iterative processing of actual parameters. Apply the extracted parame-
ter processing logic to the initial actual parameter, repeating multiple times (e.g., 10,000
iterations). Each iteration simulates the changes in the arguments during a recursive
call.

• Generating the final payload. After numerous iterations, the final value of the obtained
actual parameter is used as the payload. This payload represents the final state of the
argument after multiple recursive analysis and can be used for further verification
or exploitation.

5. Evaluation

In this section, we mainly discuss and evaluate our proposed method around the
following three research questions:

• RQ1: Effectiveness: can our method better detect algorithm complexity vulnerabilities?
• RQ2: Superiority: does our tool perform better than existing tools?
• RQ3: Verification and exploitation: can our method better support vulnerability

verification and exploitation?

5.1. Experiment Setup and Description of Dataset

All our experimental data comes from the real world. Due to the close-source nature
of previous research datasets and the poor availability of them, we selected real-world
open-source projects to verify the effectiveness of vulnerability mining methods, such
as the popular Maven repository project and the high star project of GitHub, including
org.apache.pdfbox (version 2.0.27), org.apache.sling.commons.json (version 2.0.20), Jettison
(version 1.5.1), Hutool-json (version 5.8.10), Ini4j (version 0.5.2). All experiments were
conducted on Ubuntu 16.04, 32 GB memory, 4 vCPUs, 128 GB disk space, and the JDK (Java
Development Kit) version is 1.8.

5.2. Result and Analysis

We will provide a detailed description of our experimental results around the three
research questions mentioned above.

5.2.1. RQ1: Effectiveness

In our research, due to the limitations of existing datasets and our ultimate goal of
detect new algorithmic complexity vulnerabilities, we have opted to analyze real-world
projects. To obtain representative results for our analysis, we primarily search for pop-
ular projects in the Maven repository and conduct in-depth analyses of these popular
repositories. Our primary targets for analysis include projects such as Jettison, Ini4j,
org.apache.pdfbox, etc. Jettison is a well-received Java library that facilitates the conversion
between Extensible Markup Language (XML) and JavaScript Object Notation (JSON) using
Streaming API for XML (StAX). Ini4j is a Java API designed for handling configuration files

Appl. Sci. 2024, 14, 1855 13 of 19

in the Windows .ini format. The org.apache.pdfbox is an open-source Java tool dedicated
to working with PDF documents.

We ran our tool on these popular Maven projects for testing, obtaining the experi-
mental results as shown in Table 1. The column from left to right shows the project name
(Benchmark), the number of stars obtained by the project on GitHub (Stars), the number
of forks (Forks), the number of other project that reference this project (Usage), the total
number of classes in the corresponding JAR file (TotalClasses), the number of call paths that
meet the filtering criteria (VulnerablePath), and the number of verified external-accessible
paths (VerifiedPath).

Table 1. The experimental results of our approach on popular projects in the Maven repository.

Benchmark Stars Forks Usage TotalClasses VulnerablePath VerifiedPath

jettison 46 28 1017 47 27 6
hutool-json 27.2 k 7.3 k 95 74 30 12

ini4j - - 192 70 21 2
org.apache.sling.commons.json - - 250 45 26 4

org.apache.pdfbox - - 692 862 226 48

For example, the hutool-json project has gained 27.2 k stars and 7.3 k forks on GitHub,
and is used by 95 downstream projects in the Maven repository. Upon analysis, we found
that hutool-json contains a total of 74 classes. There are 30 paths that meet our filtering
criteria, i.e., specific recursive structure, unsafe termination conditions, and unhandled
error calling structure, of which 12 are externally accessible. It is worth noting that these
30 paths are all unsafe paths related to vulnerabilities, but due to some class methods being
externally unreachable (i.e., non-usage methods), a total of 12 exploitable vulnerability
paths have been decided. Among these 12 vulnerability exploitation paths, due to the
similar principles of some vulnerabilities, only three CVE numbers were authorized by the
official during the reporting process. However, in fact, these 12, and even these 30 paths
are the real paths with vulnerabilities.

Our effectiveness is primarily reflected in the following aspects: Firstly, we can perform
detailed analysis of JAR files, extracting all classes and methods, without the need to
manipulate the source code. Secondly, we are able to conduct a thorough analysis of the call
chain of the JAR files, filtering out all our ACV model-related potential vulnerability paths.
Additionally, due to the multifaceted constraints of our model, all identified potential
vulnerabilities actually pose security issues. The only uncertainties lie in aspects such as
external accessibility and similarity in the structure of the vulnerability principles. Lastly,
all discovered paths are verified or officially recognized as vulnerabilities.

For the comparative experiments, we compared our tool with Google’s open-source
fuzzing tool, oss-fuzz [40] (GitHub 9.4 k stars). The oss-fuzz supports fuzzing Java source
code to discover vulnerabilities such as crashes and memory leaks (the final effect achieved
is the same as our targeted spatial ACV). As oss-fuzz requires specific method as fuzzing
entry and necessitates extensive time for execution, we selected the vulnerable method,
i.e., XML.toJSONObject method of org.json, JSONObject.<init> method of org.json
and JSONObject.<init> method of org.codehaus.jettison.json as the example entries for
oss-fuzz and our tool. As shown in Table 2, the column for left to right shows the entry
method, the tool, the testing results, the number of generated test cases, the
time consumption and the average memory consumption, respectively. The results
demonstrate that our method can identify complete vulnerable call chains, such as
org.json.XML.toJSONObject→ org.json.XML.parse→ org.json.XML.parse,
while oss-fuzz fuzzing engine, libfuzzer, despite generating a large number of test inputs
within a limited time frame (658300271 test inputs in 74 h), still failed to detect these vul-
nerabilities. This is because ACVs are closely related to the design and implementation of
algorithms logic, while oss-fuzz adopts a random seed generation approach, which cannot

Appl. Sci. 2024, 14, 1855 14 of 19

trigger deep recursive logic. Additionally, oss-fuzz cannot handle complex object types,
resulting in low coverage and inability to discover the target vulnerabilities.

Table 2. The comparison experiment between our tool and oss-fuzz. Note that in this table, jet-
tison.json.JSONObject.<init> is used to represent org.codehaus.jettison.json.JSONObject.<init> due to
space constraints.

Entry Method Tool Result Test Case Time Memory

org.json.XML.toJSONObject our tool org.json.XML.toJSONObject ->
org.json.XML.parse -> org.json.XML.parse - 1.2 s 68 Mb

oss-fuzz - 658,300,271 74 h 1598 Mb

org.json.JSONObject.<init> our tool org.json.JSONObject.<init> ->
org.json.JSONObject.<init> - 1.1 s 54 Mb

oss-fuzz - 10,667,353 2 h 1571 Mb

jettison.json.JSONObject.<init> our tool jettison.json.JSONObject.<init> ->
jettison.json.JSONObject.<init> - 0.9 s 42 Mb

oss-fuzz - 13,323,686 2 h 930 Mb

5.2.2. RQ2: Superiority

The superiority of our method and tool is primarily demonstrated through comparison
with other tools. We have chosen the most representative research achievements in recent
years, and compared them from various perspectives, including applicability scenarios and
range, types of vulnerabilities that can be analyzed, supported data types, and the effort
required for exploitation stage. This comparison is conducted to analyze the advanced
nature of the tool we propose. It is noteworthy that in our experimental process, most
tools opted not to be open-source. The DARPA Space and Time Analysis for Cybersecurity
(STAC) program dataset, which has been commonly used for results evaluation in many
studies, also can no longer be found in an officially public way. The specific details are as
follows, as shown in Table 3.

Table 3. The comparison between our tool and state-of-the-art tools in the related field.

Tool Vul Type Analytical
Object Approach Results of Static

Analysis Payload Generation Data Type

Our tool Space ACV Bytecode Static vulnerable path Call-chain guided Basic & Complex
Acquirer Time ACV Source code Hybrid Potential loop Symbolic execution Basic

DISCOVER Loop related Byte & source
code Static View of loop Fully manual -

Badger Space & Time
AVC Bytecode Hybrid Improved coverage Fuzz & Symbol

execution Basic

HotFuzz Mainly Time
ACV Bytecode Dynamic - Fuzz &

Instrumentation Basic & Complex

Revealer Time ACV Source code Hybrid Potential
vulnerability Dynamic Basic

SlowFuzz Time ACV Resource
Usage Info Dynamic - Dynamic Basic

Compared to the most advanced tools recently proposed in the field, the type of vul-
nerabilities we focus on is more targeted towards current weak points, specifically spatial
ACV. Our approach starts with bytecode analysis, eliminating the need to access the source
code, thus offering a broader applicability. Our method is static, which brings it closer to
the essence of vulnerability occurrence than other hybrid or dynamic methods. Due to the
precision of our proposed model, our results can almost certainly detect all spatial algorith-
mic complexity vulnerabilities that meet our criteria without false positive. For payload
generation, we employ a manually assisted approach, leveraging an understanding of the
call chain to rapidly construct payloads, supporting both basic and complex data types.

Appl. Sci. 2024, 14, 1855 15 of 19

We also conducted experiments to compare the performance of our tool with oss-fuzz.
As shown in Table 2, our tool can complete the analysis from a method entry within several
seconds, while oss-fuzz requires hours to complete the testing for merely one method (for
method XML.toJSONObject of org.json, the test was still not completed after 74 h, so
we set a two-hour testing duration for the other two methods). It must be acknowledged
that static methods have a natural advantage in terms of efficiency compared to dynamic
methods, so comparing our tool with oss-fuzz may not be entirely fair. However, our
experimental results aim to demonstrate that as a type of vulnerability closely related
to specific program design logic, our proposed model for detecting it not only has a
higher detection rate and lower false positive rate, but also has extremely high efficiency.
The detected call chains are almost all real vulnerabilities (no false positives have been
found so far), which can significantly reduce the double-check cost for analysts. This is very
helpful for rapid vulnerability discovery and verification. Additionally, this also suggests
that existing dynamic fuzzing tools should place greater emphasis on testing program logic.

5.2.3. RQ3: Verification and Exploitation

As mentioned earlier, the vulnerability analysis method and detection model we
propose can detect vulnerabilities related to recursive structures with almost no false posi-
tives. This is because the vulnerability chains we filter meet the following characteristics:
they have the potential to directly or indirectly trigger an unending recursion, are exter-
nally reachable, and are not captured by the exception and error handling mechanism.
Therefore, based on the understanding of the conditions that trigger recursion and the
argument processing context, it is possible to rapidly construct and exploit payloads for
these vulnerabilities.

Following our proposed Recursion-Guided payload generation method, and using
our publicly disclosed vulnerability CVE-2022-45685 [41] shown in Listing 3 as an exam-
ple, we illustrate the rapid construction of a payload. In the vulnerability source code,
“JSONTokener” in Line 3 acts as the cursor for the input string. First, we analyze the
logic of the recursive method’s parameter processing by examining the call chain from
new “JSONObject” to the next new “JSONObject”, which involves all the processing
statements for “JSONTokener” as shown in Line 8–Line 22 and Line 32–42. Next, based
on these processing statements, we construct the initial actual parameter that can trigger
the recursive loop, which is “{1{”. Then, we iteratively process this actual parameter.
Following the characteristics of function recursion in Java, we construct a method that can
trigger recursion 10,000 times, which is achieved by repeating “{1{” ten thousand times.
This results in the final payload.

Overall, our method of vulnerability payload generation is capable of rapid construc-
tion based on the characteristics of recursive structures in call chains and the conditions
that trigger recursion. Analysts with a fundamental understanding of code can quickly
verify vulnerabilities and write the corresponding payloads. All 8 publicly disclosed CVE
vulnerabilities can be found in references [40–48].

Appl. Sci. 2024, 14, 1855 16 of 19

Listing 3. The source code fragment of our discovered vulnerability in Jettison—CVE-2022-45685.

1 public class JSONObject implements Serializable {
2 //
3 public JSONObject(JSONTokener x) throws JSONException {
4 this();
5 char c;
6 String key;
7

8 if (x.nextClean() != '{') {
9 throw x.syntaxError("A JSONObject text must begin with '{'");

10 }
11

12 for (;;) {
13 c = x.nextClean();
14 switch (c) {
15 case 0:
16 throw x.syntaxError("A JSONObject text must end with '}'");
17 case '}':
18 return;
19 case '{':
20 throw x.syntaxError("Expected a key");
21 default:
22 x.back();
23 key = x.nextValue().toString();
24 }
25 }
26 }
27 }
28

29 public class JSONTokener {
30 //
31 public Object nextValue() throws JSONException {
32 char c = nextClean();
33 switch (c) {
34 case '"':
35 case '\'':
36 return nextString(c);
37 case '{':
38 back();
39 return new JSONObject(this);
40 case '[':
41 back();
42 return new JSONArray(this);
43 }
44 }
45 }

6. Conclusions

Algorithmic complexity vulnerabilities are prevalent in various applications and pro-
gramming languages, and have a significant impact on a multitude of downstream software,
especially with the widespread use of open-source code repositories in today’s era. Recent
works in the field have mostly focused on algorithmic complexity vulnerability detection
based on fuzzing testing, which involves generating initial and mutated samples either
randomly or based on limited understanding of the program. This approach monitors the
program’s execution time or resource consumption to detect vulnerabilities. Some studies
also provide interactive views to support auxiliary analysis. Compared to existing methods,
our tool offers the following advantages: precise vulnerability model that accurately iden-
tify spatial algorithmic complexity vulnerabilities related to recursive structures; higher
efficiency and accuracy with almost no false positives in specific vulnerability type; and
support for rapid vulnerability verification and exploitation, with an analysis process that
more closely aligns with the nature of vulnerability occurrence.

Of course, our research method has certain limitations and future development op-
portunities. First, we have not fully explored the potential of our vulnerability call chain

Appl. Sci. 2024, 14, 1855 17 of 19

discovery method. We have only proposed an accurate model for detecting algorithmic
complexity vulnerabilities in recursive structures. In the future, we could develop more
models to discover more exploitation patterns of algorithmic complexity vulnerabilities,
even other vulnerabilities. Secondly, regarding the generation of vulnerability payloads, we
currently employ a semi-automated method limited by the lack of Java dynamic symbolic
execution tools, requiring significant manual intervention. In the future, we could consider
delving into fully automated payload generation to improve the efficiency of vulnerability
verification and exploitation. Finally, we will continue to delve deeper into our research
on the same type of vulnerability detecting methods between different programming lan-
guages, utilizing a unified intermediate representation to detect ACVs and other type of
vulnerabilities related to program logic.

Author Contributions: Supervision, B.C.; methodology, Z.W., D.B. and W.T.; writing—original draft
preparation, Z.W.; writing—review and editing, Z.W., W.T. and D.B.; software, D.B.; All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. These data can
be found here: https://mvnrepository.com/ (accessed on 8 January 2024), including org.apache.pdfbox,
org.apache.sling.commons.json, jettison, hutool, ini4j. The algorithm pseudocode and proof of autho-
rized CVE identifiers are publicly available at https://github.com/BIngDiAn-s/ACV_Find_Method
(accessed on 8 January 2024). The authorized CVEs mentioned in this study are openly available
in [41–48], other data presented in this article are not readily available because the data are part of an
ongoing study.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Algorithmic Complexity Vulnerabilities: An Introduction. Available online: https://twosixtech.com/blog/algorithmic-

complexity-vulnerabilities-an-introduction/ (accessed on 8 January 2024).
2. Zip Bomb. Available online: https://en.wikipedia.org/wiki/Zip_bomb (accessed on 8 January 2024).
3. 42.zip. Available online: https://www.unforgettable.dk/ (accessed on 8 January 2024).
4. Regular Expression Denial of Service—ReDoS. Available online: https://owasp.org/www-community/attacks/Regular_

expression_Denial_of_Service_-_ReDoS (accessed on 8 January 2024).
5. Kirrage, J.; Rathnayake, A.; Thielecke, H. Static Analysis for Regular Expression Denial-of-Service Attacks. In Proceedings of

the International Conference on Network and System Security , Madrid, Spain, 3–4 June 2013; Lopez, J., Huang, X., Sandhu, R., Eds.;
Springer: Berlin/Heidelberg, Germany, 2013; pp. 135–148.

6. Wüstholz, V.; Olivo, O.; Heule, M.J.; Dillig, I. Static Detection of DoS Vulnerabilities in Programs That Use Regular Expressions.
In Proceedings of the 23rd International Conference on Tools and Algorithms for the Construction and Analysis of Systems, Uppsala,
Sweden, 22–29 April 2017, Proceedings, Part II; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10206, pp. 3–20. https:
//doi.org/10.1007/978-3-662-54580-5_1.

7. Davis, J.; Coghlan, C.; Servant, F.; Lee, D. The impact of regular expression denial of service (ReDoS) in practice: An empirical
study at the ecosystem scale. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, Lake Buena Vista, FL, USA, 4–9 November 2018; pp. 246–256.
https://doi.org/10.1145/3236024.3236027.

8. Wang, X.; Zhang, C.; Li, Y.; Xu, Z.; Huang, S.; Liu, Y.; Yao, Y.; Xiao, Y.; Zou, Y.; Liu, Y.; et al. Effective ReDoS Detection by
Principled Vulnerability Modeling and Exploit Generation. In Proceedings of the 2023 IEEE Symposium on Security and Privacy
(SP), San Francisco, CA, USA, 22–24 May 2023; pp. 2427–2443. https://doi.org/10.1109/SP46215.2023.10179328.

9. Staicu, C.A.; Pradel, M. Freezing the web: A study of ReDoS vulnerabilities in Javascript-based web servers. In Proceedings of
the 27th USENIX Conference on Security Symposium (SEC’18), Baltimore, MD, USA, 15–17 August 2018; pp. 361–376.

10. CVE-2023-36617 Detail. Available online: https://nvd.nist.gov/vuln/detail/CVE-2023-36617 (accessed on 8 January 2024).
11. Liu, Y.; Meng, W. Acquirer: A Hybrid Approach to Detecting Algorithmic Complexity Vulnerabilities. In Proceedings of the 2022

ACM SIGSAC Conference on Computer and Communications Security (CCS ’22), Los Angeles, CA, USA, 7–11 November 2022;
pp. 2071–2084. https://doi.org/10.1145/3548606.3559337.

https://mvnrepository.com/
https://github.com/BIngDiAn-s/ACV_Find_Method
https://twosixtech.com/blog/algorithmic-complexity-vulnerabilities-an-introduction/
https://twosixtech.com/blog/algorithmic-complexity-vulnerabilities-an-introduction/
https://en.wikipedia.org/wiki/Zip_bomb
https://www.unforgettable.dk/
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://doi.org/10.1007/978-3-662-54580-5_1
https://doi.org/10.1007/978-3-662-54580-5_1
https://doi.org/10.1145/3236024.3236027
https://doi.org/10.1109/SP46215.2023.10179328
https://nvd.nist.gov/vuln/detail/CVE-2023-36617
https://doi.org/10.1145/3548606.3559337

Appl. Sci. 2024, 14, 1855 18 of 19

12. Awadhutkar, P.; Santhanam, G.R.; Holland, B.; Kothari, S. DISCOVER: Detecting Algorithmic Complexity Vulnerabilities.
In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2019), Tallinn, Estonia, 26–30 August 2019; pp. 1129–1133. https://doi.org/10
.1145/3338906.3341177.

13. Blair, W.; Mambretti, A.; Arshad, S.; Weissbacher, M.; Robertson, W.; Kirda, E.; Egele, M. HotFuzz: Discovering Temporal
and Spatial Denial-of-Service Vulnerabilities Through Guided Micro-Fuzzing. ACM Trans. Priv. Secur. 2022, 25, 1–35. https:
//doi.org/10.1145/3532184.

14. Li, W.; Chen, Z.; He, X.; Duan, G.; Sun, J.; Chen, H. CVFuzz: Detecting Complexity Vulnerabilities in OpenCL Kernels via
Automated Pathological Input Generation. Future Gener. Comput. Syst. 2022, 127, 384–395. https://doi.org/10.1016/j.future.2021
.09.006.

15. Awadhutkar, P.; Santhanam, G.R.; Holland, B.; Kothari, S. Intelligence amplifying loop characterizations for detecting algorithmic
complexity vulnerabilities. In Proceedings of the 2017 IEEE 24th Asia-Pacific Software Engineering Conference (APSEC), Nanjing,
China, 4–8 December 2017; pp. 249–258.

16. Wei, J.; Chen, J.; Feng, Y.; Ferles, K.; Dillig, I. Singularity: Pattern Fuzzing for Worst Case Complexity. In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2018), Lake Buena Vista, FL, USA, 4–9 November 2018; pp. 213–223. https://doi.org/10.1145/3236024.
3236039.

17. Noller, Y.; Kersten, R.; Păsăreanu, C.S. Badger: Complexity Analysis with Fuzzing and Symbolic Execution. In Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2018), Amsterdam, The Netherlands,
16–21 July 2018; pp. 322–332. https://doi.org/10.1145/3213846.3213868.

18. Liu, Y.; Zhang, M.; Meng, W. Revealer: Detecting and Exploiting Regular Expression Denial-of-Service Vulnerabilities. In
Proceedings of the 2021 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 24–27 May 2021; pp. 1468–1484.
https://doi.org/10.1109/SP40001.2021.00062.

19. Xie, X.; Chen, B.; Liu, Y.; Le, W.; Li, X. Proteus: Computing Disjunctive Loop Summary via Path Dependency Analysis. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE 2016),
Seattle, WA, USA, 13–18 November 2016; pp. 61–72. https://doi.org/10.1145/2950290.2950340.

20. Parolini, F.; Miné, A. Sound Static Analysis of Regular Expressions for Vulnerabilities to Denial of Service Attacks. In Theoretical
Aspects of Software Engineering, Proceedings of the 16th International Symposium (TASE 2022), Cluj-Napoca, Romania, 8–10 July 2022;
Aït-Ameur, Y., Crăciun, F., Eds.; Springer: Cham, Switzerland, 2022; pp. 73–91.

21. Toffola, L.D.; Pradel, M.; Gross, T.R. Synthesizing programs that expose performance bottlenecks. In Proceedings of the 2018
International Symposium on Code Generation and Optimization (CGO 2018), Vienna, Austria, 24–28 February 2018; pp. 314–326.
https://doi.org/10.1145/3168830.

22. Nguyen, T.; Ishimwe, D.; Malyshev, A.; Antonopoulos, T.; Phan, Q.S. Using dynamically inferred invariants to analyze program
runtime complexity. In Proceedings of the 3rd ACM SIGSOFT International Workshop on Software Security from Design to
Deployment (SEAD 2020), Virtual, 9 November 2020; pp. 11–14. https://doi.org/10.1145/3416507.3423189.

23. Shen, Y.; Jiang, Y.; Xu, C.; Yu, P.; Ma, X.; Lu, J. ReScue: Crafting regular expression DoS attacks. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering (ASE ’18), Montpellier, France, 3–7 September 2018;
pp. 225–235. https://doi.org/10.1145/3238147.3238159.

24. Holland, B.; Santhanam, G.R.; Awadhutkar, P.; Kothari, S. Statically-Informed Dynamic Analysis Tools to Detect Algorithmic
Complexity Vulnerabilities. In Proceedings of the 2016 IEEE 16th International Working Conference on Source Code Analysis
and Manipulation (SCAM), Raleigh, NC, USA, 2–3 October 2016; pp. 79–84. https://doi.org/10.1109/SCAM.2016.23.

25. Algorithmic Complexity. Available online: https://devopedia.org/algorithmic-complexity (accessed on 8 January 2024).
26. Algorithmic Complexity. Available online: https://viterbi-web.usc.edu/~adamchik/15-121/lectures/Algorithmic%20

Complexity/complexity.html (accessed on 8 January 2024).
27. Algorithmic Complexity Attack. Available online: https://en.wikipedia.org/wiki/Algorithmic_complexity_attack (accessed on

8 January 2024).
28. Crosby, S.A.; Wallach, D.S. Denial of Service via Algorithmic Complexity Attacks. In Proceedings of the 12th Conference on

USENIX Security Symposium (SSYM’03), Washington, DC, USA, 4–8 August 2003; Volume 12, p. 3.
29. Czubak, A.; Szymanek, M. Algorithmic Complexity Vulnerability Analysis of a Stateful Firewall. In Information Systems

Architecture and Technology, Proceedings of the 37th International Conference on Information Systems Architecture and Technology—ISAT
2016—Part II, Karpacz, Poland, 18–20 September 2016; Grzech, A., Świątek, J., Wilimowska, Z., Borzemski, L., Eds.; Springer: Cham,
Switzerland, 2017; pp. 77–97.

30. How to Use Input Sanitization to Prevent Web Attacks. Available online: https://www.esecurityplanet.com/endpoint/prevent-
web-attacks-using-input-sanitization/ (accessed on 8 January 2024).

31. Barlas, E.; Du, X.; Davis, J.C. Exploiting input sanitization for regex denial of service. In Proceedings of the 44th International
Conference on Software Engineering (ICSE ’22), Pittsburgh, PA, USA, 25–27 May 2022; pp. 883–895. https://doi.org/10.1145/35
10003.3510047.

32. Recursion in Java. Available online: https://www.geeksforgeeks.org/recursion-in-java/ (accessed on 8 January 2024).
33. Exceptions in Java. Available online: https://www.geeksforgeeks.org/exceptions-in-java/ (accessed on 8 January 2024).

https://doi.org/10.1145/3338906.3341177
https://doi.org/10.1145/3338906.3341177
https://doi.org/10.1145/3532184
https://doi.org/10.1145/3532184
https://doi.org/10.1016/j.future.2021.09.006
https://doi.org/10.1016/j.future.2021.09.006
https://doi.org/10.1145/3236024.3236039
https://doi.org/10.1145/3236024.3236039
https://doi.org/10.1145/3213846.3213868
https://doi.org/10.1109/SP40001.2021.00062
https://doi.org/10.1145/2950290.2950340
https://doi.org/10.1145/3168830
https://doi.org/10.1145/3416507.3423189
https://doi.org/10.1145/3238147.3238159
https://doi.org/10.1109/SCAM.2016.23
https://devopedia.org/algorithmic-complexity
https://viterbi-web.usc.edu/~adamchik/15-121/lectures/Algorithmic%20Complexity/complexity.html
https://viterbi-web.usc.edu/~adamchik/15-121/lectures/Algorithmic%20Complexity/complexity.html
https://en.wikipedia.org/wiki/Algorithmic_complexity_attack
https://www.esecurityplanet.com/endpoint/prevent-web-attacks-using-input-sanitization/
https://www.esecurityplanet.com/endpoint/prevent-web-attacks-using-input-sanitization/
https://doi.org/10.1145/3510003.3510047
https://doi.org/10.1145/3510003.3510047
https://www.geeksforgeeks.org/recursion-in-java/
https://www.geeksforgeeks.org/exceptions-in-java/

Appl. Sci. 2024, 14, 1855 19 of 19

34. Vallée-Rai, R.; Co, P.; Gagnon, E.; Hendren, L.; Lam, P.; Sundaresan, V. Soot: A Java Bytecode Optimization Framework. In
Proceedings of the CASCON First Decade High Impact Papers (CASCON ’10), Toronto, ON, Canada, 1–4 November 2010;
pp. 214–224. https://doi.org/10.1145/1925805.1925818.

35. soot-oss/soot. Available online: https://github.com/soot-oss/soot (accessed on 8 January 2024).
36. Dietrich, J.; Jezek, K.; Rasheed, S.; Tahir, A.; Potanin, A. Evil Pickles: DoS Attacks Based on Object-Graph Engineering. In

Proceedings of the 31st European Conference on Object-Oriented Programming (ECOOP 2017), Barcelona, Spain, 19–23 June 2017; Müller,
P., Ed.; Leibniz International Proceedings in Informatics (LIPIcs); Leibniz-Zentrum für Informatik: Dagstuhl, Germany, 2017;
Volume 74, pp. 10:1–10:32. https://doi.org/10.4230/LIPIcs.ECOOP.2017.10.

37. Burnim, J.; Juvekar, S.; Sen, K. WISE: Automated test generation for worst-case complexity. In Proceedings of the 2009
IEEE 31st International Conference on Software Engineering, Vancouver, BC, Canada, 16–24 May 2009; pp. 463–473. https:
//doi.org/10.1109/ICSE.2009.5070545.

38. Luckow, K.; Kersten, R.; Păsăreanu, C. Symbolic Complexity Analysis Using Context-Preserving Histories. In Proceedings of the
2017 IEEE International Conference on Software Testing, Verification and Validation (ICST), Tokyo, Japan, 13–17 March 2017;
pp. 58–68. https://doi.org/10.1109/ICST.2017.13.

39. Luckow, K.; Dimjašević, M.; Giannakopoulou, D.; Howar, F.; Isberner, M.; Kahsai, T.; Rakamarić, Z.; Raman, V. JDart: A
Dynamic Symbolic Analysis Framework. In Tools and Algorithms for the Construction and Analysis of Systems, Proceedings of the
22nd International Conference, TACAS 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2016, Eindhoven, The Netherlands, 2–8 April 2016; Chechik, M., Raskin, J.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2016;
pp. 442–459.

40. oss-fuzz. Available online: https://github.com/google/oss-fuzz (accessed on 8 January 2024).
41. CVE-2022-45685. Available online: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-45685 (accessed on 8 January 2024).
42. CVE-2022-45690. Available online: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-45690 (accessed on 8 January 2024).
43. CVE-2022-45688. Available online: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-45688 (accessed on 8 January 2024).
44. CVE-2022-41404. Available online: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-41404 (accessed on 8 January 2024).
45. CVE-2022-47937. Available online: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-47937 (accessed on 8 January 2024).
46. CVE-2022-45687. Available online: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-45687 (accessed on 8 January 2024).
47. CVE-2022-45693. Available online: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-45693 (accessed on 8 January 2024).
48. CVE-2022-45689. Available online: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-45689 (accessed on 8 January 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/1925805.1925818
https://github.com/soot-oss/soot
https://doi.org/10.4230/LIPIcs.ECOOP.2017.10
https://doi.org/10.1109/ICSE.2009.5070545
https://doi.org/10.1109/ICSE.2009.5070545
https://doi.org/10.1109/ICST.2017.13
https://github.com/google/oss-fuzz
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-45685
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-45690
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-45688
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-41404
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-47937
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-45687
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-45693
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-45689

	Introduction
	Related Work
	Background
	Algorithm Complexity Vulnerability
	Threat Model
	ACV Threat for Algorithm Design and Implementation
	Java Language Features

	Methodology
	Overall Architecture
	Analysis Base Construction
	Model-Based Vulnerable Call Chain Search
	Class Method Recursive Structure
	Unsafe Recursion Termination Conditions
	Uncaptured Error

	Recursion-Guided Payload Generation

	Evaluation
	Experiment Setup and Description of Dataset
	Result and Analysis
	RQ1: Effectiveness
	RQ2: Superiority
	RQ3: Verification and Exploitation

	Conclusions
	References

