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Abstract: Recent research has uncovered a promising approach to addressing the growing global
health concern of obesity and related disorders. The inhibition of inositol hexakisphosphate kinase 1
(IP6K1) has emerged as a potential therapeutic strategy. This study employs multiple ligand-based in
silico modeling techniques to investigate the structural requirements for benzisoxazole derivatives
as IP6K1 inhibitors. Firstly, we developed linear 2D Quantitative Structure–Activity Relationship
(2D-QSAR) models to ensure both their mechanistic interpretability and predictive accuracy. Then,
ligand-based pharmacophore modeling was performed to identify the essential features responsible
for the compounds’ high activity. To gain insights into the 3D requirements for enhanced potency
against the IP6K1 enzyme, we employed multiple alignment techniques to set up 3D-QSAR models.
Given the absence of an available X-ray crystal structure for IP6K1, a reliable homology model for the
enzyme was developed and structurally validated in order to perform structure-based analyses on
the selected dataset compounds. Finally, molecular dynamic simulations, using the docked poses of
these compounds, provided further insights. Our findings consistently supported the mechanistic
interpretations derived from both ligand-based and structure-based analyses. This study offers
valuable guidance on the design of novel IP6K1 inhibitors. Importantly, our work exclusively relies
on non-commercial software packages, ensuring accessibility for reproducing the reported models.

Keywords: IP6K1 inhibitors; QSAR; pharmacophore mapping; homology modeling; molecular
dynamics simulations

1. Introduction

Over the past four decades, the global prevalence of obesity has surged unrelieved,
transcending age, race, and gender boundaries [1,2]. This alarming trend has led to a
cascade of health issues, including type 2 diabetes mellitus (T2DM), hypertension, dyslipi-
demia, cardiovascular diseases, non-alcoholic fatty liver disease/non-alcoholic steatohep-
atitis (NAFLD/NASH), reproductive dysfunction, respiratory abnormalities, psychiatric
and neurodegenerative conditions, and even specific malignancies [3–5]. Fortunately, a
combination of medication and lifestyle modifications has demonstrated positive effects
in the battle against obesity [6,7]. Remarkably, even a modest 5–10% reduction in body
weight or fat can significantly lower the risk of obesity-related disorders in adults [8,9]. Yet,
achieving sustained weight loss remains a challenge, prompting intensive research into
novel therapeutic strategies to combat obesity and its associated metabolic ills [2,10].

A family of enzymes known as inositol hexakisphosphate kinases (IP6Ks) plays a piv-
otal role in phosphorylating inositol hexakisphosphate (InsP6) to yield 5-diphosphoinositol
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pentakisphosphate (5-InsP7 or 5PP-IP5, also abbreviated as IP7). This phosphorylation
marks the critical inaugural step in the synthesis of inositol pyrophosphates (PP-InsPs).
Recent studies have revealed the potential of the PP-InsP biosynthesis pathway as a ther-
apeutic target for metabolic disorders, osteoporosis, thromboembolism, infection, cancer
metastasis, and aging-related conditions [11,12]. Inositol pyrophosphates, in essence, serve
as highly energetic eukaryotic messenger molecules that underpin essential physiological
processes, including ATP generation, insulin secretion, cell signaling, cell migration, DNA
repair, and the maintenance of bioenergetic balance [13–15].

Among the three primary IP6K isoforms, IP6K1 and IP6K2 are ubiquitously expressed
in almost all tissues, while IP6K3 is confined to the heart, skeletal muscle, and brain [16].
IP6K1 exerts a dual effect by inhibiting certain elements of insulin signaling and promoting
insulin secretion from the pancreatic cells. Moreover, it curtails adipocyte thermogenesis,
leading to a decrease in the total energy expenditure in the body [17]. Interestingly, IP6K1
knockout in mice results in improved insulin sensitivity and energy expenditure, providing
protection against diet-induced obesity, hyperinsulinemia, and insulin resistance. Reduced
IP6K1 levels also prove beneficial in the treatment of NAFLD and NASH [18]. These
findings underscore the potential of developing IP6K1 inhibitors as therapeutic candidates
to combat obesity and related metabolic disorders [18–21].

Heterocyclic compounds are commonly employed in medicinal chemistry research
for the design and development of novel lead compounds aimed at promising therapeutic
targets [22–25]. In a recent breakthrough, Zhou et al. unveiled a series of benzisoxazole
derivatives displaying varying degrees of inhibitory potential against the IP6K1, IP6K2, and
IP6K3 enzymes [26]. In vitro profiling of the HCT116 colon cancer cell line highlighted that
potent inhibitors of IP6K1 and IP6K2 can significantly reduce the inositol pyrophosphate
levels without affecting other inositol phosphates. Notably, one of these potent inhibitors
lowered the inositol pyrophosphate levels by 66–81% without majorly perturbing any other
inositol phosphates. Furthermore, in vivo studies demonstrated that these derivatives
could alleviate obesity-related pathological complications and reduce body weight without
affecting food intake.

Computer-aided drug design is currently considered one of the most crucial ap-
proaches in pre-clinical drug discovery [27–31]. In the present study, we embarked on a
comprehensive in silico modeling effort with this significant series of compounds to unravel
the structural prerequisites for their enhanced inhibitory potential against IP6K1. Intrigu-
ingly, a high correlation (R2~0.85) emerged between the activities of these compounds
against IP6K1 and IP6K2, suggesting that the structural attributes identified in IP6K1 inhibi-
tion are broadly applicable. We employed 2D Quantitative Structure–Activity Relationship
(2D-QSAR) and 3D-QSAR modeling and ligand-based pharmacophore mapping to disclose
these attributes. To bolster our findings, we compared the insights derived from these
ligand-based in silico modeling analyses with the results of molecular dynamics (MD)
simulations using a homology model of IP6K1. Our investigation not only contributes to
the design of novel IP6K1 inhibitors but also holds promise in the quest to combat obesity.

2. Results and Discussions
2.1. The 2D-QSAR Modeling

Following the outlined strategy described in Materials and Methods, we began by
seeking the best linear models relating the inhibitory activity and the calculated alvaDesc
descriptors using both the SFS and GA feature selection algorithms. Initially, the 2D-QSAR
MLR models were built using selected alvaDesc descriptors known for their ease of inter-
pretation. Subsequently, we incorporated all descriptors to assess potential improvements
in the model’s predictivity. A comprehensive summary of the results is shown in Ta-
ble 1 for the models (M01–M09) developed with interpretable descriptors and the models
(M10–M18) incorporating all descriptors.
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Table 1. Summary of the statistical results obtained for the MLR models based on different types
of descriptors a.

Model a Score b CV c
Interpretable Descriptors d

Modela
All Descriptors

Q2
LOO R2

Pred Average Q2
LOO R2

Pred Average

M01 R2 none 0.733 0.427 0.580 M10 0.812 0.688 0.750
M02 NMAE none 0.654 0.799 0.727 M11 0.820 0.868 0.844
M03 NMPD none 0.733 0.427 0.580 M12 0.812 0.688 0.750
M04 NMGD none 0.427 0.427 0.427 M13 0.829 0.405 0.617
M05 R2 5 0.671 0.680 0.676 M14 0.704 0.526 0.615
M06 NMAE 5 0.662 0.253 0.458 M15 0.839 0.870 0.855
M07 NMPD 5 −0.898 0.605 −0.147 M16 0.823 0.849 0.836
M08 NMGD 5 −0.898 0.605 −0.147 M17 0.823 0.849 0.836
M09 GA-LDA na 0.800 0.785 0.793 M18 0.840 0.801 0.821

a The best models found are depicted in bold. b Scoring function used in SFS-based feature selection. c Cross-
validation used in the SFS-based feature selection. d Descriptors belonging to the eight specific categories, as
outlined in the Materials and Methods section (Section 3.).

As can be seen, the GA algorithm yielded the most predictive interpretable MLR
model, while the SFS algorithm with the NMAE scoring function and five-fold cross-
validation provided the most statistically significant MLR model using all descriptors.
Comparison between the models M09 (developed with interpretable descriptors) and M15
(utilizing all descriptors) revealed a significant improvement in predictivity when all the
descriptors were employed. Despite this, the statistical predictivity of model M09 remained
satisfactory, especially considering the limited number of features used in its development.
Additionally, we observed that models M10–M18 are notably rich in 2D and 3D topological
descriptors. Therefore, it is important to consider both the M09 and M15 models, as the
former helps us understand the structural requirement whereas the latter provides a better
predictive model, highlighting the descriptors that more accurately represent the structural
requirements. The detailed statistical results for models M09 and M15 are presented in
Table 2.

Table 2. Statistical results for the best 2D-QSAR models found, M09 and M15.

Equation Statistical Results

Model M09 (Interpretable descriptors)
pIC50 = +0.169(±0.028) F04[C-C] −0.447(±0.139) CMC-50

−0.378(±0.131) nRCONHR −0.275(±0.029) H-047
+0.1(±0.031) CATS2D_01_LL + 5.125(±0.485)

Ntraining = 29, R2 = 0.857, R2
adj = 0.826, Q2

LOO = 0.800,
MAE = 0.201, rm

2
LOO = 0.724, ∆rm

2
LOO = 0.088

Ntest = 7, R2
Pred/Q2

F1 = 0.785, Q2
F2 = 0.765,

RMSEP = 0.309, rm
2

test = 0.706, ∆rm
2

test = 0.125

Model M15 (All descriptors)
pIC50 = +0.223(±0.083) VE3sign_B(s) +3.079(±0.574) MATS4m

+10.797(±1.593) SpMax2_Bh(v) −6.694(±1.071) G3i
+10.984(±3.07) R5e+ −33.064(±6.179)

Ntraining = 29, R2 = 0.890, R2
adj = 0.866, Q2

LOO = 0.839,
MAE = 0.181, rm

2
LOO = 0.772, ∆rm

2
LOO = 0.117

Ntest = 7, R2
Pred/Q2

F1 = 0.870, Q2
F2 = 0.858,

RMSEP = 0.240, rm
2

test = 0.740, ∆rm
2

test = 0.120

It is noteworthy that we initially included five descriptors for the model development
considering the presence of 29 compounds in the training set, which satisfies the criterion
of a 1:5 ratio between the number of independent variables and the total number of training
set data points. However, to assess whether a lower number of descriptors was sufficient
for producing a statistically reliable model, we employed a 5% increment strategy using the
SFS-QSAR-tool_v2. In this strategy, a descriptor is added sequentially to the model only if
it improves the Q2

LOO of the model by at least 5%. For both M09 and M15, five descriptors
were selected, indicating that five descriptors are indeed required in these models.
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The observed vs. predicted activity plots for models M09 and M15 are shown in
Figure 1. Beyond the Q2

LOO and R2
Pred values, the other internal and external validation

parameters were found to be satisfactory for both models (for example, MAE: 0.201 for M09,
0.181 for M15). Additionally, the conditions critical for linear regression model acceptance
were also met; for example, no high inter-collinearity was observed among the descriptors
(maximum R: 0.469 and 0.404). Multicollinearity was assessed using the VIF values, all of
which remained below 2.0, indicating its absence. Furthermore, the cRp

2 values for M09
and M15 were 0.761 and 0.794, respectively, confirming the uniqueness and non-random
development of both models.
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Figure 1 also displays the Williams plots of the best 2D-QSAR models found, offering
an assessment of their applicability domain. Importantly, no structural or response outliers
are identified in both these models. Figure 2 shows the relative significance of their
descriptors according to their standardized coefficients.

Let us initially focus on discussing the descriptors that are part of model M09. Its most
significant descriptor is CMC-50, a drug-like index representing the Ghose–Viswanadhan–
Wendoloski CMC (Comprehensive Medicinal Chemistry) drug-like index at 50%. A nega-
tive correlation between this descriptor and pIC50 indicates that lower values of CMC-50
are favorable for higher biological activity. CMC-50 is basically a binary descriptor that
depends on the values of the following quantities: ALOGP (Ghose–Crippen octanol–water
partition coefficient), AMR (Ghose–Crippen molar refractivity), MW (molecular weight),
and nAT (number of atoms). Compounds with an ALOGP between 1.3 and 4.1, an AMR
between 70 and 110, an MW between 230 and 390, and an nAT between 30 and 55 receive
a value of 1; otherwise, it is 0 (see Figure 3). A careful analysis reveals that most of the
higher-activity compounds indeed possess a low value for this descriptor. Above all, a
higher lipophilicity (ALOGP) seems to be the key factor influencing this descriptor, sug-
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gesting that hydrophobic interactions play a significant role in determining the biological
activity of these compounds.
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Figure 3. Typical examples highlighting the importance of the CMC-50 descriptor to the
inhibitory activity.

The second most influential descriptor of model M09 is the functional group count
descriptor nRCONHR, which simply stands for the number of secondary amides (aliphatic).
Its associated negative coefficient implies that a larger number of lower-activity compounds
are part of this functional group. The third crucial descriptor, H-047 (hydrogen atom
attached to C1(sp3)/C0(sp2), in which C1 stands for a sp3-hybridized carbon that is not
attached to one heteroatom, whereas C0 represents a sp2-hybridized carbon that is not
attached to any heteroatom, shows higher values in low-activity compounds (see Figure 4).
The presence of amide and ester side chains or unsubstituted phenyl rings in low-activity
compounds is mainly responsible for the higher value of this descriptor and the observed
low activity.
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Figure 4. Typical examples highlighting the importance of the H-047 descriptor to the
inhibitory activity.

Additionally, the F04[C-C] descriptor, representing the frequency of two carbon atoms
located at a topological distance of 4, is associated with increased biological activity. Chem-
ically Advanced Template Search (CATS) descriptors are a very important group of de-
scriptors that count the pharmacophore features (2D or 3D) within the topological distance
between two such features. For example, CATS2D_01_LL in M09 counts the total number
of instances in a molecule where two lipophilic features are separated by a topological
distance of 1. The positive correlation of both F04[C-C] and CATS2D_01_LL with the
response variable emphasizes the crucial role of hydrophobic interactions in determining a
higher affinity to the IP6K1 receptor (see Figure 5).
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Moving on to a discussion of the descriptors in model M15, Table 3 offers details
on the meaning of these descriptors. It is worth noting here that all the descriptors in
this model are complex graph-based topological descriptors. The descriptors R5e+ and
G3i belong to the category of 3D descriptors, and their values depend on the specific 3D
conformation of the compounds. The remaining are 2D descriptors. Given the highly
satisfactory statistical predictivity obtained from this model, this implies that the specific
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topology of the compounds plays a crucial role in determining the biological activity
of these compounds. However, the two most influential descriptors in the model, R5e+
and SpMax2_Bh(v), have almost the same relative significance. These two descriptors
are weighted by electronegativity and van der Waals volume, respectively. Therefore,
this suggests that, along with the 3D geometry of the compounds, the electrostatic and
hydrophobic interactions of the compounds are involved in higher biological activity. The
third most significant descriptor of the model is associated with the ionization potential,
which is related to the polarity of the compounds, whereas MATS4m is associated with the
atomic mass. Overall, M09 mainly highlights the importance of hydrophobicity for higher
activity, whereas the descriptors of M15 indicate that a balance between hydrophobic/steric
and electrostatic interactions is required for higher activity.

Table 3. The five descriptors appearing in the 2D-QSAR model M15.

Descriptor Definition Category

R5e+ R maximal autocorrelation of lag 5
weighted by Sanderson electronegativity GETAWAY

SpMax2_Bh(v) Largest eigenvalue n. 2 of Burden matrix
weighted by van der Waals volume Burden eigenvalues

G3i Third-component symmetry directional WHIM index
weighted by ionization potential WHIM

MATS4m Moran autocorrelation of lag 4
weighted by mass 2D autocorrelations

VE3sign_B(s) Logarithmic coefficient sum of the last eigenvector from Burden matrix
weighted by I-State 2D matrix-based

2.2. Ligand-Based Pharmacophore Mapping

After identifying the structural requirements using 2D-QSAR modeling, ligand-based
pharmacophore mapping was employed to develop predictive models and understand the
pharmacophore features associated with improved biological potency against IP6K1. The
QPHAR tool was utilized to generate the ligand-based pharmacophore models, dividing
the dataset into 70% (training) and 30% (test) sets. The conformers generated using the
genetic algorithm yielded better models than those created using Confab. The results of
the most predictive pharmacophore model are presented in Table 4.

Table 4. Statistical results for the best QPHAR-based pharmacophore model found.

Parameter Training Test

N 26 10
R2 0.845

RMSE 0.309
ME 0.248
SE 0.183

R2
Pred 0.565

R2
Pred

a 0.716
a After removal of one outlier.

The model demonstrated a satisfactory internal predictivity with an R2 of 0.845 and
RMSE of 0.309. For external validation, R2

Pred was found to be greater than the cut-off value
of 0.50. However, removing one compound improved R2

Pred to 0.716. It is important to note
here that QPHAR selects the most rigid structure of the dataset as the template structure.

The template pharmacophore aligned with compound 17 is shown in Figure 6, along
with the pharmacophore container and the final quantitative pharmacophore (i.e., hpmodel).
Additionally, the pharmacophore alignments of three compounds (21, 35, and 10) with
different biological activities are displayed.



Pharmaceuticals 2024, 17, 263 8 of 21

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 8 of 21 
 

 

The model demonstrated a satisfactory internal predictivity with an R2 of 0.845 and 
RMSE of 0.309. For external validation, R2Pred was found to be greater than the cut-off value 
of 0.50. However, removing one compound improved R2Pred to 0.716. It is important to note 
here that QPHAR selects the most rigid structure of the dataset as the template structure.  

The template pharmacophore aligned with compound 17 is shown in Figure 6, along 
with the pharmacophore container and the final quantitative pharmacophore (i.e., 
hpmodel). Additionally, the pharmacophore alignments of three compounds (21, 35, and 
10) with different biological activities are displayed. 

 
Figure 6. (A) Pharmacophore features of the template molecule alongside the generated quantitative 
pharmacophore. The pharmacophore-aligned structures of compounds 21 (B), 35 (C), and 10 (D), 
along with the pharmacophore features, are also displayed. 

Among these three compounds, 21 is the most potent (pIC50 = 7.585), 10 is the least 
active (pIC50 = 4.530), and 35 is a compound with intermediate potency (pIC50 = 6.553). 
Noticeably, the potencies of these compounds against IP6K1 were accurately predicted 
using the QPHAR model. The hydrophobic and aromatic ring features of these com-
pounds decreased steadily with a decreasing affinity while the number of hydrogen bond 
acceptor features remained constant at two for each compound. These results align with 
the findings of the 2D-QSAR analyses, suggesting that hydrophobic interactions may play 
crucial roles in ligand binding to the IP6K1 receptor. However, the comprehensive QSAR 
model (M15), which considered both 2D and 3D descriptors, hinted that polar interactions 
may also be crucial. Specifically, in compound 21, four aromatic ring (AR) features are 
observed, while 35 and 10 have three and two AR features, respectively. Both 21 and 10 
are aligned with two hydrophobic features, whereas 35 is aligned with three hydrophobic 
features. Comparing 35 and 10, the former contains two additional major features, i.e., one 
aromatic ring and one hydrophobic feature. These differences in features may explain the 
variation in the biological activity between these two compounds. 
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Among these three compounds, 21 is the most potent (pIC50 = 7.585), 10 is the least
active (pIC50 = 4.530), and 35 is a compound with intermediate potency (pIC50 = 6.553).
Noticeably, the potencies of these compounds against IP6K1 were accurately predicted
using the QPHAR model. The hydrophobic and aromatic ring features of these compounds
decreased steadily with a decreasing affinity while the number of hydrogen bond acceptor
features remained constant at two for each compound. These results align with the findings
of the 2D-QSAR analyses, suggesting that hydrophobic interactions may play crucial roles
in ligand binding to the IP6K1 receptor. However, the comprehensive QSAR model (M15),
which considered both 2D and 3D descriptors, hinted that polar interactions may also be
crucial. Specifically, in compound 21, four aromatic ring (AR) features are observed, while
35 and 10 have three and two AR features, respectively. Both 21 and 10 are aligned with two
hydrophobic features, whereas 35 is aligned with three hydrophobic features. Comparing
35 and 10, the former contains two additional major features, i.e., one aromatic ring and
one hydrophobic feature. These differences in features may explain the variation in the
biological activity between these two compounds.

2.3. The 3D-QSAR Analysis

To gain deeper insights into the structural requirements for potency against IP6K1, we
performed a 3D-QSAR analysis using the open-source Open3DQSAR software and follow-
ing the alignment techniques and feature selection strategies previously mentioned. The
utilization of the rigid body alignment technique yielded more robust and predictive statis-
tical results, as illustrated in Table 5. The alignment process, crucial for the development of
these models, is visually depicted in Figure 6.

As can be observed, the FFD-SEL technique is proven to be particularly effective,
yielding highly satisfactory internal and external predictivity with Q2

LOO and R2
Pred values

of 0.637 and 0.747, respectively. Given the high sensitivity of 3D-QSAR models, especially
in the context of small datasets, the model is demonstrated to have a consistently moderate
to satisfactory level of predictivity. What sets this model apart is its intrinsic uniqueness,
evident in the substantial deterioration of cross-validation results upon scrambling the
response variable.
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Table 5. Statistical results of 3D-QSAR models using different feature selection techniques a.

Parameter b FFD-SEL UVE-PLS

Ntraining 29 29
NCb 4 3

R2 (SDEC) 0.912 (0.176) 0.856 (0.224)
F 62.157 33.847

Q2
LOO (SDEP) 0.637 (0.357) 0.370 (0.471)

Q2
LTO (SDEP) 0.626 (0.363) 0.361 (0.474)

Q2
LMO (SDEP) 0.573 (0.387) 0.311 (0.492)

Ntest 7 7
R2

Pred (SDEP) 0.747 (0.564) 0.668 (0.646)
Q2

s 0.428 ---
a FFD-SEL: Fractional Factorial Design-based variable SELection; UVE-PLS: Uninformative Variable Elimination-
based Partial Least Square. b NC: Number of principal components; SDEC: Standard error of calculation; SDEP:
Standard error of prediction.

Figure 7 showcases the contour maps generated using the FFD-SEL technique, featur-
ing compounds 25, 31, and 10. These visual representations offer a comprehensive view of
the steric and electrostatic contributions, with steric and electrostatic elements accounting
for 60% and 40%, respectively. The contours delineate two predominant regions: on the
right side, steric and electrostatic contours coexist, while the left side exclusively features
steric contours. The significance of the steric and electrostatic contours on the right becomes
evident in their crucial roles in determining a higher potency.

Take, for example, the most potent compound, 21, where favorable steric and elec-
tronegative interactions near its pyridine moiety suggest its involvement in both hydropho-
bic and electrostatic interactions with the receptor. In contrast, compound 35, with interme-
diate activity, does not fully engage with the electronegative favorable contour but shows
improved activity due to the insertion of its methyl group into the hydrophobic favorable
contour. Conversely, the least active compound, 10, completely avoids these contours, with
its dimethylamine moiety in the side chain closely aligning with the steric unfavorable
contour. Remarkable also is that no contour map is found near the benzisoxazole ring of
these compounds, indicating effective superimposition according to rigid body alignment.
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2.4. Homology Modeling of IP6K1 and MD Simulations

To date, no X-ray crystallographic structure of IP6K1 has been disclosed. Therefore,
we need to rely on its homology model for structure-based modeling. In this work, we
performed homology modeling using UniProt ID Q92551 via SWISS-MODEL. Five tem-
plates with superior GMQE (Global Model Quality Estimation) scores were employed for
the model development, revealing that the AlphaFold DB model with a MolProbity score
of 1.70 emerged as the most promising among them. Interestingly, this model surpassed
others with MolProbity scores exceeding 2.0. However, the overall structural quality of the
AlphaFold DB model required enhancement, as indicated by a clash score of 0.58, with its
Ramachandran favored and Ramachandran outlier values estimated at 86.10% and 4.10%,
respectively. To address this, the homology model underwent MD simulations for refine-
ment, resulting in a final model with a significantly improved MolProbity score of 0.79.
Crucially, this refinement led to the identification of 95.90% Ramachandran favored regions
and no Ramachandran outliers, as depicted in the Supplementary Materials (Figure S1).
This refined homology model was subsequently employed for molecular docking and
MD simulations.

Despite these improvements, a challenge persisted in identifying the ligands’ binding
sites for IP6K1. To cope with this challenge, we utilized the CB-Dock2 web server for ligand
binding site prediction, and the AutoDock Vina-based docking methodology was adopted
to dock the input compounds into the three top-ranked cavities. Remarkably, both the most
potent and least potent compounds were docked at the same binding cavity (located at
X = 63 Å, Y = 77 Å, and Z = 40 Å, with a cavity volume extension of 801 Å3) and exhibited
the maximum Vina scores. The docked poses of these compounds are shown in Figure S2
of the Supplementary Materials. These docked poses underwent 50 ns of explicit solvent
MD simulations to unravel the dynamic behavior of the corresponding IP6K1 complexes.
Our focus initially centered on the stability of the ligands at the proposed binding site. The
ligand RMSD plots in Figure 8 reveal that the higher active compound 21 initially shifted
from its binding pose but stabilized after 15 ns. In contrast, the lower active compound
10 also deviated from its initial binding pose, and although stabilization occurred just
before 30 ns, it remained less stable compared to compound 21. The RMSF plot indicates
larger fluctuations in residues 125–180 for the lower-activity compound 10 compared to
compound 21.

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 11 of 21 
 

 

both the most potent and least potent compounds were docked at the same binding cavity 

(located at X = 63 Å, Y = 77 Å, and Z = 40 Å, with a cavity volume extension of 801 Å3) and 

exhibited the maximum Vina scores. The docked poses of these compounds are shown in 

Figure S2 of the Supplementary Materials. These docked poses underwent 50 ns of explicit 

solvent MD simulations to unravel the dynamic behavior of the corresponding IP6K1 

complexes. Our focus initially centered on the stability of the ligands at the proposed 

binding site. The ligand RMSD plots in Figure 8 reveal that the higher active compound 

21 initially shifted from its binding pose but stabilized after 15 ns. In contrast, the lower 

active compound 10 also deviated from its initial binding pose, and although stabilization 

occurred just before 30 ns, it remained less stable compared to compound 21. The RMSF 

plot indicates larger fluctuations in residues 125–180 for the lower-activity compound 10 

compared to compound 21.  

Subsequent MM-GBSA analyses were conducted to assess the enthalpic contribution 

of the binding free energy obtained from the MD simulations. The results in Table 6 indi-

cate that compound 21 is predicted to have a significantly higher binding energy com-

pared to compound 10, primarily due to substantial variations in its electrostatic interac-

tions. Compound 21 exhibited higher polar and non-polar interactions than compound 

10. The lower solvation free energy value obtained for compound 10, possibly attributed 

to its smaller structure, contributed to an improved binding energy, but its lack of inter-

actions with the amino acid residues reduced its overall binding energy. 

 

Figure 8. The ligand RMSD plots (left) and protein RMSF plots (right) for the higher-activity (21) 

and lower-activity (10) compounds. 

Table 6. Calculated binding free energies [ΔGbind(T)] for selected IP6K1 complexes a. All the compo-

nents shown are in kcal/mol. 

Complexes ΔEvdW ΔEelec ΔGgas ΔGpolar ΔGnon-polar ΔGsolvation T∆S ΔGbind(T) 

21 ‒42.45 ‒125.22 ‒167.67 +133.91 ‒5.78 +128.13 −21.20 ‒18.35 

10 ‒38.26 ‒5.73 ‒43.99 +18.32 ‒4.25 +14.07 −24.26 −5.67 
a ΔGbind(T): theoretical binding free energy (ΔGbind(T) = ΔEvdW + ΔEelec + ΔGpolar + ΔGnon-polar − TΔS) and 

its components, namely ΔEvdW: van der Waals interaction energy; ΔEelec: electrostatic interaction en-

ergy; ΔGpolar: polar solvation free energy; ΔGnon-polar: non-polar solvation free energy, TΔS: entropy. 

In Figure 9, the average structures derived from the last 10 ns of the MD simulation 

are depicted. Naturally, compound 21 exhibits a greater number of interactions with the 

binding site amino acids compared to the less active compound 10, with the majority of 

the additional interactions in the case of 21 being of a lipophilic nature. A robust polar 

interaction may be also observed between the carboxylate group of 21 and the Arg194 

Figure 8. The ligand RMSD plots (left) and protein RMSF plots (right) for the higher-activity (21) and
lower-activity (10) compounds.

Subsequent MM-GBSA analyses were conducted to assess the enthalpic contribution
of the binding free energy obtained from the MD simulations. The results in Table 6 indicate
that compound 21 is predicted to have a significantly higher binding energy compared
to compound 10, primarily due to substantial variations in its electrostatic interactions.
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Compound 21 exhibited higher polar and non-polar interactions than compound 10. The
lower solvation free energy value obtained for compound 10, possibly attributed to its
smaller structure, contributed to an improved binding energy, but its lack of interactions
with the amino acid residues reduced its overall binding energy.

Table 6. Calculated binding free energies [∆Gbind(T)] for selected IP6K1 complexes a. All the
components shown are in kcal/mol.

Complexes ∆EvdW ∆Eelec ∆Ggas ∆Gpolar ∆Gnon-polar ∆Gsolvation T∆S ∆Gbind(T)

21 −42.45 −125.22 −167.67 +133.91 −5.78 +128.13 −21.20 −18.35
10 −38.26 −5.73 −43.99 +18.32 −4.25 +14.07 −24.26 −5.67

a ∆Gbind(T): theoretical binding free energy (∆Gbind(T) = ∆EvdW + ∆Eelec + ∆Gpolar + ∆Gnon-polar − T∆S) and its
components, namely ∆EvdW: van der Waals interaction energy; ∆Eelec: electrostatic interaction energy; ∆Gpolar:
polar solvation free energy; ∆Gnon-polar: non-polar solvation free energy, T∆S: entropy.

In Figure 9, the average structures derived from the last 10 ns of the MD simulation
are depicted. Naturally, compound 21 exhibits a greater number of interactions with the
binding site amino acids compared to the less active compound 10, with the majority of
the additional interactions in the case of 21 being of a lipophilic nature. A robust polar
interaction may be also observed between the carboxylate group of 21 and the Arg194
residue. Interestingly, this carboxylate formed strong polar interactions with both Gln190
and Arg194, playing a pivotal role in the stability of this ligand.
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Conversely, the benzisoxazole moiety of the less active compound 10 formed hydrogen
bond interactions with Ser53 and Asp106. The significance of these interactions was also
underscored by the pharmacophore model. Consistent with the interpretations from
the pharmacophore mapping, all three aromatic residues (including one phenyl and one
benzisoxazole) of 21 engaged in π–π or π–amide interactions with Thr108 and Tyr205,
while only one aromatic moiety of 10 formed such an interaction with Tyr205. Noticeably,
the polar side chain of 10 explored the solvent environment and was less utilized in
the interactions, whereas the hydrophobic residues of 21 engaged in a larger number of
interactions with the amino acid residues. This information is reflected in the 2D-QSARs,
where descriptors like CMC-50 and SpMax2_Bh(v) emerged as the most significant, as
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well as in the 3D-QSAR modeling, where the side chain of 10 was inserted into a steric
unfavorable field.

The 3D-QSAR modeling particularly emphasized the significance of the pyridine
moiety of 21, as it is in close proximity to both electronegative and steric favorable fields.
This ring was found to be involved in several interactions, including π–amide, π–alkyl, van
der Waals, and carbon–hydrogen bonding.

Understanding the role of hydrogen-bonding interactions is crucial given the distinct
polar interactions that these ligands exhibit with different amino acids. To gain insights,
trajectory analyses were carried out to estimate the hydrogen bond interactions. On average,
it was observed that compound 21 forms a larger number of hydrogen bonds compared to
compound 10. Further analysis revealed that, for 21, interactions between its carboxylate
moiety and Arg194 and Gln190 are predominant. This specific interaction likely plays a
pivotal role in providing substantial stability to 21 within the binding site. In contrast, for
compound 10, the major hydrogen bond interactions are those between the benzisoxazole
moiety and Ser53.

In our pursuit of comprehensively understanding the contributions of different amino
acid residues to the ligand binding of compounds 21 and 10, we carried out a per-energy
decomposition analysis. As shown in Figure 10, Arg194 and Gln190, which form hydrogen
bond interactions with the carboxylate group of 21, exhibited the maximum contributions
to the binding of 21. Notably, the interactions of 21 with these amino acid residues were
2–3 times higher than its interactions with other amino acid residues. The absence of
such interactions in compound 10 substantiates the significant difference observed in the
electrostatic energy (∆Eelec) values between 21 and 10. To facilitate a clearer comparison
of the other interactions between 21 and 10, we have suppressed these two interactions
in Figure 10. It is evident that interactions with amino acid residues such as His36, Ser37,
Asp106, Thr107, Thr108, Glu109, and Glu191 were much more prominent for 21 compared
to 10. Additionally, most of these residues were found to engage in non-polar interactions
with 21. This later distinct analysis provides valuable insights into the distinct binding
profiles of compounds 21 and 10 with the targeted amino acid residues.
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3. Materials and Methods
3.1. Dataset Collection and Preparation

Data on the structures of 36 IP6K1 inhibitors were collected from the recent study
by Zhou et al. [26], in which a 50% inhibitory concentration (IC50) against IP6K1 was
determined using an innovative enzyme-coupled assay technique. Subsequently, the IC50
values were transformed into pIC50 values, calculated as −log10(IC50/106), and employed
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as response variables for setting up our ligand-based models. To ensure consistent data
handling, the Simplified Molecular Input Line Entry System (SMILES) strings of these
compounds, originally provided by Zhou et al., were then converted into canonical SMILES
structures utilizing the RDKit tool and further translated into 3D .sdf format using the
Discovery Studio Visualizer software. Further standardization of these 3D structures
was performed using the Chemaxon Standardizer tool with the following steps: (a) the
addition of explicit hydrogen atoms, (b) aromatization of the structures, (c) cleaning of
both the 2D and 3D structures, (d) neutralization to ensure charge neutrality, and (e) salt
stripping to eliminate any ionic compounds. Detailed information regarding the names,
structures (SMILES notations), and pIC50 values of the dataset compounds is available in
the Supplementary Materials (Table S1). The 2D structures of the dataset compounds are
also shown in Figures S3 and S4 of the Supplementary Materials.

3.2. The 2D-QSAR Modeling
3.2.1. Descriptor Calculation

The molecular descriptors were calculated using the alvaDesc v.2.0.4 module, accessi-
ble via the open-access OCHEM web platform (https://www.alvascience.com/alvadesc/)
(accessed on 7 September 2023) [32]. The geometry of the 3D compound structures was op-
timized using the Corina tool in the OCHEM web server [33]. To create the final dataset for
setting up the 2D-QSAR model, we combined the derived descriptors with the compounds’
pIC50 values.

3.2.2. Dataset Division and Model Development

The entire dataset was split into a training set (80%) and a test set (20%) using the
Python-coded open-access program SFS-QSAR-tool_v2 (https://github.com/ncordeirfcup/
SFS-QSAR-tool, accessed on 12 September 2023) [34]. This dataset division was based on
an activity sorting approach, starting with a value of 2. The division involved selecting
every 5th compound as a training set, after sorting the values of pIC50 in descending order
starting from the second compound. The 2D-QSAR models were then developed in two
stages. Initially, we utilized descriptors from eight categories, offering high interpretability,
including molecular characteristics, functional group counts, 2D atom pairs, drug-like
indices, ring descriptors, atom-centered fragments, and constitutional descriptors. In
the subsequent stage, we considered all categories of the alvaDesc descriptors for the
model development.

Regarding the 2D-QSAR modeling technique, we opted for a regression-based ap-
proach, specifically utilizing multiple linear regression (MLR) analysis. To build these MLR
models, we employed two open-access software tools:

(a) (SFS-QSAR-tool_v2: This tool offers a graphical user interface for developing linear, in-
terpretable 2D-QSAR models. It uses the sequential forward selection (SFS) technique,
which is based on the code available in the Mlxtend library (http://rasbt.github.io/
mlxtend/, accessed on 12 September 2023). SFS is a non-stochastic feature selection
strategy that resources various scoring functions and cross-validation strategies for
selecting the most significant features for the 2D-QSAR models. In this work, four
different scoring functions were employed, including the coefficient of determination
(R2), the negative mean absolute error (NMAE), the negative mean Poisson deviance
(NMPD), and the negative mean gamma deviance (NMGD). For each scoring function,
models were generated both with no cross-validation and with 5-fold cross-validation,
resulting in a total of eight (=4 × 2) models.

(b) Genetic-Algorithm v.4.1_2 (https://dtclab.webs.com/software-tools, accessed on 14
September 2023): This software generates linear interpretable MLR models using
a stochastic genetic algorithm (GA) technique. The details of this methodology
have been described elsewhere [35]. During the data processing, the correlation
and variance cut-offs were set at 0.99 and 0.0001, respectively, to include a significant

https://www.alvascience.com/alvadesc/
https://github.com/ncordeirfcup/SFS-QSAR-tool
https://github.com/ncordeirfcup/SFS-QSAR-tool
http://rasbt.github.io/mlxtend/
http://rasbt.github.io/mlxtend/
https://dtclab.webs.com/software-tools


Pharmaceuticals 2024, 17, 263 14 of 21

number of descriptors in the model development while excluding constant and highly
correlated descriptors.

3.2.3. Evaluation of the Models

To assess the quality of the generated 2D-QSAR models, we employed well-established
validation parameters, namely Q2

LOO (Leave-One-Out cross-validated R2) and R2
Pred/Q2

F1
(predicted R2) [36,37]. While the former estimates the internal predictivity of the train-
ing set, the latter assesses the external predictivity of the test set. Since, for each set of
descriptors, multiple models were generated using stochastic and non-stochastic feature
selection strategies, these two parameters were crucial in selecting the most predictive
2D-QSAR model.

Additional statistical parameters, such as R2, adjusted R2 (R2
adj), mean absolute error

(MAE), and rm
2

LOO, along with ∆rm
2

LOO (for the training set), rm
2

test, ∆rm
2

test (for the
test set), Q2

F2, and the root mean square error of prediction (RMSEP) [38], were also
employed to evaluate the statistical quality of the final 2D-QSAR models. Moreover, the
inter-collinearity among descriptors was assessed by inspecting the cross-correlation matrix,
and the multicollinearity of the final models was examined using the variation inflation
factor (VIF) [39]. The robustness of the models, based on the Y-randomization technique,
was determined using the cRp

2 value [40]. The applicability domain (AD) of the final
models was estimated too using a Williams plot, which correlates standardized residuals
(to identify response outliers) with leverages (to identify structural outliers) [38,41].

3.3. Ligand-Based Pharmacophore Modeling

To develop the structure-based pharmacophore models, we employed the recently in-
troduced open-access tool, Quantitative Pharmacophore Activity Relationship (QPHAR) [42].
For each compound in the dataset, 50 conformations were generated using the genetic
algorithm and Confab techniques separately, facilitated by the Open Babel software.

The QPHAR models were built after dividing the dataset into a training set (26 com-
pounds) and test set (10 compounds), using the splitData.py tool in QPHAR. The rationale
behind the QPHAR-based pharmacophore modeling methodology has been described
in detail by Kohlbacher et al. [42], as well as in our previous study [43]. Specifically, the
train.py tool in this software was used for generating the models solely with the training
set using the random forest (RF) technique and the following parameters: fuzzy: True;
weight type: distance; threshold: 1.5; number of estimators: 10; maximum depth: 3; and
metric: R2. The trained model was used for predicting the activity of the test set compounds
by applying the predict.py tool. The internal predictivity of the derived pharmacophore
models was evaluated by examining R2, the root mean square error (RMSE), the standard
error (SE), and the median error (ME), while the external predictivity was simply assessed
by calculating the R2

Pred value.
The pharmacophore models aided in the structural alignment of the compounds.

In this case, we used the profile3DActivity.py QPHAR application tool to obtain the
pharmacophore-aligned structures, which were subsequently employed in the 3D-QSAR
modeling [44].

3.4. The 3D-QSAR Modeling

In the 3D-QSAR modeling, the Open3DQSAR tool was employed with two differ-
ent feature selection techniques: (a) Fractional Factorial Design-based variable SELec-
tion (FFD-SEL) and (b) Uninformative Variable Elimination-based Partial Least Square
(UVE-PLS) [45,46].

To generate the models, we explored two different alignment techniques. First, we
performed a simple unsupervised rigid body alignment method. For this, the input .sdf
structures were geometrically optimized using the steepest descent technique under the
MMFF94 force field. After minimization, 500 conformations of the ligand structures were
generated using the rdMolAlign.GetCrippenO3A code in RDKit and subsequently em-
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ployed for alignment. Notice that, in the current work, we generated 500 conformers
instead of the usual 100 since the former yielded better models. A Python script, “align-
ment.py”, was written and used for the atom-based alignment, and it is available in the
following GitHub repository: https://github.com/ncordeirfcup/InsilicoModeling_RdRp
(accessed on 1 October 2023).

The statistical predictivity of the models were assessed using parameters like R2;
the F-test result; and leave-one-out (Q2

LOO), leave-two-out (Q2
LTO), and leave-many-out

(Q2
LMO with 5 groups and 20 runs) cross-validation, as well as R2

Pred. The contour maps
were examined using isocontour values at partial least squares (PLS) coefficients of +0.002
(green) and −0.002 (yellow) for steric fields and of +0.001 (blue) and −0.001 (red) for
electrostatic fields. A detailed description of the Open3DQSAR methodology can be
found elsewhere [47].

3.5. Homology Modeling

To generate the homology model of IP6K1, we utilized the SWISS-MODEL web server
with UniProt ID Q92551 (https://www.uniprot.org/, accessed on 8 October 2023) [48].
Following a template search and model development that employed multiple templates,
we assessed the structural quality of the homology models using the MolProbity tool
(http://molprobity.biochem.duke.edu/index.php, accessed on 10 October 2023) [49,50], ac-
cessible on the SWISS-MODEL web platform. This process led us to identify the AlphaFold
protein structure (https://alphafold.ebi.ac.uk/, accessed on 10 October 2023) as producing
the most reliable model [51,52]. Nevertheless, to further refine the AlphaFold model of
IP6K1, we performed MD simulations using the Amber 20 software [53]. Specifically, we
followed a step-by-step protocol for the model refinement as previously described by
Nurisso et al. [54]. In summary, the protocol involved: (i) Minimization of the solvated
(explicit) protein structure in two stages. The first stage included the minimization of the
solvent and ions, followed by the second stage, in which the entire system was minimized;
(ii) Heating the system in the NVT ensemble and conducting a 2 ns equilibration in the NPT
ensemble; (iii) Carrying out a 50 ns explicit solvent MD simulation; and (iv) Minimizing
the structure (without solvent or ions) under implicit solvent conditions. This involved
running a total of 5000 cycles of conjugate gradient minimization under Generalized Born
implicit solvation.

These steps were essential for ensuring the accuracy and reliability of the homol-
ogy model of IP6K1, with the quality of the refined structure being further checked
using MolProbity.

3.6. Molecular Docking Analysis

In this study, we employed a robust molecular docking strategy known as CB-Dock2,
an upgraded version of CB-Dock recently introduced by Yang Cao and co-workers [55,56].
CB-Dock2, available at http://cao.labshare.cn/clab/index.html (accessed on 12 October
2023), offers several advantages, particularly in cavity searching using a protein-surface-
curvature-based cavity detection approach called CurPocket. This approach aids in identi-
fying potential binding sites within the protein. Indeed, CB-Dock2 was highly useful for
both our homology models and when investigating unknown binding sites for the ligands.
After identifying multiple cavities, we selected the top three CurPocket cavities based on
the cavity volume for docking. We performed the docking using the software AutoDock
Vina [57], as implemented in the CB-Dock2 web server.

3.7. Molecular Dynamics Simulations

The docked complexes underwent extensive 50 ns MD simulations, following well-
established procedures that have been described in detail elsewhere [58,59]. Briefly, the
ligand parameterizations were conducted using Leap, implemented in Amber 14, employ-
ing the general AMBER force field (GAFF) in Antechamber. The MD simulations were
carried out using the ff99SB force field with an explicit TIP3P water model in a cubic box,

https://github.com/ncordeirfcup/InsilicoModeling_RdRp
https://www.uniprot.org/
http://molprobity.biochem.duke.edu/index.php
https://alphafold.ebi.ac.uk/
http://cao.labshare.cn/clab/index.html
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allowing for an 8 Å distance around the complexes. Moreover, both the Berendsen barostat
and the Langevin thermostat were employed for keeping the pressure and temperature con-
stant, respectively. To prepare the protein structures for simulation, we protonated them at a
pH of 7.0 using the PDB2PQR web server (https://server.poissonboltzmann.org/pdb2pqr,
accessed on 14 October 2023) [60]. Trajectory analyses were carried out using the PTRAJ
and CPPTRAJ programs [61]; meanwhile, the results were visualized and plotted using
the QtGrace software (https://sourceforge.net/projects/qtgrace/, accessed on 25 October
2023). Additionally, trajectory analyses enabled the determination of the hydrogen-bonding
interactions between the ligands and the binding site amino acid residues of the FXR protein.
The Molecular Mechanics Generalized Born Surface Area (MM-GBSA)-based enthalpic
binding free energies of the ligands were estimated using the MMPBSA.py program in
AMBER [62]. Furthermore, the entropy contribution (T∆S) was computed using normal
mode analyses, with 100 snapshots collected from the final 10 ns. Normal mode analyses,
which are based on a quasi-harmonic entropy approach, involve calculating the covari-
ance matrix of the atomic displacements from their average positions across the sampled
trajectory. Additionally, we assessed the energy contributions of the binding site amino
acid residues using the per-residue free energy decomposition method and the Amber
MM-GBSA module [58,62]. All the energy components, including the van der Waals, elec-
trostatic, polar solvation, and non-polar solvation contributions, were calculated using
200 snapshots extracted from the last 10 ns of the MD run. These simulations provided
critical insights into the ligand–receptor interactions and the stability of the complexes.

Finally, we evaluated the adsorption, distribution, metabolism, excretion, and toxicity
(ADMET) profiles of the three most potent derivatives (i.e., compounds 21, 15, and 20)
using the admetSAR-2.0 web server (http://lmmd.ecust.edu.cn/admetsar2, accessed on 26
January 2024) [63]. The results are detailed in Table S2 of the Supplementary Materials. Due
to their structural similarity, these compounds exhibited comparable ADMET profiles. All
three compounds demonstrated low acute oral toxicity (category III: LD50 values greater
than 500 mg/kg but less than 5000 mg/kg), moderate to poor water solubility, and favor-
able human oral bioavailability and intestinal absorption. Furthermore, the compounds
displayed blood–brain barrier (BBB) permeability, as illustrated in the BOILED-Egg plot
(depicted in Figure S5 of the Supplementary Materials), determined using the SwissADME
web server (http://www.swissadme.ch/, accessed on 26 January 2024) [64]. Predictive
analysis suggested the hepatotoxicity, reproductive toxicity, myopathy (OATP1B1 inhibitor),
and respiratory toxicity of these derivatives. However, no signs of carcinogenicity, muta-
genicity (Ames toxicity), cardiac toxicity (human ether-a-go-go-related gene inhibition),
nephrotoxicity, or skin sensitization were observed.

4. Conclusions

The pharmacological roles of IP6K1 have undergone extensive exploration in recent
years, with emerging evidence suggesting that inhibitors of this kinase and its isoforms
hold promise for the treatment of obesity and related metabolic disorders. Despite the
importance of these findings, only a limited number of inhibitors targeting IP6K1 have
been reported thus far. Consequently, this work represents the first comprehensive in
silico ligand-based modeling effort focused on IP6K1 inhibitors. More importantly, the
dataset used in this study exhibited more than three log unit differences in potency against
the IP6K1 enzyme despite its limited structural diversity, rendering it particularly worthy
of investigation.

The absence of a crystalline structure for human IP6K1 further underscores the rele-
vance of ligand-based design for these inhibitors. The multifaceted objectives of this study
began with the systematic development of validated and predictive ligand-based mod-
els. Among these models, the 2D-QSAR model developed using all alvaDesc descriptors
demonstrated the highest statistical predictivity. Insights into the structural requirements of
these compounds were also extracted from these models, emphasizing the balance between
hydrophobic and electrostatic interactions, along with the 3D topology/geometry (such as

https://server.poissonboltzmann.org/pdb2pqr
https://sourceforge.net/projects/qtgrace/
http://lmmd.ecust.edu.cn/admetsar2
http://www.swissadme.ch/
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CATS2D_01_LL [65], F04[C-C]), in ligand binding to the receptor. In particular, the best
2D-QSAR model found, developed with a limited number of descriptors, disclosed the
structural and topological factors influencing higher or lower potencies. Additionally, the
developed ligand-based pharmacophore model pinpointed the significance of aromatic
ring, hydrophobic, and hydrogen bond acceptor features in determining the activity. The
3D-QSAR modeling, while providing limited information, clearly indicated how the electro-
static and steric requirements influence the biological activity against IP6K1. However, the
homology model of IP6K1, along with subsequent molecular docking and MD simulations,
revealed that polar interactions with residues like Glu190 and Arg194, particularly with
the negative ionizable carboxylate group, significantly contribute to the potency against
this kinase. In addition to these findings, hydrophobic, π–π, and π–amide interactions
were identified as crucial to enhancing the stability of these compounds at the binding
site. In conclusion, this work provides important guidelines for the design of novel IP6K1
inhibitors in the future. Furthermore, the most active compound in the dataset (i.e., com-
pound 21) exhibits a remarkable 26-fold selectivity toward IP6K1 and IP6K2 in comparison
to IP6K3. Another compound in the dataset, compound 20, demonstrates 4.2 times greater
selectivity toward IP6K1 compared to IP6K3. Notably, compound 20 has shown efficacy in
ameliorating obesity-related complications, including improvements in glycemic profiles,
hepatic steatosis, and weight gain, without altering diet intake. This stands in contrast to
other IP6K inhibitors such as SC-919 (IP6K1: IC50 < 5.6 nM; IP6K3: IC50 = 0.65 nM) and
N2-(m-trifluorobenzyl)-N6-(p-nitrobenzyl)-purine (TNP) (IP6K1: IC50 = 270 nM; IP6K3
IC50 = 260 nM) [13,26]. These inhibitors hold promise for diverse pharmacological pro-
files, distinguishing them from the existing compounds, and warrant further exploration
for their potential applications in obesity treatment. The generated ligand-based models
can be employed for predicting the activity of novel derivatives, and the exploration of
non-commercial software packages adds practical utility to the reported models. As a
future avenue for this work, the docked complexes may undergo MD simulations with an
extended time frame (e.g., 500 ns).

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ph17020263/s1. Figure S1: Ramachandran plot of the generated
homology model for IP6K1; Figure S2: The docked poses of (A) the most active (21) and (B) the
least active compound (10); Figure S3: Two-dimensional structures of the dataset compounds (3–24);
Figure S4: Two-dimensional structures of the dataset compounds (25–42); Figure S5: The BOILED-
Egg plot of three most potent compounds of the datasets (15, 20, and 21); Table S1: Serial numbers,
structures, and biological activities of the dataset compounds; Table S2. The ADMET properties of
three most potent compounds of the datasets (15, 20, and 21).
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