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ABSTRACT 
 

The origin of nuclear force is assigned to Coulomb interactions between quarks, u and d, in 
neighboring nucleons, replacing the current unspecified “residual” strong interaction assignment. 
The deuteron binding energy is correctly estimated using quasi-classical models for nucleons 
based upon SSI, the scalar strong interaction hadron theory. The next lightest nuclei are 
analogously treated. The Coulomb binding energies depend upon the small, in principle 
observable, internucleon distances between such u and d quarks whose positions in their 
respective host nucleons however depend upon intranucleon strong u - d potential that span over 
larger “hidden” distances. 
 

 

Keywords: Scalar strong interaction hadron theory SSI; nuclear binding energy; interquark Coulomb 
potential; quasi-classical nucleon model; nucleon “rod”. 

 

1. INTRODUCTION 
 

1.1 Standard Model and Its Problems 
 

The current mainstream elementary particle 
theory, the half century old standard model SM 

[1], [2 Standard Model], has not been proven to 
confine quarks and has failed to account for 
hadron spectra as well as dark matter and dark 
energy. SM further requires the existence of a 

Higgs boson with isospin 1/2. The Higgs-like 
boson found in 2012 [3] however has an isospin 
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compatible with 0 but not shown to be 1/2; it 

has been assigned to a W+W− bound state in 
SSI. 
 
This status is a far cry from that of quantum 
mechanics. Within three decades after its 
inception in the 1920’s, most of the basic atomic 
phenomena have been accounted for. The basic 
equation of motion in this theory is Dirac’s 
equation for an electron. The Dirac wave function 
has four components, two large and two small, 
suitable for transition into nonrelativistic classical 
mechanics in the low energy limit, where the two 
large components dominate. 
 
In SM and QCD (quantum chromodynamics), the 
Dirac equation has been adopted also for quarks. 
However, quarks are, contrary to electron, not 
visible and can be relativistic. So, the two large 
and two small components division of the Dirac 
wave function is not suitable for relativistic 
quarks. This is evident from the fact that the 
Dirac equation is not manifestly Lorentz 
covariant. The four component Dirac wave 
functions do not constitute a basis vector that 
generates representations of the Lorentz group. 
For quarks, therefore, manifestly Lorentz 
covariant equations are called for. 
 
Furthermore, the quarks are assumed to interact 
strongly via “color vectorial” interactions. This 
appears to be incompatible with meson-nucleon 
and nucleon-nucleon scattering data which 
suggest that such strong interactions are scalar. 
 
These problems underlie that nuclear binding 
energy, in the absence of a basic theory for 
nucleons, has been treated by the empirical shell 
model [2 Nuclear shell Model]. It is conjectured 
that the strong interaction that hold together the 
quarks has some “residual” effect that makes up 
the internucleon binding energies. This residual 
effect has been criticized to be “vague” [2 
Nuclear Force], justifiably so in view of the status 
of SM. 
 

1.2 Scalar Strong Interaction Hadron 
Theory SSI [4-6] 

 
In SSI, the Dirac equation has been transformed 
into the manifestly Lorentz covariant van der 
Waerden equations. The four component Dirac 
wave function has been transformed into two 
Weyl spinors, right- and left-handed, which are 
basis vectors generating the fundamental 
representation of the Lorentz group, the SL(2C) 
(Special Linear Group of Rank 2 Complex) 

group. Further, the quarks interact via scalar 
interaction. Although these quark equations differ 
from those of QCD in SM, they merge into each 
other at high energies [6 Ch. 14]. 
 

The SSI equations of motion for mesons and 
baryons [4] have subsequently led to many 
results collected in [5,6]. Thus, ground state 
meson spectra have been accounted for 
analytically and dark matter and dark energy 
emerge naturally [6 Sec. 5.1-3, Ch 15-16].  
 

This paper is a continuation of [6] and aims at 
specifying the above-mentioned “residual” effect, 
hence the nature of nuclear force, in the 
framework of SSI. 
 

In Sec. 2, nuclear binding energy is assigned to 
Coulomb attraction between u and d quarks in 
neighbouring nucleons. Representation of a 
nucleon is simplified to a quasi-classical “rod” 
with quarks on its ends. In Sec. 3, this model is 
applied to the binding energies of two, three and 
four nucleon nuclei. In Sec. 4, heavier nuclei 
scenarios are closely connected to the invisible 
nature of quarks. For reference, some of the 
formulae in Hoh [4-6] are reproduced in the 
Appendix. 
 

2. STRONG INTERACTION u - d AND 
“RESIDUAL” COULOMB ATTRACTION 

  

2.1 Scalar Strong Interaction u - d   
 

In SSI, the u and d quarks interact strongly via 
the potential Vs(r) given in (A18) and plotted in 
Fig A2. The magnitude of Vs is GeV and it 
increases with the u-d separation so that even a 

residual part of 1 % can be  9 MeV, the upper 
limit of binding energy per nucleon in nuclei, and 
is too big for those in the lightest nuclei.  
 

More basically, Vs acts in the “hidden” relative 
space x between u and d in a nucleon and is not 
visible in the laboratory space X in which the 
binding energies are observable. In this way, 
nature guarantees that a nucleon is always 
bound and inaccessible to direct outer forces in 
laboratory space X that may tend to break it 
apart so as to violate baryon number 
conservation and threaten the persistence of the 
universe. 
 

2.2 u - d Internucleon Coulomb Attraction 
as Origin of “Residual” Nuclear Force 

 
At the end of the Appendix, it is pointed out that 
the strong interaction results there are 
independent of the charges of the quarks, as if 
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they were “switched off”. This is so because the 
u and d quarks are separated by a distance of 
about 3.05 fm (A17) in the hidden relative space 
x. But Coulomb interaction is in principle 
observable and takes place in the laboratory 
frame X but may not be so in the invisible x 
space. Thus, the assignment is that the u and d 
quarks inside the same nucleon interact via 
strong interaction Vs(r) only. While Coulomb 
interaction takes place between u and d quarks 
in different nucleons, separated in the laboratory 
frame X. 
 

As a quark charge is attached to its host quark, 
its Coulomb interaction accompanies the strong 
interaction Vs associated with the host quark and 
may be considered as some “residual” 
interaction. Since such Coulomb interactions 
take place between nucleons in X space, they 
may provide the origin of nuclear binding energy. 
This will be investigated in the remainder of this 
paper. 
 

2.3 Quasi-Classical Nucleon “Rod” Model 
 

Nuclear binding involves at least two nucleons 
constituting a four-body problem, which is 
beyond the scope of the present work. Here, it 
will be estimated heuristically using simplified 
quasi-classical models based upon the quantum 
mechanical SSI treatment summarized in the 
Appendix.  
 

In this approach, the detailed distributions of the 
quark clouds, g(r) and f(r) in Fig A1, are replaced 
a point u quark and a point dd diquark connected 
by a “rod” of length ra = 3.05 fm (A17). This 

invisible neutron rod is part of the hidden space 
coordinate x in (A4) and is illustrated in the upper 
figure in Fig 1, where the neutron coordinate Xn 
lies in the observable laboratory space X in (A4) 
and in the middle of this rod, corresponding to am 
=1/2 in (A6). 

 
This “rod” length 3.05 fm is of basic importance 
in this paper. It introduces another length 
parameter, this time in the hidden relative space 
r=|x| between the quarks. It complements the 
other length parameter in the nucleon, the proton 
charge radius in the observable laboratory space 
X represented by Rp in (2.1) below. It also leads 
to the prediction of dark matter content in the 
universe and other astrophysical applications 
mentioned in the references (open access) at the 
end of Appendix A5 below. 

 
As was pointed out at the end of the Appendix, 
the neutron results there also hold approximately 
for the proton. Here, however, the proton charge 
is an observable quantity in X space and is 
illustrated by the large circle in Fig 1. The 
laboratory coordinate Xp of the proton lies in the 
middle of this circle. 

 
Theoretically, the simplest assignment is that this 
circle represents a solid sphere with radius Rp0 
containing a charge e with a constant charge 
density inside it and 0 outside it. In this way, only 
one parameter Rp0 enters the theory. Let the 
distance from the center of this sphere be Rp, 

this sphere generates a potential  Rp
2 inside it 

and is a constant outside it. 

  

 
 

Fig. 1. Quasi-classical illustration of a neutron rod and a proton rod 
A rod represents the diquark-quark distance vector x in the hidden, invisible relative space and is straight by 

definition or rigid. The large circle represents the proton charge sphere with effective radius Rp0  0.74 fm in the 
visible laboratory space. The small circle in the middle of the neutron rod has an unknown, small diameter because 
the neutron has no charge. u and d stand for the up and down quark flavors. The arrows refer to the spin 
directions. The only directions available are those along the rods. The quarks in the diquarks uu and dd have 
opposite spins by Pauli’s principle so that the ground state diquark has spin 0.  The nucleon spin is that of the 
unpaired quark. The laboratory coordinate of the neutron Xn is located at the center of the neutron rod. The 
laboratory coordinate of the proton Xp is located at the center of the large circle representing the size of the proton 
charge sphere 
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The proton charge radius given by Particle Data 
Group, PDG, comes mostly from e-p scattering. 
The reported value Rprms = 0.831 fm is the root 
mean square of many measurements. Adopting 
the conventional normal distribution, this value 
implies 
 

Rprms = (dRpRp
3exp(− Rp

2/Rp0
2)) / ( dRpRp

2 

exp(− Rp
2/Rp0

2)) = 0.831 fm (2.1a) 
  

Rp0=2/0.831fm = 0.736 fm (2.1b) 
Application of this “rod” model to hydrogen gas in 

cosmology with am1/2 in (A6) has led to 
successful predictions beneath (A6). 
 

3. APPLICATION TO BINDING ENERGIES 
OF LIGHTEST NUCLEI 

 
3.1 Deuteron 2H 
 
Let a proton p approach a neutron n from a 
distance. There is no attractive force between 
them in the laboratory frame because n has no 
charge. In Fig 1, however, it can be seen that the 
uu diquark in p can attract the dd diquark in n. 
Such attraction moves p closer to n. To form a 2H 
from them, both rods must be parallel so that 
their spins add up to 1. The maximum attraction 

is achieved if |Xn − Xp| is a minimum. As the 
neutron at Xn cannot occupy the same space 
occupied by p in the laboratory frame X, it can at 
best lie just outside the charge sphere of p, as is 
illustrated in Fig 2. This is equivalent to moving 
the neutron rod to just beneath the proton rod in 
Fig 1. Any lateral shift of the rods relative to each 
other will increase the u to d distance and reduce 
their binding energy. 
 

The binding energy between uu and dd and d and 
u according to Fig 2 is then 
 

𝐸2𝐻 = −
𝑞𝑢𝑢𝑞𝑑𝑑+𝑞𝑑𝑞𝑢

𝑅𝑝0
=

10𝑒2

9𝑅𝑝0
= 2.174 MeV    (3.1)                        

 

where the quark charges qu = 2e/3, qd = −e/3 and 
(2.1b) have been consulted. The uu diquark and 
the u quark are 4.26 times farther apart and the 
interpretation is that interaction between them is 
forbidden by Pauli´s principle. The same holds for 
dd and d. (3.1) is 2.3% smaller than the measured 
PDG value 2.2245 MeV. These values are rather 
close, noting that the actual u-d interaction is 
quantum mechanical involving charge clouds 
rather than point charges in the rod model here. 
Such binding energies are of the magnitude of the 
proton electromagnetic self-energy e2/Rp0  1.96 
MeV, indicating their Coulomb nature. They are 
~0.2% of the proton mass and appear to be too 
small to be any “residual” strong potential like Vs(r) 
in Fig A2. 
 

Conceptually, note that the observable laboratory 

p-n or rod separation Rp0  0.74 fm is smaller than 
the invisible rod length ra = 3.05 fm, which does 
not “compete” for space in the visible laboratory 
frame. 
 

Another combination of the p and n rods is to turn 

the neutron rod 180 around its center at Xn
 in Fig 

2. In this configuration, uu from p and the u from n 
are grouped together, repulse each other 
classically and violate Pauli´s principle quantum 
mechanically. The same holds for dd and d at the 
opposite end of the rods. Such spin 0                  
deuteron can therefore not exist, in agreement 
with data. 

 

 
Fig. 2. Illustration of the quark structure of a deuteron employing the nucleon rods in Fig 1. 

The arrows give the spin direction. The distance between the rods is at least the charge radius Rp0 (2.1b) of the 
proton since both nucleons cannot occupy the same space in the observable laboratory space X 
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3.2 Dineutron 2n 
 
This case is complicated by that the two 
participating neutrons are identical. The 
configuration of Fig 3 corresponds to the spin 0 
deuteron case in the last paragraph, with the 
difference that there is no charge sphere that 
keeps both rods apart so they can get very close.  
 
The rod spacing Rnn may however not be 0. For 
small Rnn, a u quark at one end of a rod is so 
close to the d quark of the other neutron so that it 
may “abandon” its companion d quark far away 
on the same rod and tends to form a new 
neutron with the nearest d quark from the other 
neutron. In this case, Fig A2 and (A18) show that 
Rnn > 0.288 fm due to the large repulsive 
potential at smaller u-d separations.  
 

However, such a small Rnn may even not be 
reachable because Fig A2 shows that a strong 
attractive potential well is present in the 0.288 fm 

< Rnn < 2 fm region. Such a scenario implies an 
actually weaker n-n Coulomb bonding. This is 
supported by that n-p pairs dominate over n-n 
pairs in heavier nuclei. 
 

Here, however, only a lower limit of Rnn > 0.288 
fm will be set so that the upper limit of the spin 0 
dineutron binding energy is 
 

𝐸𝑛𝑛 − 
2𝑞𝑑𝑑𝑞𝑢

𝑅𝑛𝑛
=

8𝑒2

9𝑅𝑝0
= 4.94 MeV             (3.2)                                                                              

Dineutron has been first observed a decade ago 
in 16Be decay [7] but its binding energy has not 
been measured.  
 
The third member in the two-nucleon system, the 
diproton pp, can be treated in an analogous 
manner. Neither the singlet nor the triplet pp is 
bound, as expected.    

 
3.3 Tritium 3H 
 
Next, turn to the three body 3H. The configuration 
in Fig 4 is achieved by adding a neutron to the 
deuteron in Fig 2 or a proton to the dineutron in 
Fig 4. 
 
The binding energy is simply the sum of (3.1) 
and (3.2), 
 

    (3.3) 
 

which is of the same magnitude as data but 
definitely smaller. Note that the interaction of the 
u quark in the top neutron with the uu diquark in 
the proton is forbidden by Pauli’s principle. The 
same holds for that between the dd diquark in 
the top neutron and the d quark in the proton. 

 
It is also possible to move the upper neutron rod 
to tangent the proton charge sphere from below. 
In this case, E3H = 2E2H  = 4.35 MeV, still smaller 
than data. 

 

 

 
Fig. 3. Illustration of the quark structure of a spin 0 dineutron 

 

 
 

Fig. 4. Illustration of the quark structure of tritium 
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This binding is a 3-body problem, but (3.3) only 
gives the sum of all three of possible 2-body 
binding energies. Genuine 3-body contribution is 
unknown.   

 
3.4 Helium-3 3He 
 
The configuration in Fig 5 can be obtained by 
adding a proton rod with opposite spin to the 
deuteron in Fig 2.  

 
In this case, the interpretation is                             
that the fractional charges reside with the                 
quarks at the ends of the rods; the two large 
spheres contain no charge to push them                 
away from each other. On the other hand,                 
when the charge of this 3He is being measured, 
these quark charges will “rush” into these 
spheres to become measurable integer             
charges. 

 
Analogous to the case in Fig 4, interaction 
between the two uu diquarks is forbidden by 
Pauli´s principle. The binding energy is simply 
twice the value of (3.1) minus a small energy of 
0.1087 MeV due to the repulsion of the two d 
quarks,  

 
EHe3 = 2E2H .−0.1087 = 4.24 MeV  7.718 MeV 
(PDG data)                                                     (3.4) 
 

Similar to (3.3), this binding is also a 3-body  
problem. But (3.4) only gives the sum of all three 
of possible 2-body binding energies. Genuine 3-
body contribution has been mentioned in [2]. 
 

3.5 Helium-4 4He      
 

The quarks of the nuclei treated above all lie on 
one two-dimensional plane. This no longer 
possible for 4He, as is illustrated in Fig 6. 
To visualize this model, let a cube be put on a 
table in front of an observer. Let the square 
surface closest to the observer be narrowed down 
to a rectangle with the same height. Let the four 
corner lines connecting the top and bottom 
surfaces represent the four nucleon rods; the two 
of them on the front side represent two neutron 
rods with opposite spin, like those in Fig 3, and 
the two on the rear side two proton rods with 
opposite spin. 
 

There are 20 internucleon “Coulomb arms” 
associated with Coulomb interaction energies 
between the quark charges at their ends, 4 on the 
top side, 4 on the bottom side, 2 diagonal ones on 
each of the 4 side surfaces, and 4 diagonal ones 
between the top and bottom surfaces. The arms 
between u and dd in the neutrons are not shown 
because they are too short to be visible. Also, the 
protons are actually closer to each other so that 
their charge spheres actually touch each other, as 
in the Fig 5. 

 

 
 

Fig. 5. Illustration of the quark structure of helium-3 
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Fig. 6. Illustration of the quark structure of helium-4 
 
Contributions from the top and bottom surfaces 
dominate. The Coulomb attraction energy 

between p and n, where the arrows show the 
spin orientations in Fig 5, is the same as that in 

(3.1), The same holds for p and n. The 

contribution from n and n is the same as (3.2). 

The contribution from p and p is  

 

𝐸𝑝𝑝 = −
2𝑞𝑢𝑢𝑞𝑑

2𝑅𝑝0
=

2𝑒2

9𝑅𝑝0
=  0.435 MeV           (3.5)                     

  
The sum of these four contributions is 

 
2E2H + Epp + Enn < 9.73MeV                    (3.6)                                  

 
The remaining 12 contributions are smaller 
because they involve the relatively larger rod 
length ra = 3.05 fm (A17). Two of them violate 
Pauli´s principle and are left out. The remaining 10 
contributions have been estimated to be 0.736 
MeV. These leads to the estimated upper limit of 
helium-4 binding energy 

 
EHe4  9.73MeV + 0.736MeV = 10.49 MeV  
28.3 MeV (PDG data)                              (3.7) 

 
Analogous to (3.3, 4), this binding is a 4-body 
problem but (3.7) only gives the upper limit sum 
of all possible 2-body binding energies. Genuine 
3-body and 4-body contributions are ignored. 
The greater difference between the quasi-
classical model result and data in (3.7), as 
compared to those in the 3-body nuclei results in 
(3.3) and (3.4), may indicate that genuine 4-body 
contribution is greater than genuine 3-body 

contributions, apart from departure from quantum 
mechanics. 

 
4. HEAVIER NUCLEI SCENARIOS 
 
4.1 “Quark Sharing” and Generation of 

Coulomb Arms 
 
Consider Fig 6. The left d quark is the lower end 

of the p rod as well as the left end of the so-
created horizontal proton rod like Coulomb arm 
with the right uu at its right end. This d quark is 

thus “shared” between the real proton p and the 
created proton-like Coulomb arm that produces 
binding energy. In the configuration of 4He in Fig 
6, the four real nucleons produce 20 internucleon 
Coulomb arms, each contributing to binding 
energy, if not forbidden by Pauli´s principle. 
 
Such situations are expected to appear more 
frequently in heavier nuclei. In the present 
nucleon rod model of §2.3, the example of Fig 6 
shows that a quark in a nucleon emanates 6 
Coulomb arms connected to quarks in other 
nucleons. If this quark was surrounded by other 
nucleons in every direction, an additional 8 more 
Coulomb arms are in principle possible, totalling 
14 Coulomb arms. Each such arm may be 
capable of generating binding energies. In the 
deuteron example in Fig 2, there are 4 such 
Coulomb arms generating a binding energy of 
2.174 MeV in (3.1) or about 1 MeV per nucleon 
or 0.5 MeV per quark or diquark or Coulomb arm. 
Using these numbers, 14 Coulomb arms may 
generate up to 7 MeV binding energy per quark 
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or 14 MeV per nucleon. This number is to be 
reduced by the number of arms violating the 
Pauli principle and double counting. In addition, 
genuine many-body interactions enter. Thus, the 
magnitude of such energies is comparable to that 
of the maximal binding energy of ~9 MeV per 
nucleon for iron. 
 
The genuine many-body interactions differ from 
those in a heavy atom, in which the large nucleus 
charge and mass dominate over those pertaining 
to the electrons. Perturbation calculations are 
applicable. Here, all the nucleons and quarks are 
more on equal footing. This more “democratic” 
scenario renders any theoretical treatment more 
complicated; there may not exist any small 
perturbative quantity. 
 
Furthermore, the quasi-classical rod model 
above will become more insufficient under such 
circumstances and quantum mechanical aspects 
will vastly complicate the problems. 

 
4.2 Hidden Space Overlapping 
 
The conceptual remark near the end of §3.1 
leads to that the hidden volume of a nucleon 

Va=4(ra/2)3/315 fm3 is 3 times greater than 
the laboratory frame volume of a proton 

Vp=4(Rp0)3/35.2 fm3. These hold for each 
nucleon. In a heavy nucleus, each nucleon has 
its own “private” hidden Va decoupled from the 
hidden Va´s belonging to other nucleons. Thus, 
seen from their common laboratory frame, these 
Va´s overlap but do not interfere with each other 
or lead to any observable, contradictory 
objection. 

 
4.3 Coulomb Origin of “Residual” Strong 

Interaction 
 
The nearly correct prediction of (3.1) for the 
deuteron binding energy and §4.1 suggest that 
nuclear force originates from Coulomb interactions 
between the different u and d quarks in different 
nucleons in nuclei and not from any                      
“residual” strong force between the quarks in a 
nucleon. The word “residual” may be retained if it 
is reinterpreted as referring to the much weaker 
internucleon, interquark Coulomb interactions in a 
nucleus.  

 
If such “residual” force were of strong interaction 
nature, then fission of a nucleus may in principle 
also lead to breaking apart a quark-diquark bond 
inside a nucleon giving rise to free quarks, 

contrary to experience. By keeping the strong 
interaction potential Vs(r) in the hidden relative 
space inside a nucleon not accessible via 
laboratory space forces, e. g. the Coulomb forces, 
the integrity of nucleon is guaranteed and not 
affected by such forces involved in fission 
processes. Such processes are driven by 
Coulomb repulsion between proton charge 
spheres (see Fig 1) and seek out locations where 
the interactions are weak and long range, here the 
Coulomb arms, and avoids locations where the 
interactions are strong and short range; any 
eventual "residual” part of such has not been 
identified. 

 
In the above, violation of Pauli´s principle was 
interpreted as no reaction but not repulsion 
between uu and u. This interpretation may depend 
upon the distances between these quarks and 
eventually also if the forces between them are 
perpendicular or parallel to the rod directions, as 
the charges can move along the rods.                     
Further, Pauli´s principle, which holds for 
observable fermions, has not been proven                          
to hold for invisible quarks. This point is                         
not clear and the present interpretation is to be 
regarded as a working hypothesis in the                  
present “rod model”. The actual Coulomb 
interactions in nuclei are so complex and involve 
quantum effects as well as the unknown, genuine 
many-quark interactions so that they cannot be 
reached from the first principles´ SSI presently. 

 
The strong potential Vs(r) is about 102-103 times 
stronger than the Coulomb potentials in Sec. 3. 

Next comes the weak decay d → u+W−→ 

u+e−+e which is still weaker by a factor of ~105 
due to the large W mass. This decay, like the 
Coulomb case above, involves quark charges and 
takes place via the laboratory space X. It is 
responsible for the radioactive decays of nuclei 
isotopes and will be affected by the Coulomb 
interactions in Sec. 3. These points will further 
complicate the above scenario. 
 

5. CONCLUSION 
 

In conclusion, the present results revise our 
conception regarding the nature of nuclear force, 
from some unspecified “residual” effect of strong 
interactions to Coulomb interactions between 
quarks in neighbouring nucleons. Presently, they 
do not affect the practical usefulness of the 
empirical shell and other models. In time, 
however, the Coulomb nature of nuclear force 
may enter into modifications and further 
developments of such models. In eventual such 
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attempts, a major obstacle is treatment of the 
genuine 3, 4, 5… body interquark Coulomb 
interaction problems. 
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APPENDIX. EQUATIONS OF MOTION FOR NEUTRON IN SSI [4-6] 
 

A.1 Covariant Equations of Motion of Quark 
 
Some of the formulae in Ch 2, 3, 9-12 for baryon in [5, 6] are reproduced here for reference. 
 
A neutron contains 3 quarks. Let these be quarks A, B and C having masses mA, mB and mC, flavors 
d, u and d, located at xI, xII and xIII, abbreviated by I, II and III, respectively. The van der Waerden 
spinor form of the Dirac equation for the u quark B interacting with the d quarks A and C via scalar 
interactions VBA and VBC reads [5, 6 (9.1.2, 4b)] 
 

𝜕𝐼𝐼
𝑑𝑒̇𝜒𝐵𝑒̇(𝐼𝐼) − 𝑖(𝑉𝐵𝐶(𝐼𝐼) + 𝑉𝐵𝐴(𝐼𝐼))𝜓𝐵

𝑑(𝐼𝐼) = 𝑖𝑚𝐵𝜓𝐵
𝑑(𝐼𝐼)  

𝜕𝐼𝐼𝑒̇𝑓𝜓𝐵
𝑓(𝐼𝐼) − 𝑖(𝑉𝐵𝐶(𝐼𝐼) + 𝑉𝐵𝐴(𝐼𝐼))𝜒𝐵𝑒̇(𝐼𝐼) = 𝑖𝑚𝐵𝜒𝐵𝑒̇(𝐼𝐼)  

  ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )













++

++
=+

IIIIIIII

IIIIIIII
gIIVIIV

aA

a

AAa

a

A

gC

g

CCg

g

C

sBABCII










2

2

1
                                        (A1) 

  

Here,  and  are two component (Weyl) spinors [5, 6 Appendix B], [8] with their indices d, e,  f… 

running from 1 to 2. II = xII. gs is the strong coupling constant. The V´s are scalar strong interaction 
potentials acting between two quarks of different flavors in the hidden relative space between these 
two quarks, disregarding their electric charges and their eventual non-scalar interactions. Thus, VBC(II) 
stands for the strong potential experienced by quark B located at xII generated by quark C located at 
xIII. 
    The Weyl spinors generate the two dimensional SL(2,C) (Special Linear Group of Rank 2, 
Complex) fundamental representation of the Lorentz group of transformations. The interquark 
interaction potential, the V´s in (A1) are real scalars. 
 
Multiply the left and right sides of these three sets of equations for A, B and C quarks and generalize 
the products into nonseparable baryon quantities according to [5, 6 (9.2.1, 2)] 
 

𝜒𝐴𝑏̇(𝐼)𝜒𝐶ℎ̇(𝐼𝐼𝐼)𝜓𝐵
𝑓(𝐼𝐼) → 𝜒

𝑏̇ℎ̇

𝑓 (𝐼, 𝐼𝐼𝐼, 𝐼𝐼)                         

 𝜓𝐴
𝑐(𝐼)𝜓𝐶

𝑘(𝐼𝐼𝐼)𝜒𝐵𝑒̇(𝐼𝐼) → 𝜓𝑒̇
𝑐𝑘(𝐼, 𝐼𝐼𝐼, 𝐼𝐼)                            

(𝑉𝐴𝐵(𝐼) + 𝑉𝐴𝐶(𝐼))(𝑉𝐶𝐴(𝐼𝐼𝐼) + 𝑉𝐶𝐵(𝐼𝐼𝐼))(𝑉𝐵𝐶(𝐼𝐼) + 𝑉𝐵𝐴(𝐼𝐼)) → 𝛷𝑏(𝐼, 𝐼𝐼𝐼, 𝐼𝐼)                                   (A2) 

 
to arrive at the SSI baryon wave equations [5, 6 (9.2.3)] 
 

𝜕𝐼
𝑎𝑏̇𝜕𝐼𝐼𝐼

𝑔ℎ̇
𝜕𝐼𝐼𝑒̇𝑓𝜒

𝑏̇ℎ̇

𝑓 (𝐼, 𝐼𝐼𝐼, 𝐼𝐼) = −𝑖(𝑚𝐴𝑚𝐵𝑚𝐶 + 𝛷𝑏(𝐼, 𝐼𝐼𝐼, 𝐼𝐼))𝜓𝑒̇
𝑎𝑔(𝐼, 𝐼𝐼𝐼, 𝐼𝐼) 

𝜕𝐼𝑏̇𝑐𝜕𝐼𝐼𝐼ℎ̇𝑘𝜕𝐼𝐼
𝑑𝑒̇𝜓𝑒̇

𝑐𝑘(𝐼, 𝐼𝐼𝐼, 𝐼𝐼) = −𝑖(𝑚𝐴𝑚𝐵𝑚𝐶 + 𝛷𝑏(𝐼, 𝐼𝐼𝐼, 𝐼𝐼))𝜒𝑏̇ℎ̇
𝑑 (𝐼, 𝐼𝐼𝐼, 𝐼𝐼)                                        (A3) 

 

together with b(I,III,II) satisfying a 6th order potential equation [5, 6 (9.2.9)]. 
  
As hadron data suggest that the ground state nucleon consists of a diquark [9] and a quark. Let the u 

quark C at xIII be merged into the u quark at xI to form a uu diquark so that III drops out in (A3) and b. 
In this way, the practically intractable three-body quantum mechanical problem becomes a 
manageable two-body one. 
 

A.2 Transformation into Laboratory and “Hidden” Relative Space Coordinates 
 

 Following [6 (3.1.3a)], define the observable laboratory space X for the observable nucleon and the 
“hidden” relative space x between the quarks,  
 

𝑥𝜇 = 𝑥𝐼𝐼
𝜇

− 𝑥𝐼
𝜇

,               𝑋𝜇 = (1 − 𝑎𝑚)𝑥𝐼
𝜇

+ 𝑎𝑚𝑥𝐼𝐼
𝜇
                                                                           (A4) 

 
where am is a real constant. “Hidden” variable has been proposed by Einstein, Podolsky and Rosen in 
1935 and D. Bohm in 1952 in connection with quantum mechanics, well before the quark era from the 
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1960´s and the dominating role of such variables in SSI [4-6].  Follow the example [5, 6 (3.1.5, 9)] for 
mesons, make the corresponding ansatz [5, 6 (10.1.1)] 
 

𝜒{𝑎̇𝑐̇}
𝑒 (𝑥𝐼 , 𝑥𝐼𝐼) = 𝜒{𝑎̇𝑐̇}

𝑒 (𝑥) 𝑒𝑥𝑝(−𝑖𝐾𝜇𝑋𝜇 + 𝑖𝜔𝐾𝑥0) 

𝜓𝑒̇
{𝑎𝑐}(𝑥𝐼 , 𝑥𝐼𝐼) = 𝜓𝑒̇

{𝑎𝑐}
(𝑥) 𝑒𝑥𝑝(−𝑖𝐾𝜇𝑋𝜇 + 𝑖𝜔𝐾𝑥0)                                                                  (A5)

  

where the commutator {ab}=(ab+ba). For rest frame baryon, K=(E0, K), where E0 is the baryon mass 

and K=0, and the relative energy between the quark and the diquark 0=0 [5, 6 (3.1.10a), (5.7.1))], 
(A1) become  
 

𝑎𝑚 = 1/2 + 𝜔0/0 = 1/2   for  𝐾 = 0 and 𝜔0 = 0                                                                (A6) 
 
This is the common average value for nucleons in often contact with others, like those in nuclei, 
chemical compounds, stars etc. An exception is that for protons in rarified interstellar hydrogen gas, 
where the mean collision time can be millions of years. During that long time, the invisible relative 

energy 0 can on the average be 5 times the mass of the host proton and behaves like dark matter, 
due gravitational polarization of the diquark-quark assembly in the proton. Such polarization may also 
happen to neutrons falling inside the Schwarzschild radius of a newly formed neutron black hole and 
possibly prevent it from falling into a gravitational singularity, as is discussed in [6 Ch.15-16], [10 
references therein]. Collisions near the outer edge of the universe may turn dark matter into dark 
energy causing accelerating expansion of that part of the universe. 
 
A.3 Development of Equations of Motion of Neutron 
 

From the 8-component wave function 𝜒
𝑏̇ℎ̇

𝑓
 in (A3) or the 6-component wave function 𝜒{𝑎̇𝑐̇}

𝑒  in (A5) 

together with their  companions, the two component spinors assigned to the ground state baryon 
doublet can be extracted, 
 

𝜒01̇ =
1

2
(𝜒{1̇2̇}

1 − 𝜒{1̇1̇}
2 ),                𝜒02̇ =

1

2
(𝜒{2̇2̇}

1 − 𝜒{1̇2̇}
2 ) 

𝜓0
𝑎 =

1

2
(𝜓1̇

{12}
− 𝜓2̇

{11}
),               𝜓0

2 =
1

2
(𝜓1̇

{22}
− 𝜓2̇

{12}
)                                                              (A7) 

 
Such steps turn (A3) into wave functions for ground state spin ½ baryons.  
 

𝜕𝐼
𝑎𝑏̇𝜕𝐼𝐼

𝑓𝑒̇
𝜕𝐼

𝑒𝑓̇ 1

2
𝜒0𝑏̇(𝑥𝐼 , 𝑥𝐼𝐼) = −𝑖(𝑀𝑏

3 + 𝛷𝑏(𝑥𝐼 , 𝑥𝐼𝐼))𝜓0
𝑎                                       

𝜕𝐼𝑏̇𝑐𝜕𝐼𝐼𝑒̇ℎ𝜕𝐼ℎ̇𝑒
1

2
𝜓0

𝑐(𝑥𝐼 , 𝑥𝐼𝐼) = −𝑖(𝑀𝑏
3 + 𝛷𝑏(𝑥𝐼 , 𝑥𝐼𝐼))𝜒0𝑏̇(𝑥𝐼 , 𝑥𝐼𝐼)                                                (A8) 

 
These steps include the replacement of the quark mass product 𝑚𝐴𝑚𝐵𝑚𝐶  by mass operators 

operating on internal or flavor functions associated with the  and  spinors in (A8), giving rise to 
mass eigenvalue [6 (9.3.19)] 
 

𝑀𝑏
3 =

1

8
(𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶)3                                                                                                          (A9) 

 
With (A6), (A5) turns into 
 

𝜒0𝑏̇(𝑥𝐼 , 𝑥𝐼𝐼)→𝜒0𝑏̇(𝑋, 𝑥)→𝜒0𝑏̇(𝑥) exp(−𝑖𝐸0𝑋0 − 𝑖0𝑥0)                                                              (A10)    

 

a similar equation for 0
c                                                                                                                (A11) 

 
    Apply the transformation [5, 6 (3.1.7b)] to spherical coordinates. 
 

𝑥 = (𝑥, 𝑦, 𝑧) = 𝑟(𝑥̂, 𝑦̂, 𝑧̂) = 𝑟𝑟̂ = 𝑟(𝑠𝑖𝑛 𝜗 𝑠𝑖𝑛 𝜑 , 𝑠𝑖𝑛 𝜗 𝑐𝑜𝑠 𝜑 , 𝑐𝑜𝑠 𝜗)                                             (A12) 
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Putting the total angular momentum j =1/2 and orbital angular momentum l=0 leads to the 
decomposition [6 (10.2.3a)] and turns it into 
 

𝜓0
𝑎(𝑥) = ±𝑔0(𝑟)√±𝑚 + 1

2⁄ 𝑌0𝑚∓1
2⁄ (𝜗, 𝜑) + 𝑖𝑓0(𝑟)√∓𝑚 + 3

2⁄ 𝑌1𝑚∓1
2⁄ (𝜗, 𝜑)                         (A13) 

 
where the Y´s are spherical harmonics, the upper signs hold for a=1 and the lower ones for a=2. 𝜒0𝑎̇ is 
found by changing the signs of f0(r). The steps after (A8) turn it into the radial equations [5, 6 
(10.2.12)] 
 

[
𝐸0𝑑

3

8
+ 𝑀𝑏

3 + 𝛷𝑏𝑑(𝑟) +
𝐸0𝑑

2
𝛥0] 𝑔0(𝑟) + (

𝐸0𝑑
2

4
+ 𝛥0) (

𝜕

𝜕𝑟
+

2

𝑟
) 𝑓0(𝑟) = 0 

[
𝐸0𝑑

3

8
− 𝑀𝑏

3 − 𝛷𝑏𝑑(𝑟) +
𝐸0𝑑

2
𝛥1] 𝑓0(𝑟) − (

𝐸0𝑑
2

4
+ 𝛥1)

𝜕

𝜕𝑟
𝑔0(𝑟) = 0                                                   (A14) 

 

where [5, 6 (3.1.4)] has been used. E0d is the doublet baryon mass and the ´s are Laplace operators 

[5, 6 (3.4.5b)]. bd (r) comes from the last of (A2), where VAB=VBA and VCB=VBC are the scalar strong 
interaction potential between the u and d quarks dependent only upon the interquark distance r. The 
potentials VAC=VCA=0 because the d quarks A and C were to be merged into a diquark below (A3). 
 

A.4 Strong Interaction Intraneutron Potential 
 

The 6th order equation mentioned beneath (A3) turns into [5, 6 (9.2.13b)] in which the source term on 

the right side drops out for rest frame baryons for which the normalization volume →. It now 
becomes where the db´s are integration constants.  
 

 𝛥0𝛥0𝛥0𝛷𝑏𝑑(𝑟) = 0,             𝛷𝑏𝑑(𝑟) = 𝑑𝑏/𝑟 + 𝑑𝑏0 + 𝑑𝑏1𝑟 + 𝑑𝑏2𝑟2 + 𝑑𝑏4𝑟4                                    (A15) 
 

These correspond to the integration constants dm 
´s in [5, 6 (3.2.8a)] in the meson case. The dm 

´s 
could be fixed from the analytical solutions for the pseudoscalar and vector mesons having the same 
quark content from [5, 6 (3.2.21), (5.2.2)]. This implies here that the db´s are to be fixed by the 
solutions of the two coupled third order doublet equations (A14) for j=1/2 and those of the associated 
four coupled third order quartet equations [5, 6 (10.5.10)] for j=3/2. These equations have to be solved 
numerically, a task beyond the scope of the present work. 
 

To determine the db constants in (A15) and neutron wave functions in (A14), a less ambitious 
approach mentioned in [6 Ch 11] has been adopted. In [6 Ch 12], neutron beta decay was treated and 

the neutron life th and the asymmetry parameters A and B are given in [6 (12.6.15-17)] dependent 
upon the radial wave functions g0(r) and f0(r) in (A14). 
 

(A14) has been converted into a system of 6 first order equations that are solved as an initial value 
problem using a Fortran program on a computer at Uppsala University. The known neutron mass is 
used for E0d and the quarks masses determined from meson spectra in [6 Table 5.2]  
 

Table 5.2. Quark masses and dm0 obtained from (5.1.1-3) using the masses +, K+, K0, D0, Ds
+ 

and B0 in Table 5.1 and quark contents of [P1]. 
 

m1(GeV)       m2−m1           m3              m4              m5          dm0(GeV2) 

0.6592        0.00215      0.7431        1.6215       4.7786         0.64113 
 

are used in (A9) for Mb. Sets of db values are guessed such that the radial wave functions g0(r) and 
f0(r) converge for large r. Consider at first the db4 =0 case. It turned out that once a db2<0 is chosen, 
the remaining db1, db0 and db have to assume fixed values to obtain a converging solution.  
 

Such converging solutions have been found for db2 ranging at least from −0.140 to −0.975 GeV5 in [6 

Table 11.1] and [5 Table 11.1]. However, only the db2 = −0.3202 case led to the correct neutron life of 

th=880 sec. and asymmetry parameters A= −0.1218 and B=0.9794, close to PDG data A= − 0.1184 
and B=0.9807 [6 Table 12.1].  
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                       b              A                           B              GT/F          th sec 

                   9.5488     −0.1184                  0.9784            1.215       891.01 

                   9.3699     −0.1262                  0.9807            1.24         865.77 

                   9.4719     −0.1218                  0.9794            1.107       880.16 

    PDG data [P1]       −0.11840.001      0.98070.003                      880.21(exp) 

 

Thus, [5 Table 12.1] shows that for db2 = −0.1621, th=38 sec. and db2 = −0.4042, th=3349 sec. 
 

Turning to the db40 case, [6 §11.1.4] points out that the corresponding converging solution [6 Table 

11.2] leads to th, A and B values in disagreement with PDG data. 
  
Therefore, adopt the neutron case in [6 Table 11.1]  
 

db4 = 0,    db2 = −0.3202 GeV5,    db1 = 2.272 GeV4,    db0 = −4.922 GiV3,    db = 1.024 GeV2              
(A16) 

 
A.5 Neutron Radial Wave Functions  
 
The associated wave functions have been plotted in [6 Figure 11.1b] and earlier in [5 Figure 12.1] and 
are reproduced in Fig A1. 
 

 
 

Fig. A1. Radial neutron wave functions in (A14). The horizontal length unit is GeV−1 = 1.24 fm 
 

The average distance ra between the dd diquark and the u quark in the hidden relative space x is 
obtained from Figure A1 via [6 (12.6.22)] 
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𝑟𝑎 =
∫ 𝑑𝑥3𝑟((𝜒0𝑏̇(𝑥))

∗
𝜒0𝑏̇(𝑥)+(𝜓0

𝑎(𝑥))
∗

𝜓0
𝑎(𝑥))

∫ 𝑑𝑥3((𝜒0𝑏̇(𝑥))
∗

𝜒0𝑏̇(𝑥)+(𝜓0
𝑎(𝑥))

∗
𝜓0

𝑎(𝑥))

=
∫ 𝑑𝑟𝑟3(𝑔0

2(𝑟)+𝑓0
2(𝑟))

∫ 𝑑𝑟𝑟2(𝑔0
2(𝑟)+𝑓0

2(𝑟))
= 3.05 fm                                   (A17) 

 
This value is not very sensitive to the choice of db2 value in (A16). This quark-diquark mean 

distance 3.05 fm has earlier been used in predicting that the ratio of dark matter to ordinary matter 

in the universe is about 5 in agreement with observation [10 Ref 7(open access)]. It predecessors 

have also been applied to the removal of gravitational singularity in some neutron star black holes 

[10 Ref 6] and antigravity acceleration of the expanding universe [10 Ref 8] 

A.6 Universal Strong u – d Interaction Potential 
 
The u – d quark strong interaction potential [6 (12.6.18)], also seen in the third of (A2), is 
 

𝑉𝑠(𝑟) = |
𝛷𝑏𝑑(𝑟)

2
|
1/3

,      𝑉𝑠(𝑟 = 0.288  fm ) = 0                                                                         (A18)                                                                                                

 
which can be found from (A15) with (A16) and is plotted in Figure A2. 
 

 
   

Fig. A2. Interquark potential Vs(r) (A18). The horizontal length unit GeV−1=1.24 fm. This scale 

has been amplified in the r<1 GeV−1 region 
 
This strong interaction potential bears some resemblance to the internucleon Reid potential from 1968 

[2 Nuclear Force]. Both are repulsive at small separations and approach + at 0 separation but turn 
into attractive potential wells at larger separations. The scales are different. The Reid potential is 
internucleon and empirical in the laboratory space while Vs in Fig A2 is interquark in the hidden 
relative space between quarks and theoretical, as required by the convergence of the radial nucleon 
wave functions in Fig A1.  
 
The results in this Appendix derived from neutron properties also hold approximately for the proton 
because the differences in mass and quark masses between these two nucleons are only fractions of 
1 %. These are independent of the quark charges, which can be switched off without affecting the 
results in this Appendix. This is seen in e. g. the radial equations (A14) which do not contain quark 
charge. 
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The dominant confining term db2 = −0.3202  r2 appears also to be reminiscent to the 3-dimensional 
harmonic potential employed in the “shell” model. 
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