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Abstract
In this article, we have combined two well known third order methods one is Chebyshev and another is Super-
Halley to form an iterative method of third for solving polynomial equations with multiple polynomial zeros.
This constructed method is basically the mean of the methods Chebyshev and Super-Halley, so we name the
method as C-S Combined Mean Method. We have proposed some local convergence theorems of this C-S
Combined Mean Method to establish the computation of a polynomial with known multiple zeros. For the
establishment of this local convergence theorem, the key role is performed by a function(Real valued) termed
as the function of initial conditions. Function of initial conditions I is a mapping from the set D into
the set M , where D (subset of M ) is the domain of the C-S Combined mean iterative scheme.
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Here the initial conditions uses the information only at the initial point and are given in the form I(w0)
which belongs to J , where J is an in interval on the positive real line which also contains 0 and w0 is the
starting point. We have used the notion of gauge function which also plays very important role in establishing
the convergence theorem. Here we have used two types of initial conditions over an arbitrary normed field
and established local convergence theorems of the constructed C-S Combined mean method. The error
estimations are also found in our convergence analysis. For simple zero, the method as well as the results
hold good.

Keywords: Local convergence; gauge function; chebyshev method; super-halley method; initial conditions;
polynomial zeros; multiple zeros; normed field.

2010 Mathematics Subject Classification: 65H04; 12Y05.

1 Introduction
A very fundamental and a centuries-old topic in numerical analysis is to find the zeros of single variable
polynomial equations, which has many applications in engineering and other applied disciplines. As Galois
theorem states that for the polynomial equation that have a general solution are those of degree less or equal to
four. Therefore for the computation of zeros of a polynomial of higher degree our focus goes to iterative methods.

In the literature of iterative method for solving non-linear equations, Chebyshev and Super-Halley method are
among the efficient methods in solving non-linear equation along with Newton’s and Halley method. Recently
Osada ([1]), Neta ([2]), Chun and Neta ([3]), Ren and Argyros ([4]), Ivanov ([5]) and many others have studied
iterative method for solving an equation of non-linear type having multiple roots.

Chebyshev method for multiple zeros ([6], [7], [8]) is defined as following:

C(w) =

{
w − p2

2
g(w)
g′(w)

(
3−p
p

+ g(w)
g′(w)

g′′(w)
g′(w)

)
, if g′(w) 6= 0,

w, otherwise.
(1.1)

and Super-Halley method for multiple zeros [9] is defined as following:

S(w) =

w −
g(w)

2g′(w)

(
p+ 1

1− g(w)

g′(w)

g′′(w)

g′(w)

)
, if g′(w) 6= 0,

w, otherwise.
(1.2)

Motivated by ongoing research in this field, we have combined the above two methods to construct the C-S
Combined Mean Method.

In 2009 Proinov [10] established two forms of local convergence theorems about Newton’s technique under
two types of initial conditions. Recently, Proinov [11], [12] and later Ivanov [13] have introduced convergence
theorems for the Picard iterative scheme given as below

wm+1 = T (wm), m = 0, 1, 2, . . . , (1.3)

where T : D → M is the function of iteration defined in a metric space M and D ⊂ M . Later Proinov
and Ivanov [14] and Ivanov [15] used the same two types of initial conditions to establish local convergence
theorems about the Halleys method and the Chebyshevs method ((1.1)) for multiple polynomial zeros. In 2020
Ivanov [[13]] used the same two types of initial conditions to establish local convergence theorems of Super-Halley
method (1.2) for multiple polynomial zeros.
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Here, we investigate convergence of the C-S combined mean method for polynomial zeros which are multiple in
nature with the help of the same initial conditions as in the Proinov [11], [12], [10] and Ivanov [13].

In this paper section 2 is devoted to the preliminaries, necessary in establishing our results. Construction of our
C-S Combined mean method is presented in section 3. We have devoted Section 4 in establishing two types of
local convergence analysis of the proposed C-S combined mean method.

2 Preliminaries
In this paper, J will be treated as an interval in the positive real line containing 0 , that is J is of the form
[0, a] , [0, a) or [0,∞) . Sl(u) is the polynomial defined as

Sl(u) = 1 + u+ u2 + . . .+ ul−1. (2.1)

If l = 0 , then here we take Sl(u) = 0 . Here, we will use that 00 equal to 1 .

Definition 2.1. ([11]) A function ϕ : J → R+ is called quasi-homogeneous of order r ≥ 0 on J if there exists
a non decreasing function Ψ : J → R+ such that

ϕ(u) = urΨ(u) for all u ∈ J.

Following are some properties of the above function.

(P1) A function g is quasi-homogeneous function of degree r = 0 on J if and only if g is non-decreasing on
J .

(P2) If f and g are quasi-homogeneous functions of degree r ≥ 0 and s ≥ 0 on J , then fg is quasi-
homogeneous of degree r + s on J .

(P3) If two functions f and g are quasi-homogeneous of degree r ≥ 0 on J , then f + g is also quasi-
homogeneous of degree r on J .

We will use these properties in proving Lemmas and Theorems in the later section.

Definition 2.2. ([12]) A function ϕ : J → R+ is called gauge function of order r ≥ 1 on J if it satisfies the
following conditions:

(i) ϕ is quasi-homogeneous function of degree r on J .
(ii ) ϕ(u) ≤ u for all u ∈ J .

A gauge function ϕ of order r on J is said to be a strict gauge function if the last inequality is strict whenever
u ∈ J \ {0} .

Lemma 2.1. ([12]) If ϕ : J → R+ is a quasi-homogeneous function of degree r ≥ 1 on an interval J and
R ∈ J \ {0} is a fixed point of ϕ , then ϕ is a gauge function of order r on [0, R] . Moreover, if r > 0 , then ϕ
is a strict gauge function on [0, R) .

Definition 2.3. ([11]) Let T : D ⊂M →M be a map on an arbitrary set M . A function I : D → R+ is said
to be a function of initial conditions of T (with gauge function ϕ on J ) if there exists a function ϕ : J → J
such that

I(T (w)) ≤ ϕ(I(w)) with all w ∈ D with Tx ∈ D and I(w) ∈ J. (2.2)

Definition 2.4. ([11]) Let T : D ⊂ M → M be a map on a arbitrary set M and I : D → R+ be a function
of initial conditions of T with gauge function on J . Then, a point w ∈ D is said to be an initial point of T if
I(w) ∈ J and all of the iterates Tmw(m = 0, 1, 2, . . .) are well defined and belong to D .
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Definition 2.5. ([12]) Let T : D ⊂M →M be an operator in a normed space (M, ‖.‖) , and let I : D → R+

be a function of initial conditions of T with gauge function on J . Then T is said to be an iterated contraction
with respect to I at a point ζ ∈ D (with control function ϑ ) if I(ζ) ∈ J and

‖Tx− ζ‖ ≤ ϑ(I(w))‖w − ζ‖ for all w ∈ D with I(w) ∈ J, (2.3)

where ϑ : J → [0, 1) is a non-decreasing function.
We will use the following two theorems of Ivanov ([13]) to establish our result.

Theorem 2.2. ([13]) Let T : D ⊂M →M be an iteration function, ζ ∈ F and I : F → R+ defined by (4.1).
Suppose φ : J → R+ is a quasi-homogeneous function of degree p ≥ 0 and for each w ∈ F with I(w) ∈ J , the
following two conditions are satisfied:

(i) w belongs to the set D ;

(ii) ‖Tx− ζ‖ ≤ φ(I(w))‖w − ζ‖ .

Let also w0 ∈ F be an initial guess such that

I(w0) ∈ J and φ(I(w0)) < 1, (2.4)

then the following statements hold.

(i) Then the Picard iteration (1.3) is well defined and converges to ζ with order r = p+ 1 .

(ii) For all m ≥ 0 , we have the following error estimates:
‖wm+1 − ζ‖ ≤ µr

m

‖wm − ζ‖ and ‖wm − ζ‖ ≤ µsm(r)‖w0 − ζ‖ ,
where µ = φ(I(w0)) .

(iii) The Picard iteration (1.3) converges to ζ with Q-order r = p+ 1 and with the following error estimates:
‖wm+1 − ζ‖ ≤ (Rd)1−r‖wm − ζ‖r for all m ≥ 0 ,
where R is the minimal solution of the equation φ(u) = 1 in the interval J \ {0} .

Theorem 2.3. ([13]) Let T : D ⊂ M → M be an iteration function, ζ ∈ F and I : D ⊂ F → R+ defined
by (4.21). Suppose ϑ : J → R+ is a nonzero quasi-homogeneous function of degree p ≥ 0 and for each w ∈ F
with I(w) ∈ J , the following two conditions are satisfied:

(i) w belongs to the set D ;

(ii) ‖Tx− ζ‖ ≤ ϑ(I(w))‖w − ζ‖ .

Let also, w0 ∈ F be an initial guess such that

I(w0) ∈ J and ϑ(I(w0)) ≤ ψ(I(w0)), (2.5)

where ψ is defined by
ψ(u) = 1− u(1 + ϑ(u)).

Then the Picard iteration (1.3) is well defined and converges to ζ with the following error estimates:

‖wm+1 − ζ‖ ≤ θµr
m

‖wm − ζ‖ and ‖wm − ζ‖ ≤ θmµsm(r)‖w0 − ζ‖ for all m ≥ 0, (2.6)

where µ = ϑ(I(w0))
ψ(I(w0))

and θ = ψ(I(w0)) . In addition, if the second inequality in (2.5) is strict, then the order of
convergence of Picard iteration (1.3) is at least r = p+ 1 .
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3 Recurrence Relation for the Method
Here, we have derived a relation of the C-S Combination Method combining the two third order iterative method
namely Chebyshev and Super-Halley method. For g(w) 6= 0 , we define the C-S Combined Mean method as
follows

T (w) =
1

2
C(w) +

1

2
S(w)

= w − p2

4

g(w)

g′(w)

(
3− p
p

+
g(w)

g′(w)

g′′(w)

g′(w)

)
+

g(w)

4g′(w)

(
p+

1

1− g(w)
g′(w)

g′′(w)
g′(w)

)

= w − 1

2

g(w)

g′(w)

[
p2

2

(
3− p
p

+
g(w)

g′(w)

g′′(w)

g′(w)

)
+

1

2

(
p+

1

1− g(w)
g′(w)

g′′(w)
g′(w)

)]

Thus our C-S combined mean method has the following form

T (w) =

w −
1
2
g(w)
g′(w)

[
p2

2

(
3−p
p

+ g(w)
g′(w)

g′′(w)
g′(w)

)
+ 1

2

(
p+ 1

1− g(w)

g′(w)

g′′(w)

g′(w)

)]
, if g′(w) 6= 0,

w, otherwise.
(3.1)

The domain of the C-S Combined Mean iteration function T (3.1) is the set D , Which is defined below:

D = {w ∈ F : g′(w) 6= 0⇒ 1− g(w)

g′(w)

g′′(w)

g′(w)
6= 0}. (3.2)

4 Local Convergence of Combined Mean Method
Let g ∈ F [w] be a polynomial which having degree q(≥ 2) , such that all the zeros of g are in F , and also let
ζ ∈ F be a zero of the polynomial g such that multiplicity of ζ is p .

Here (F, ‖.‖) denotes a field having a norm and F [w] is the ring of polynomial on the field F .

Here, we examine the convergence of C-S Combined mean method (3.1) with the help of function of initial
conditions I , which is a map from D from R+ and is defined as follows:

I(w) = Ig(w) =
‖(w − ζ)‖

d
, (4.1)

here d represents the distance from ζ to the closest zero of g other than ζ ; if ζ is a only zero of g then we
set I(w) = 0 .

Lemma 4.1. Let g ∈ F [w] be a q(≥ 2) degree polynomial having all zeros in F , where F is a field. If
ζ1, . . . , ζs, are the all zeros of g , multiplicity of the zeros being p1, . . . , ps, respectively. Then

(i) If w ∈ F be such that for those w , g(w) 6= 0 , then for any one of i = 1, . . . , s, we have the following
g′(w)
g(w)

= pi+γi
w−ζi

, where γi = (w − ζi)
∑
j 6=i

pj
w−ζj

.

(ii) If w ∈ F is not of g and g′ , then for any i = 1, . . . , s, we have
g′′(w)
g′(w)

= (pi+γi)
2−(pi+δi)

(w−ζi)(pi+γi)
, where δi = (w − ζi)2

∑
j 6=i

pj
(w−ζj)2

.
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Proof.

(i) From
g′(w)

g(w)
=

s∑
j=1

pj
w − ζj

, we have

g′(w)

g(w)
=

s∑
j=1

pj
w − ζj

=
pi

w − ζi
+
∑
j 6=i

pj
w − ζj

=
pi + γi
w − ζi

, where γi = (w − ζi)
∑
j 6=i

pj
w − ζj

.

Which proves the first part of the lem.

(ii)Using the above identity and the following two identities

g′′(w)

g′(w)
=
g′(w)

g(w)
− g(w)

g′(w)

s∑
j=1

pj
(w − ζj)2

and
s∑
j=1

pj
(w − ζj)2

=
pi + δi

(w − ζi)2
,

we get
g′′(w)

g′(w)
=

(pi + γi)
2 − (pi + δi)

(w − ζi)(pi + γi)
, where δi = (w − ζi)2

∑
j 6=i

pj
(w − ζj)2

.

Lemma 4.2. Let w , ζ ∈ F and ζ1, . . . , ζs ∈ F be the list of all zeros of g which are other than ζ , then for
any of i = 1, . . . , s, the inequality listed below is accurate.

‖w − ζj‖ ≥ (1− I(w))d, (4.2)

where I : F → R+ is defined by (4.1).

Proof. According to the defn of d we have d ≤ ‖ζ − ζj‖ for all j = 1, . . . , s .

So using above and triangle inequality we have the following

‖w − ζj‖ = ‖ζ − ζj + w − ζ‖ ≥ ‖ζ − ζj‖ − ‖w − ζ‖ ≥ (1− I(w))d.

4.1 First kind of local convergence theorem
Here, F [w] is the ring of polynomials over the field F . Let g be a polynomial of degree q(≥ 2) , which is in
F [w] . In this section of the article we will establish the convergence of the C-S Combined mean method (3.1)
using the function of initial condition I : D → R+ which is defined in (4.1).

Next, we define the functions φsn, φsd and φc .

φsn(u) = (q − p)
(

2(q − p)u
1− u + q

)
u2, (4.3)
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φsd(u) =
2(p− qu)((2p− q)u2 − 2pu+ p)

1− u , (4.4)

φc(u) =
2(q − p)3u+ p(q − p)(3q − 2p)

2(p− qu)3
u2. (4.5)

where q ≥ p and p ≥ 1 .

Clearly, φsn is positive in the clo-open interval [0, 1) . Easily we can show that φsn quasi-homogeneous on the
clo-open interval [0, 1) of degree 2 . The second function φsd is decreasing as well as positive on the clo-open
interval [0, τ) , where τ is defined by

τ =


p
q
, if q ≥ 2p,

p

p+
√
p(q−p)

, if q < 2p.
(4.6)

Easily we can show that on the clo-open interval [0, p
q
) the function φc is a second degree quasi-homogeneous

function So, we can now define the function φs : [0, τ)→ R+ defined by

φs(u) =
φsn
φsd

=
(q − p)(q + (q − 2p)u)u2

2(p− qu)((2p− q)u2 − 2pu+ p)
. (4.7)

From the properties (P1) and (P2), we can easily say that on the interval [0, τ) , φs is quasi-homogeneous of
degree 2

Now, we define a function φ : [0, τ)→ R+ defined by

φ(u) =
φs(u)

2
+
φc(u)

2
. (4.8)

As φs(u) and φc(u) are both second degree quasi homogeneous function, so by property (P3), φ is also
quasi-homogeneous function of the same degree 2 in the clo-open interval [0, τ) .

Lemma 4.3. Suppose that g(w) ∈ F [w] be a q(≥ 2) degree polynomial which splits over F , and let ζ ∈ F
be a multiple zero of g(w) , multiplicity being p . Let w ∈ F satisfies the following

I(w) < τ, (4.9)

where the function I is defined by (4.1) and τ is defined by (4.6). Then the following two statements (i) and
(ii) are true.

(i) w is in D , the domain of the C-S Combined mean method and is defined in (3.2).

(ii) ‖Tx− ζ‖ ≤ φ(I(w))‖w − ζ‖ , where φ defined in (4.8).

Proof. Let w ∈ F satisfy the inequality (4.9). If any of p = q or w = ζ or both are true, then Tx = ζ and
therefore both the statements of the lem holds. So we assume that p 6= q and w 6= ζ . Let ζ1, . . . , ζs be the list
of all distinct zeros of g with multiplicities p1, . . . , ps , respectively. Let ζ = ζi, p = pi, γ = γi and δ = δi for
some 1 ≤ i ≤ s , where γi and δi defined in Lemma (4.1).

To prove the first part of the lem we have to show that g′(w) 6= 0 implies 1− g(w)
g′(w)

g′′(w)
g′(w)

6= 0 .

From Lemma (4.2) and equation (4.9), we get

‖w − ζj‖ ≥ (1− I(w))d > 0 ,as τ < 1 (4.10)
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for each j 6= i . Above assures g(w) 6= 0 . Then, Lemma (4.1) gives the following

g′(w)

g(w)
=
p+ γ

w − ζ , where γ = (w − ζ)
∑
j 6=i

pj
w − ζj

. (4.11)

Using the triangle inequality and equation (4.10), we have the following

‖γ‖ ≤ ‖w − ζ‖
∑
j 6=i

pj
‖w − ζj‖

≤ ‖w − ζ‖
(1− I(w))d

∑
j 6=i

pj =
(q − p)I(w)

1− I(w)
. (4.12)

Using the triangle inequality, equation(4.12) and as I(w) < τ ≤ p
q
, we get the following

‖p+ γ‖ ≥ p− ‖γ‖ ≥ p− (q − p)I(w)

1− I(w)
=
p− qI(w)

1− I(w)
> 0. (4.13)

Hence, p+ γ 6= 0 . This implies g′(w) 6= 0 .

Then, from the Lemma (4.1), we have the following

g′′(w)

g′(w)
=

(p+ γ)2 − (p+ δ)

(w − ζ)(p+ γ)
, where δ = (w − ζ)2

∑
j 6=i

pj
(w − ζj)2

. (4.14)

Now, from (4.11) and (4.14), we have

1− g(w)

g′(w)

g′′(w)

g′(w)
= 1− (w − ζ)

p+ γ

(p+ γ)2 − (p+ δ)

(w − ζ)(p+ γ)
=

p+ δ

(p+ γ)2
. (4.15)

Therefore, by triangle inequality, (4.10) and I(w) < τ , we have the following estimate

‖δ‖ ≤ (q − p)I(w)2

(1− I(w))2
and ‖p+ δ‖ ≥ p− ‖δ‖ ≥ φsd(I(w))

2(p− nE(w))(1− I(w))
> 0. (4.16)

From above, we conclude that ∥∥∥∥1− g(w)

g′(w)

g′′(w)

g′(w)

∥∥∥∥ > 0.

Therefore we can say that w ∈ D . Which proves (i) . From the construction of the C-S Combined mean
method, we have the following

Tx− ζ = w − ζ − p2

4

(w − ζ)
(p+ γ)

[
3− p
p

+
(p+ γ)2 − (p+ δ)

(p+ γ)2

]
− (w − ζ)

4(p+ γ)

[
p+

(p+ γ)2

p+ δ

]
=

(w − ζ)
2

[
1− p

2

3(p+ γ)2 − p(p+ δ)

(p+ γ)3

]
+

(w − ζ)
2

[
1− 2p2 + pδ + 2pγ + γ2

2(p+ γ)(p+ δ)

]
=

(w − ζ)
2

[
2γ3 + 3pγ2 + p2δ

2(p+ γ)3

]
+

(w − ζ)
2

[
2γδ + pδ − γ2

2(p+ γ)(p+ δ)

]
= κ(w − ζ),

where

κ =
1

2

([
2γ3 + 3pγ2 + p2δ

2(p+ γ)3

]
+

[
2γδ + pδ − γ2

2(p+ γ)(p+ δ)

])
. (4.17)
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Using (4.12), (4.13) and (4.16), we now estimate ‖κ‖ and is as follows.

‖κ‖ ≤ 1

2

(∥∥∥∥∥
[

2γ3 + 3pγ2 + p2δ

2(p+ γ)3

] ∥∥∥∥∥+

∥∥∥∥∥
[

2γδ + pδ − γ2

2(p+ γ)(p+ δ)

] ∥∥∥∥∥
)

≤ 1

2

([
2‖γ‖3 + 3p‖γ‖2 + p2‖δ‖

2‖(p+ γ)‖3

]
+

[
2‖γ‖‖δ‖+ p‖δ‖+ ‖γ‖2

2‖(p+ γ)‖‖(p+ δ)‖

])

≤
2
(

(q−p)I(w)
1−I(w)

)3
+ 3p

(
(q−p)I(w)
1−I(w)

)2
+ p2 (q−p)I(w)2

(1−I(w))2

4
(
p−qI(w)
1−I(w)

)3
+

2 (q−p)I(w)
1−I(w)

(q−p)I(w)2

(1−I(w))2
+ p (q−p)I(w)2

(1−I(w))2
+
(

(q−p)I(w)
1−I(w)

)2
4 p−qI(w)

1−I(w)
φsd(I(w))

2(p−qI(w))(1−I(w))

=
1

2

[
φsn(I(w))

φsd(I(w))
+ φc(I(w))

]
=
φc(I(w))

2
+
φc(I(w))

2
= φ(I(w)).

Which proves (ii) .

Theorem 4.4. Let g ∈ F [w] be a polynomial of degree q ≥ 2 that splits over F , and let ζ ∈ F be a zero of
g such that the multiplicity of ζ is p . Let w0 ∈ F satisfies the following initial condition

I(w0) < τ and φ(I(w0)) < 1, (4.18)

where I : F → R+ is defined in (4.1) and φ is defined in (4.8). Then the following three statements are true.

(i) Iterative sequence (3.1) of the C-S Combined mean method is defined and converges to ζ having order
of convergence 3 .

(ii) Error estimates are as follows

‖wm+1 − ζ‖ ≤ µ3m‖wm − ζ‖ and ‖wm − ζ‖ ≤ µ(3m−1)/2‖w0 − ζ‖, for allm ≥ 0, (4.19)

where µ = φ(I(w0)).

(iii) A posteriori error estimate given below

‖wm+1 − ζ‖ <
1

(Ud)2
‖wm − ζ‖3, for allm ≥ 0, (4.20)

where U ∈ (0, τ) is the unique solution of φ(u) = 1 in (0, τ) .

Proof. Lemma (4.3) and theorem (2.2) gives the proof.

4.2 Second kind of local convergence theorem
Let g ∈ F [w] be a polynomial which having degree q(≥ 2) , such that all the zeros of g are in F , and also let
ζ ∈ F be a zero of the polynomial g , multiplicity of ζ being p .

Here (F, ‖.‖) denotes a field having a norm and F [w] is the ring of polynomial on the field F .
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Here, we examine the convergence of C-S Combined mean method (3.1) with the help of function of initial
conditions I , which is a map from D from R+ and is defined as follows:

I(w) = Ig(w) =
‖(w − ζ)‖
ρ(w)

, (4.21)

here ρ(w) represents the distance from the zero w to the closest zero of g other than ζ ; if ζ is a only zero of
g then we set I(w) = 0 .
Now, we define two real functions ϑs and ϑc , for q > p ≥ 1 , by

ϑs(u) =
(q − p)(q + 2(q − p)u)u2

2(p− (q − p)u)(p− (q − p)u2)
(4.22)

and

ϑc(u) =
2(q − p)3u3 + p(q − p)(3q − 2p)u2

2(p− (q − p)u)3
. (4.23)

Clearly, the functions ϑs and ϑc are quasi-homogeneous functions of degree 2 on [0, τ1] , where τ1 is defined
by

τ1 =


p
q−p , if q ≥ 2p,√

p
q−p , if q < 2p.

(4.24)

Now, we can define a function ϑ : [0, τ1)→ R+ defined by

ϑ(u) =
ϑs(u)

2
+
ϑc(u)

2
. (4.25)

As both the functions ϑs(u) and ϑc(u) are quasi-homogeneous, therefore by property (P3) we can say that ϑ
is quasi-homogeneous of degree 2 in the interval [0, τ1) .

Lemma 4.5. Let g ∈ F [w] be a polynomial of degree q(≥ 2) which splits over F , and let ζ ∈ F be a zero of
g with multiplicity p . Let w ∈ F be such that

I(w) < τ1, (4.26)

where the function I is defined by (4.21).Then:

(i) w is in D , the domain of the C-S Combined mean method and is defined in (3.2).

(ii) ‖Tx− ζ‖ ≤ ϑ(I(w))‖w − ζ‖ , where ϑ is defined in (4.25).

Proof. Let w ∈ F satisfy the inequality (4.9). If any of p = q or w = ζ or both are true, then Tx = ζ and
therefore both the statements of the lem holds. So we assume that p 6= q and w 6= ζ . Let ζ1, . . . , ζs be the list
of all distinct zeros of g with multiplicities p1, . . . , ps , respectively. Let ζ = ζi, p = pi, γ = γi and δ = δi for
some 1 ≤ i ≤ s , where γi and δi defined in Lemma (4.1).

To prove the first part of the lem we have to show that g(w) 6= 0 and g′(w) 6= 0 implies 1 − g(w)
g′(w)

g′′(w)
g′(w)

6= 0 .
Clearly we can write the following

‖w − ζj‖ ≥ ρ(w) > 0 (4.27)

for each j 6= i . This assures that g(w) 6= 0 . Then, Lemma (4.1) gives the following

g′(w)

g(w)
=
p+ γ

w − ζ , where γ = (w − ζ)
∑
j 6=i

pj
w − ζj

. (4.28)
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Using the triangle inequality and (4.27), we have the following:

‖γ‖ ≤ ‖w − ζ‖
∑
j 6=i

pj
‖w − ζj‖

≤ ‖w − ζ‖
ρ(w)

∑
j 6=i

pj = (q − p)I(w). (4.29)

Using the triangle inequality, equation (4.29) and I(w) < τ1 , we have the following:

‖p+ γ‖ ≥ p− ‖γ‖ ≥ p− (q − p)I(w) > 0. (4.30)

Hence, p+ γ 6= 0 . This implies g′(w) 6= 0 .

Then from the Lemma (4.1), we have the following

g′′(w)

g′(w)
=

(p+ γ)2 − (p+ δ)

(w − ζ)(p+ γ)
, where δ = (w − ζ)2

∑
j 6=i

pj
(w − ζj)2

. (4.31)

Now from (4.28) and (4.31), we have

1− g(w)

g′(w)

g′′(w)

g′(w)
= 1− (w − ζ)

p+ γ

(p+ γ)2 − (p+ δ)

(w − ζ)(p+ γ)
=

p+ δ

(p+ γ)2
. (4.32)

Therefore, by triangle inequality, (4.27) and I(w) < τ1 , we have the following estimate

‖δ‖ ≤ (q − p)I(w)2 and ‖p+ δ‖ ≥ p− ‖δ‖ ≥ p− (q − p)I(w)2 ≥ 0. (4.33)

From above, we conclude that ∥∥∥∥1− g(w)

g′(w)

g′′(w)

g′(w)

∥∥∥∥ > 0.

Therefore we can say that w ∈ D . Which proves (i) From the construction of the C-S Combined mean method,
we have the following

Tx− ζ = w − ζ − p2

4

(w − ζ)
(p+ γ)

[
3− p
p

+
(p+ γ)2 − (p+ δ)

(p+ γ)2

]
− (w − ζ)

4(p+ γ)

[
p+

(p+ γ)2

p+ δ

]
=

(w − ζ)
2

[
1− p

2

3(p+ γ)2 − p(p+ δ)

(p+ γ)3

]
+

(w − ζ)
2

[
1− 2p2 + pδ + 2pγ + γ2

2(p+ γ)(p+ δ)

]
=

(w − ζ)
2

[
2γ3 + 3pγ2 + p2δ

2(p+ γ)3

]
+

(w − ζ)
2

[
2γδ + pδ − γ2

2(p+ γ)(p+ δ)

]
= κ(w − ζ),

where

κ =
1

2

([
2γ3 + 3pγ2 + p2δ

2(p+ γ)3

]
+

[
2γδ + pδ − γ2

2(p+ γ)(p+ δ)

])
. (4.34)
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We now use the estimates (4.29), (4.30) and (4.33) to estimate ‖κ‖ and is given as following

‖κ‖ ≤ 1

2

(∥∥∥∥∥
[

2γ3 + 3pγ2 + p2δ

2(p+ γ)3

] ∥∥∥∥∥+

∥∥∥∥∥
[

2γδ + pδ − γ2

2(p+ γ)(p+ δ)

] ∥∥∥∥∥
)

≤ 1

2

([
2‖γ‖3 + 3p‖γ‖2 + p2‖δ‖

2‖(p+ γ)‖3

]
+

[
2‖γ‖‖δ‖+ p‖δ‖+ ‖γ‖2

2‖(p+ γ)‖‖(p+ δ)‖

])
≤ 2 ((q − p)I(w))3 + 3p ((q − p)I(w))2 + p2(q − p)I(w)2

4 (p− (q − p)I(w))3

+
2(q − p)I(w)(q − p)I(w)2 + p(q − p)I(w)2 + ((q − p)I(w))2

4(p− (q − p)I(w))(p− (q − p)I(w)2)

=
2(q − p)3I(w)3 + p(q − p)(3q − 2p)I(w)2

2(p− (q − p)I(w))3

+
(q − p)(q + 2(q − p)I(w))I(w)2

2(p− (q − p)I(w))(p− (q − p)I(w)2)

=
ϑc(I(w))

2
+
ϑs(I(w))

2
= ϑ(I(w)).

Proof of the lem is therefore completed.

Next, we state the convergence theorem second type.

Theorem 4.6. Let g ∈ F [w] be a polynomial of degree q ≥ 2 which splits over F , and let ζ ∈ F be a zero
of g such that the multiplicity of ζ is p . Let w0 ∈ F satisfies the following initial conditions

I(w0) < τ1 and ϑ(I(w0)) ≤ ψ(I(w0)), (4.35)

where the function I is defined in (4.21) and the function ψ is defined below as

ψ(u) = 1− u(1 + ϑ(u)). (4.36)

Then, the C-S Combined mean method is defined and converges to ζ having the following error estimates

‖wm+1 − ζ‖ ≤ θµ3m‖wm − ζ‖ and ‖wm+1 − ζ‖ ≤ θmµ(3m−1)/2‖w0 − ζ‖ forall m ≥ 0, (4.37)

where θ = ψ(I(w0)) and µ = ϑ(I(w0))
ψ(I(w0))

.

Proof. Lemma (4.5) and Theorem (2.3) guarantees the proof.

5 Conclusions
In the first part of this study, we combine the Chebyshev and Super-Halley methods to create a method for
solving nonlinear equations. Secondly, we have showed the local convergence of the proposed method. This
concept can be used in combining other methods in order to get more accurate results and rapid convergence.
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