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ABSTRACT

Aims: Development of a precipitation prediction model for Cyprus.

Study Design: Precipitation data collected at 78 stations were used: data from 66
stations for model development and data from 12 stations for additional tests. Four
topographic factors — altitude, slope, longitude, and latitude — were taken into account for
model development.

Place and Duration of Study: All variables were obtained from the observation archives
of the Water Development Department of the Ministry of Agriculture, Natural Resources
and Environment of Cyprus, between 1961 and 1990.

Methodology: Multiple regression analysis, combined with residuals correction, was
carried out to develop a precipitation prediction model.

Results: The multiple regression model can explain 61.3% of the spatial variability of
precipitation over the whole year, 57.5% of variability in the wet season (October—April),
and 99.6% of variability in the dry season (May—September). Interpolation-based
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residuals correction improved the accuracy of our model (Adj R°=65.1%, 62.6% and
99.7%, respectively).

Conclusion: This approach, as presented in this paper, could potentially be applied to
Cyprus’ climate research.

Keywords: Cyprus; kriging interpolation; multiple regression; precipitation.
1. INTRODUCTION

Water balance (i.e. precipitation excess) directly affects nutrients concentration and biomass
yield in a forest site [1,2,3]. However, precipitation is usually measured at a very limited
number of stations, especially in mountain areas. As a result, accurate estimation and
prediction of precipitation represents a great challenge due to lack or non-validity of
observation data [4,5,6]. The development of geographic information systems (GIS) in recent
years provides increased opportunities for precipitation modeling.

Interpolation methods have been developed for rainfall modeling. Most of them are based
mainly on the similarity and topological relations of nearby sample points and on the value of
the variable to be measured [7,8,9]. Interpolation can be achieved using simple methods
(inverse distance weighting, trend surface analysis, splines and Thiessen polygons, etc.) or
more complex methods (geostatistical methods, such as kriging). Geostatistical interpolation
has become an important tool in climatology because it is based on the spatial variability of
the variables of interest and makes it possible to quantify the estimation uncertainty
[10,11,12,13,14,15]. However, interpolation methods only consider spatial relationships
among sampling points, and do not take into account other important topographic variations.
Consequently, the usual interpolation methods cannot provide researchers with adequate
precision of precipitation estimation, especially in complicated terrains of mountainous
regions [16,17].

In recent years, geographic and topographic factors have been integrated into the modeling
of precipitation [18]. Some authors have attempted to incorporate local topographic factors,
such as elevation, into geostatistical approaches [19], and others have developed models
relating climate to site position and elevation [20]. Relationships between topography and
the spatial distribution of precipitation have been analyzed for mountainous regions [21,22].
The precipitation-elevation regressions on independent slopes model brings a combination
of climatological and statistical concepts to the analysis of orographic precipitation [4], and
recently weighting functions to incorporate gauge data of neighboring topographic facets for
regressions were used [23]. More recent studies have considered more refined topographic
factors by using higher resolution digital elevation models (DEM) to predict the physical
influence of topographic variables on precipitation patterns. Precipitation models integrating
statistical and GIS techniques have become widespread and common [19,24]. Multiple linear
[25,26,27,28] and non-linear [16,29] regression models have proved to be rather effective.

2. MATERIALS AND METHODS
2.1 Study Area

Cyprus is situated at latitude 35° and longitude 33° on average, and it is surrounded by the
eastern Mediterranean Sea. The present study, focusing on Cyprus, was conducted to
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estimate precipitation in mountain regions, based on four topographic factors (altitude, slope,
longitude, and latitude). It is worth noting that the rainfall network of Cyprus is quite dense
(almost 1 gage each 69 kmz), which is not so usual in Mediterranean countries, and the data
are regularly verified and published by a National Technical Service. In Fig. 1 the study area
is shown; note that the area of interest is the area under the control of the Republic of
Cyprus, comprising about 59% of the island's area, not the Turkish-controlled area in the
north.
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Fig. 1. Political map of Cyprus

Cyprus has an area of 9251 km” area and is the third largest Mediterranean island.
Hydrographically, the island is divided into 9 hydrological regions composed by 70
watersheds and 387 sub-basins (according to Water Framework Directive 2000\60, as
published by the Ministry of Agriculture, Natural Resources and Environment, 2005 [30]).

In the middle of the southwest part of Cyprus the Troodos mountain is located (maximum
altitude = 1953 m), which is composed mainly of volcanic and some limestone rocks. At the
North coast we find the mountainous region of Pentadaktylos (maximum altitude = 1000 m).
Most rivers flow from the Troodos mountain. The lakes are mainly located in lowland areas.
Cyprus has a Mediterranean climate, with a typical seasonal variation particularly wide
concerning temperature, precipitation and the weather generally. Hot, dry summers from
mid-May to mid-September and rainy, rather unstable, winters from November to mid-March
are interrupted by short autumn and spring periods characterized by sudden weather
changes.
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The average annual rainfall is about 500 mm, with a significant decrease in 1972-73 (182
mm) and a significant increase in 1968-69 (759 mm) [31]. The average annual rainfall
increases from the southwest windward slopes (450 mm) to the Troodos mountain (about
1100 mm at the top). Rainfall increases during winter (December-February). The seasonal
distribution of surface runoff follows the seasonal distribution of precipitation, with minima
during summer and peak during winter. As a result of the East Mediterranean climate, which
is characterized by prolonged hot summers and low average annual rainfall; there are no
rivers with continuous flow throughout their entire length. Most rivers flow for 3 to 4 months
and dry up the rest of the year. Only parts of some rivers that are located upstream of the
Troodos mountain have continuous flow.

The Water Development Department of the Ministry of Agriculture, Natural Resources and
Environment, is authorized to keep hydrologic records and write annual hydrologic reports.

2.2 Data Collecting and Processing

Precipitation data from 78 stations were obtained from the observation archives of the
Ministry of Agriculture, Natural Resources and Environment of Cyprus. For each station, the
annual average amount of precipitation for the period 1961-1990 was used. Measurements
are related to the capacitive regions, as defined by the administrative boundaries of cities
and villages. Most of these stations were located at low altitude, lower than 300 m (Table 1).
Stations covered areas between 4.6 and 260 km?, with an average of 69 km?.

Table 1. Vertical distribution of precipitation stations in Cyprus

Altitude (m) Number of  Station Area Area proportions
stations proportions (%) (kmz) (%)

<=100 25 321 24225 44.9

(100,300] 32 41.0 2166.2 40.2

(300,600] 15 19.2 742.5 13.8

(600,900] 5 6.4 57.7 1.0

>1200 1 1.3 5.0 0.1

Total 78 100.0 5393.9 100.0

For the wet season (October—April), mean measured precipitation was 619.31 mm, for the
dry season (May—September) 456.00 mm, and for the whole year, 601.59 mm.

There are many factors which affect precipitation and its spatial distribution. Usually,
precipitation increases with growing elevation and it varies depending on slope [32]. Factors
closely related to precipitation include not only rugged topography, but also geographical
location, as rainfalls are mainly due to moisture-laden air masses from the southeast.
Therefore, latitude and longitude should be considered in the development of precipitation
modeling.

2.3 Calculation
The combination of models development (multiple regression models) and spatial

interpolation methods (ordinary kriging) has been demonstrated to be effective in modeling
precipitation [26]. Topographic variables, if considered on their own, are poorly related to
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rainfall statistics in our data, as shown in Table 2. In other words, none of the topographic
variables could be used by itself to appropriately explain the precipitation pattern.

Table 2. Pearson correlation coefficient matrix for independent variables and
precipitation data

Variable Annual Wet season Dryseason Altitude Slope Longitude
Altitude 0.674**  0.626** 0.630*

Slope 0.563* 0.646** 0.767** 0.541**

Longitude  0.282* 0.312* -0.302 0.071 0.052

Latitude -0.046 -0.090 -0.388 0.176 0.234* -0.034

** Significant at a = 0.01.
* Significant at a = 0.05.

In order to depict the relationships of precipitation and topographic variables, we tried to
model precipitation with multiple linear stepwise regression, as follows:

P=b,+bh+b,h’ +bh’ +b,slp+bslp® +bslp’

+b, X +b X* +b, X’ +b,)Y +b, Y’ +b,Y° )

where P represents precipitation (mm); by is constant; bs,...bs, represent the coefficients
obtained for each independent variable, h, slp, X, Y represent the variables of altitude (m),
slope (%), longitude (°), and latitude (°).

From the 78 precipitation stations, a total of 66 (about 85%) were selected for modeling by
random sampling, and the remaining 12 stations (about 15%) were used for validation
(stations 16, 26, 37, 42, 46, 52, 58, 64, 71, 75, 76, and 77). The split of the fitting and testing
data was done by applying repeated random grouping for the number of experimental data
(78 times) [33]. The constants were acquired by means of the least squares method in the
regression module of SPSS software, and all the regression statistics were also created by
the software.

Kriging belongs to the family of linear least squares estimation algorithms [34,35,36]. The

aim of kriging is to estimate the value of an unknown real-valued function f at a point x given
the values of the function at some other points, x4, ..., x,. A kriging estimator is said to be

70k
linear because the predicted value J(x )is a linear combination that may be written as
SO#) =2 w(*)f(x)
i=1

The weights w; are solutions of a system of equations which is obtained by assuming that fis
a sample-path of a random process F(x), and that the error of prediction

50 = F() = X w(0F (3)

is to be minimized in some sense. Depending on the stochastic properties of the random
field different types of kriging apply. The type of kriging determines the linear constraint on
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the weights w; implied by the unbiasedness condition; i.e. the linear constraint, and hence
the method for calculating the weights, depends upon the type of kriging. Ordinary kriging is
the most commonly used type of kriging, assuming a constant but unknown mean.

The semivariogram/covariance cloud allows us to examine the spatial autocorrelation
between the measured sample points. In spatial autocorrelation, it is assumed that things
that are close to one another are more alike than those further apart. The
semivariogram/covariance cloud lets us examine this relationship. To do so, a
semivariogram value, which is the squared difference between values at paired locations, is
plotted on the y-axis relative to the distance separating the two observations. Semivariogram
values are averaged within classes of distance to facilitate the visualization of how the
semivariogram value increases with distance. However, a certain distance is reached where
the cloud flattens out, indicating that the relationship between the pairs of locations beyond
this distance is no longer correlated.

3. RESULTS
3.1 Regression Model
It has been shown that when the fit set accounts for more than 80% of the whole set, the

adjusted determination coefficient (adj Rz) tends to remain stable [37]. Hence, it is
reasonable to select 85% (66 stations) of the whole set as the fit set (Fig. 2).
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Fig. 2. Error stability of the precipitation prediction model

Using stepwise method, model (1) took the following form, for annual and wet season
precipitation:
P =b, +bh+b,h’ +bh’ +b,slp+bslp® + bslp’

+b, X +b X? +b, X’ +b,Y +b,Y’
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As for the dry season, the precipitation model is:

P=b,+bh+bh’+b,slp+bslp’
+b, X +b,X* +b,Y +b,Y’

Statistics for these models are given in Table 3. Standardized regression coefficients are
calculated, in order to determine the relative importance of the significant predictor variables.
Multiple R? is calculated, since the regression was conducted for a series of fits sets, as the
proportion of variance in the dependent variable that is explained by the additive
combination of effects of the independent variables; Adj R? is the adjusted determination
coefficient, which compensates for the limitation of the determination coefficient by taking
into account the size of the sample and the number of prediction variables, and it exactly
represents the proportion of variation of the dependent variable (i.e. annual mean
precipitation) explained by the multiple regression model; RMSE is the root mean squared
error, which describes the error of prediction in the modeling of precipitation; F is the value of
the F statistical test; DW is the value of the Durbin-Watson statistic — a test statistic used to
detect the presence of autocorrelation in residuals, based on regression analysis.

The models for both annual and seasonal precipitation pass the F test at 0.05 significance
level. The determination coefficients (multiple R? and adj_ Rz) show the goodness-of-fit of
the annual and seasonal models (Table 3). The capability of the model to explain the spatial
variability of precipitation varies depending on the period: its accuracy is 99.6% for the dry
season, and 61.3% for the whole year, but only 57.5% for the wet season. The root mean
squared error (RMSE) — an index for estimating relative error — is 5.95%, 62.24%, and
65.20% for the three periods, respectively. The low R? and high RMSE for the wet season
show that our multiple regression model does not work well. The values of the Durbin-
Watson test show positive autocorrelation among the residuals for both annual and wet
season models and a negative autocorrelation for the dry season model.

We could also note that, even though h® has a small coefficient compared to the other
predictors, in all three models, n actually has a more important contribution because it has a
large absolute standardized coefficient.

3.2 Ordinary Kriging

In order to improve the results of the regression model, we adopted ordinary kriging. An
exponential semivariogram model was used for predicting the residuals of the 66
precipitation stations. Statistics of the kriging interpolation model are given in Table 4. The
model for both annual and seasonal (wet — dry season) precipitation passes the F test at
0.05 significance level. The higher determination coefficients (Rz) and adj_ R? show the
better goodness-of-fit of the kriging model (Table 3). The capability of the model to explain
the spatial variability of precipitation is 99.7% for the dry season, 65.1% for the whole year,
and 62.6% for the wet season. The root mean squared error (RMSE) — an index for
estimating relative error — is 5.60%, 59.09%, and 61.15% for the three periods, respectively.
This shows that our kriging interpolation method really improves the multiple regression
model.
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Table 3. Regression statistics and evaluation of the multiple regression model (including 66 stations used for modeling)

Whole season Wet season Dry season
Unstandardized Standardized Unstandardized Standardized Unstandardized Standardized
coefficients coefficients coefficients coefficients coefficients coefficients
by 498.383 316.393 530.347
b4(h) 0.286 0.388 0.676 0.857 0.215 0.246
by(h?) 0.001 0.767 -0.001 -1.036 - -
bs(h’) -8.23E-007 -0.741 1.12E-006 0.836 -7.03E-006 -0.946
b4(slpl 77.573 1.590 71.916 1.471 -14.424 -0.214
bs(slp”) -7.796 -2.214 -6.039 -1.746 - -
be(slIp’) 0.275 1.064 0.114 0.461 2.273 1.140
b(X) -3.811 -0.664 -3.685 -0.653 -12.537 -2.619
bs(X?) 0.176 3.264 0.176 3.357 - -
bo(X°) -0.001 -2.515 -0.001 -2.628 0.001 2.824
b1o(Y) -4.212 -0.378 0.098 0.009 10.114 1.221
bix(Y) 0.000 0.135 0.000 -0.235 -0.001 -1.708
Multiple R* 0.678 0.668 1.000
Adj_R? 0.613 0.575 0.996
RMSE (mm) 98.193 102.464 5.484
RMSE (%) 62.24% 65.20% 5.95%
F (sig<0.05) 10.345 7.147 317.608
DW 1.564 1.593 3.050

Adj_ R’ is the adjusted determination coefficient.
RMSE is the root mean squared error.
DW is the value of the Durbin-Watson statistic.
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Table 4. Statistics and evaluation of the kriging interpolation model (including 66 stations used for modeling)

Whole season Wet season Dry season
Unstandardized Standardized Unstandardized Standardized Unstandardized Standardized
coefficients coefficients coefficients coefficients coefficients coefficients
by 523.983 226.376 531.444
b4(h) 0.274 0.381 0.918 1.134 0.215 0.245
by(h?) 0.001 1.039 -0.002 -1.754 - -
bs(h’) -1.05E-006 -1.028 1.91E-006 1.386 -7.03E-006 -0.938
b4(slpl 74.818 1.571 69.554 1.418 -14.427 -0.207
bs(slp?) -7.336 -2.124 -4.694 -1.335 - -
be(slIp’) 0.259 1.014 0.009 0.034 2.274 1.101
b(X) -3.641 -0.704 -4.278 -0.860 -12.531 -2.361
bs(X?) 0.158 3.277 0.185 4.036 - -
bo(X°) -0.001 -2.498 -0.001 -3.113 0.001 2.425
b1o(Y) -4.809 -0.445 1.857 0.186 10.078 1.173
bix(Y) 0.000 0.211 0.000 -0.404 -0.001 -1.581
Multiple R* 0.710 0.708 1.000
Adj_R? 0.651 0.626 0.997
RMSE (mm) 2282.017 2309.718 145.1824
RMSE (%) 59.09% 61.15% 5.60%
F (sig<0.05) 12.014 8.611 358.186
DW 1.450 1.680 3.049

Adj_ R’ is the adjusted determination coefficient.
RMSE is the root mean squared error.
DW is the value of the Durbin-Watson statistic.
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The Durbin-Watson values in Table 4 show autocorrelation among the residuals also. Even
though h® has a small coefficient compared to the other predictors, in all three models after
kriging improvement, h° actually has a more important contribution because it has a large
absolute standardized coefficient.

Looking at the semivariogram (Fig. 3), we can assume that the phenomenon to estimate is
smooth (i.e., rainfall values change gradually with the distance). The semivariogram
represents the continuity structure quite well also. The presence of locally changing linear
drift in the data is indicated when the semivariogram has a gently parabolic concave-upward
shape [38,39].
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Fig. 3. Semivariogram of the ordinary kriging interpolation model
3.3 Validation of the Kriging Interpolation Model with 12 Test Stations

We calculated the mean RMSE of repeated (78 times) precipitation estimations for the 12
test stations. The RMSE for the whole year yielded a precipitation value of 1047.486 mm,
accounting for 23.10% of measured precipitation. For the seasonal models, the variance-
covariance matrices were singular. As a result, influence statistics could not be computed.
Upon considering the kriged residuals grids, mean RMSE for validation data (repeated 78
times precipitation estimations) reduced considerably. This demonstrates that our kriging
interpolation method works quite well for interpreting the spatial variability of annual
precipitation.

Differences between the initial multivariate regression model and the kriging improvement
are illustrated in Figs. 4a and 4b. Each figure is a rectangular map, in which the study area is
defined by specifying the longitude/latitude of the lower left and upper right corners instead
of the usual west, east, south, north boundaries. The reason for specifying the study area
this way is that, lines of equal longitude and latitude are not straight lines, and are thus poor
choices for map boundaries. By comparing the two figures, we can distinguish slight
differences in colored areas, which correspond to annual predicted precipitations.
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Fig. 4a. Predicted spatial distribution of annual precipitation in Cyprus, for the period
1961-1990 — multivariate regression model

Fig. 4b. Predicted spatial distribution of annual precipitation in Cyprus, for the period
1961-1990 - kriging interpolation model

We can see an improvement in precipitation estimations with the kriging interpolation model,

in relation to the multiple regression model in Fig. 5, where errors generally seem to be fairly
smaller.
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Fig. 5. Errors from the multivariate regression model and the kriging interpolation
model

4. DISCUSSION

As a consequence of intense industrialization, rapid population growth and extensive
changes in land use, the Eastern Mediterranean and the Middle East are expected to
become a global climate change “hot spot”, with much dryer and warmer climate conditions
in the years to come, based on results of global climate models. Looking at climate models
for Cyprus and the period from 2020 to 2050, one of the most remarkable results is an
increase in extremely hot summer days with maximum temperatures exceeding 38°C for an
additional two weeks per year. Additionally, warm nights with minimum temperatures above
25°C for an additional one month are expected. To make things worse, precipitation is
expected to decline with reductions in mean annual rainfall of 10-15% over the 2020 to 2050
period, while most of the decrease in rainfall will be seen in the spring and summer seasons
[40].

Now more than ever, there is a need for a reliable precipitation model, especially for the dry
season, in order to have more dependable and consistent results in climate research [41,42].
Our precipitation model, which is proven to be particularly accurate for the dry season, can
increasingly provide clues and insight into the likely impacts of climate change on Cyprus,
especially for the dry season. By assessing these impacts and quantifying their economic
and social costs, Cypriot government can be directed to more effective and more
comprehensive adaptation strategies addressing the ever more pressing problems of climate
change in the region.
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5. CONCLUSION

The application of multiple regression analysis with kriging interpolation improvement, lead
to the development of the following models, for precipitation estimation in Cyprus:

P =523.983+0.274h+0.001h* —0.000001054 + 74.818slp — 7.336slp” +0.259sIp’
—3.641.X +0.158X* —0.001.X° —4.809Y +0.001Y>

(annual, adjusted R?=0.651)

P =226.376+0.9184—0.002/> + 0.000001914 + 69.554slp — 4.694slp> +0.009slp’
~4.278X +0.185X> —0.001.X" +1.857Y +0.0017°

(wet season, adjusted R°=0.626)

P =531.444+0.215h—0.00000703/* —14.427slp + 2.274slp’
—12.531X +0.001.X° +10.078Y —0.001Y"

(dry season, adjusted R*=0.997).

Kriging interpolation methods can depict most of the spatial variability of precipitation. Our
models, especially the dry season model, considering its effectiveness even though
precipitation data came from a limited number of stations, could be applied to Cyprus’
climate research.
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