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Abstract

An orthogonal double cover (ODC) of a graph H is a collection   :vG v V H  of

 V H subgraphs of H such that every edge of H is contained in exactly two members of

 and for any two members uG and vG in  ,    u vE G E G is 1 if    ,u v E H

and it is 0 if    ,u v E H . An ODC  of H is cyclic (CODC) if the cyclic group of

order  V H is a subgroup of the automorphism group of  . In this paper, the CODCs of

certain circulants with a specific regularity by certain infinite graph classes are concerned.
Keywords: Graph decomposition, orthogonal double covers, orthogonal labelling, circulants.

1 Introduction

Let H be any graph and let  1 2 ( ), , , V HG G G  be a collection of  V H subgraphs of

H .  is a double cover (DC) of H if every edge of H is contained in exactly two members

in  . If iG G for all   1, 2, | |,i V H  , for some graph G , then  is a DC of H

by G . If  is a DC of H by G then      2V H E G E H .

A DC  of H is an orthogonal double cover (ODC) of H if there exists a bijective mapping

 :V H   such that for every choice of distinct vertices u and v in ( )V H ,
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1  , ,

0 .  ,

if u v E H
E u E v

if u v E H
 

  


If iG G for all   1, 2, | |,i V H  , then  is an ODC of H by G .

An automorphism of an ODC  1 | |2, , ,{ }V HG G G  of H is a permutation

   :V H V H  such that    | |, , ,( ) ( ) V HG G G   ₁ ₂  , where for

  1, 2, | |,i V H  ,  iG is a subgraph of H with

       :i iV G v v V G   and             , : ,i ivE G u u v E G    .

An ODC  of H is cyclic (CODC) if the cyclic group of order |V(H)| is a subgroup of the
automorphism group of  , the set of all automorphisms of  .

Throughout this article, we used the usual notation: nK for the complete graph on n vertices,

,m nK for the complete bipartite graph with partition sets of sizes m and n , 1nP  for a path on

1n vertices, nC for the cycle on n vertices, nS for the star on 1n vertices.

For a sequence , , ,{ }kd d d₁₂ of positive integers with 1
2kd d d n       

₁ ₂ , the

circulant graph ; , , ,( { })kCirc n d d d₁₂ has vertex set n={0,1,…,n-1}; two vertices 1v

and 2v are adjacent if and only if  1 2 modiv v d n   for some i ,  1,2, ,i k  . For an

edge  1 2,v v in ; , , ,( { })kCirc n d d d₁₂ , the length of  1 2,v v is

1 2 1 2,min{| |}v v n v v   .

Given two edges 1 2, }{e v v₁ and 1 2,{ }e u u₂ of the same length l in

; , , ,( { })kCirc n d d d₁₂ , the rotation-distance  r l between 1e and 2e is

  1 2 1 1 2 1 2 1 2 2 2 1{ { } { }min , : , , },r l r r v r v r e u r u r e       , where addition and

difference are calculated inside n (that is, addition and difference are reduced modulo n ). Note

that if  r l l , then the edges 1e and 2e are adjacent; if  r l l , then the edges 1e and 2e
are nonadjacent.
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Consider the complete graph ( ; 1, 2, , )
2n
nK Circ n        

. The author of [1] introduced the

notion of an orthogonal labelling. Given a graph  ,G V E with 1n edges, a 1 1 mapping

:V n is an orthogonal labelling of G if:

(1) For every
( 1)1, 2, ,

2
nl         

, G contains exactly two edges of length l ,

and exactly one edge of length  / 2n if n is even, and

(2)   1 1: 1,2, , 1, 2, ,
2 2

n nr l l
                          

.

The following theorem of Gronau et al. [1] relates CODCs of nK and the orthogonal labelling.

Theorem 1 A CODC of nK by a graph G exists if and only if there exists an orthogonal

labelling of G .

Sampathkumar and Srinivasan [2] called the orthogonal labelling an orthogonal {1,2,…,
2
n 
  

} -

labelling and generalized it to an orthogonal 1 2, , },{ kd d d -labelling, where 1 2, , },{ kd d d

is a sequence of positive integers with 1 21 kd d d   
2
n 
  

a) Either n is odd or n is even and  
2k
nd  :

Given a subgraph G of 1 2; ,( { }), , kCirc n d d d with 2k edges, a labelling of G , in n, is

an orthogonal 1 2, , },{ kd d d -labelling of G if:

(i) for every 1 2, ,{ }, kl d d d  , G contains exactly two edges of length l , and

(ii)   1 2 1 2: , , , , , ,{ { }} { }k kr l l d d d d d d    .

b) n is even and
2k
nd  :
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Given a subgraph G of 1 2 1; , , ,( { }),
2k
nCirc n d d d  with 2 1k  edges, a labelling of G , in

n, is an orthogonal 1 2 1, , ,
2

{ },k
nd d d  -labelling of G if:

(i) for every 1 2 1, , ,{ }kl d d d   , G contains exactly two edges of length l and G

contains exactly one edge of length
2
n

, and

(ii)   1 2 1 1 2 1{ { }} {: , , , , , , }k kr l l d d d d d d     .

The following theorem of Sampathkumar and Simaringa [2] is a generalization of Theorem 1.

Theorem 2 A CODC of 1 2; ,( { }), , kCirc n d d d by a graph G exists if and only if there

exists an orthogonal 1 2, , },{ kd d d -labelling of G .

For results on ODCs of graphs, see [3], a survey by Gronau et al.

In [4], we proved the following. (i) All 3-regular Cayley graphs, except 4K , have ODCs by 4P .

(ii) All 3-regular Cayely graphs on Abelian groups, except 4K , have ODCs by 3 2P K . (iii) All

3-regular Cayley graphs on Abelian groups, except 4K and the 3-prism, have ODCs by 3K₂.
In [5], Sampathkumar et al. introduced a special kind of orthogonal labelling called orthogonal 
-labelling and they found it for some caterpillars of diameters 4 .

In [2], Sampathkumar et al. completely settled the existence problem of CODCs of 4-regular
circulant graphs.

Other results of ODCs by different graph classes can be found in [1,2,4,6].

The above results on ODCs of graphs with lower degree motivated me to consider CODCs by
certain infinite graph classes which has an orthogonal 1 2, , },{ kd d d -labelling, these graph
classes are:

1,2 : 0nH n  , v2n, graphs consisting of the edges set:

        1,2 , , , 2 :1 1 ,nE H v v n j v n j v j j n v v n           .

2,2 : 2nH n  , v2n, graphs consisting of   31n C sharing an edge, whose edges set is



British Journal of Mathematics & Computer Science 3(3), 425-436, 2013

429

        2,2 , 2 , 1, 2 :1 1 , 1nE H v v j v v j j n v v         .

3, : 4nH n  , graphs consisting of 1n vertices ,  ,  ,  ,  1 4ix y z a i n   and edges set

          3,  , , , , , , , :1 4n iE H x y y z z x z a i n    .

4, : 8nH n  , graphs consisting of 3n vertices ,  ,  ,  ,  ,  ,  ,  1 8ix y z w u v a i n   and
edges set

                  4,     , , , , , , , , , , , , , , , :1 8n iE H x y y v x z z v x u u v v x s a i n    .

5,2 : 11nH n  , graphs consisting of 11 vertices 1 2 11, , ,v v v connected to form two cycles of

length 6 where they share a vertex then its edges set is

  1 2 2 3 3 4 4 5 5 6 6 1
5,2

1 7 7 8 8 9 9 10 10 11 11 1

{{ } { } { } { } { } { }}
{{

, , , , , , , , , , ,
, , , , , , , ,} { } { } { } { , , ,} { }}n

v v v v v v v v v v v v
E H

v v v v v v v v v v v v
 

  
 

6,2 : 11nH n  , graphs consisting of 12 vertices 1 2 12, , ,v v v connected to form two cycles of
length 6 and an edge where all of them share a vertex then its edges set is

 
1 2 2 3 3 4 4 5 5 6 6 1

1 7 7 8 8 9 9 10 10 11 1,

2

6 2 1 1

1 1

{{ } { } { } { } { } { }}
{{ } { } { } { } {

, , , , , , , , , , ,
, , , , , , , , , } { }}

{
, ,

{ }, }
n

v v v v v v v v v v v v
E H v v v v v v v v v v v v

v v

 
   
 
 

₁ .

7,2 : 11nH n  , graphs consisting of 14 vertices 1 2 14, , ,v v v connected to form two cycles of

length 6 and a star 3S where they share the center vertex of the star then its edges set is

 
1 2 2 3 3 4 4 5 5 6 6 1

7,2 1 7 7 8 8 9 9 10 10 11 11 1

1

, , , , , , , , , , ,
, , , , , ,

{{ } { } { } { } { } { }}
{{ } { } { } { } { } { }}
{{ } }

, , , , ,
, :12 14

n

i

v v v v v v v v v v v v
E H v v v v v v v v v v v v

v v i

 
   
   

.

8, : 17nH n  , graphs consisting of 11 vertices 1 2 11, , ,v v v connected to form two cycles of

length 5 where they share a vertex and each of which connected to an edge then its edges set is
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1 2 2 3 3 4 4 5 5 1

8, 1 6 6 7 7 8 8 9 9 1

9 10 5 11

, , , , , , , , ,
, , , , , , , ,

{{ } { } { } { } { }}
{{ } { } { } { } { }}
{{ } { }}

,
, , ,

n

v v v v v v v v v v
E H v v v v v v v v v v

v v v v

 
   
 
 

.

Finally, for any positive integers m and n , let G be a graph that has an orthogonal

1 2, , },{ kd d d -labelling, then the edges of length 1 2, ,{ },i kd A d d d   are

 ,
i id d iu u d and  ,

i id d iu u d   where  1,2, ,i k  and ,
i id du u n.  Also, let H

be a graph that has an orthogonal 1 2, , },{ st t t -labelling, then the edges of length

1 2, ,{ },j st B t t t   are    ,
j jt t jv v t and  ,

j jt t jv v t   where  1,2, ,j s  and

,
j jt tv v m. Then let us define a new graph  ,P G H to be the graph with edges set

     , , , :  and}
i j i jd t d i t j i ju v u d v t d A t B    . For this definition, Theorem 11 can be

deduced.

2 CODCs by Certain Infinite Graph Classes

Theorem 3 For any positive integer n , there exists a CODC of  2 1n  -regular

 2 , 1,2, ,{ }Circ n n by 1,2nH .

Proof. In 1,2nH , the edge of length n is  ,v v n ; the other lengths are the elements of

   :1 1 1, 2, , 1n j j n n       and      :1 1 1, 2, , 1n j j n n       ,

then (i) for every  1,2, , 1 ,l n   1,2nH contains exactly two edges of length l , and (ii)
since every two edges of the same length are adjacent then
     : 1, 2, , 1{ 1,2 ,} , 1r l l n n      .

From (i) and (ii), 1,2nH has an orthogonal  1,2, ,n -labelling.∎
Theorem 4 For any positive integer n , there exists a CODC of  2 1n  -regular

 2 , 1,2, ,{ }Circ n n by 2,2nH .

Proof. In 2,2nH ,

Case 1. n is even.
The edge of length
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n is  ,v v n and the edges of lengths
2

2 :1 1j j n
   

 
 

are

 , 2 :1 1
2

v j nv j    
 
 

and  , 2 : 1 1
2
nv v j j n     

 
 

; ones of lengths

2 1
2

1 :1 nj j 
   


 


are

 
2

1, 2 :1 1v v j j n 
    


 


and  1, 2 : 1 1
2
nv v j j n      

 
 

, then (i) for

every  1,2, , 1l n   , 2,2nH contains exactly two edges of length l , and (ii) since every

two edges of the same length are adjacent then       : 1, 2, , 1 1,2, , 1r l l n n      .

Case 2. n is odd.

The edge of length n is  1, 1v n  and the edges of lengths
12 :1

2
nj j 

  
 
 

are

  1, 2 :1
2

nv v j j 
   

 
 

and   1, 2 : 1
2

nv v j j n
    

 
 

; ones of lengths

2 1
2

1 :1 nj j     
 
 

are   11, :1
2

2v v j j n  
   


 


and

  11, 2 : 1
2

nv v j j n 
      

 
, then (i) for every  1,2, , 1l n   , 2,2nH contains

exactly two edges of length l , and (ii) since every two edges of the same length are adjacent then

     : 1, 2, , 1{ 1,2 ,} , 1r l l n n      . From (i) and (ii), 2,2nH has an orthogonal

 1,2, ,n -labelling.∎
Theorem 5 For any positive integer 4n  , there exists a CODC of  1n  -regular

, 1, 2, ,{ })
2

( nCirc n     
by 3,  nH .

Proof. Consider the following labelling  of  3, : 0;nH x    1;y    2;z 

  3ia i   if 1 4i n   .

Case 1. n is even.
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The edge of length
2
n

is 2, 2
2
n   

 
; ones of length 1 are  0,1 and 1, 2 ; ones of length l

where 2 1
2

  l n
   are  

2
2, : 4 1j j n

   
 
 

and  
2

2, : 3 1j n j n    
 
 

, then (i)

for every
2

1,2, , 1l n 
  

 


, 3,  nH contains exactly two edges of length l , and (ii) since

every two edges of the same length are adjacent then

  : 1, 2, , 1
2 2

1,2, , 1n nr l l 
     
   
  

  
 


.

Case 2. n is odd.

The edges of length 1 are  0,1 and  1, 2 ; ones of length l where 2 1
2

l n
 


are

 2, : 4 3
2

j j n 
  

 
 

and  2, : 15
2

nj j n  
 

 
 

, then (i) for every

2
1, 2, ,l n       

, 3,nH contains exactly two edges of length l , and (ii) since every two edges

of the same length are adjacent then   : 1, 2, , 1, 2}
2

{ , ,
2
n nr l l                     

.∎
Theorem 6 For any positive integer 8n  , there exists a CODC of  1n  -regular

, 1, 2( { }, , )
2

Circ nn     
by 4,nH .

Proof. Consider the following labelling  of 4,nH :   0x  ;   1y  ;   2z  ;

  1u n   ;   4v  ;   6ia i   if 1 8i n   .

Case 1. n is even.

The edge of length
2
n

is 4, 4
2
n   

 
; ones of length 1 are  0,1 and  0, 1n  ; ones of

length 2 are  0,2 and  2,4 ones of length l where 3
2

1l n
   are

 
2

4, : 7 3j j n
   

 
 

and  
2

4, : 5 2j n j n    
 
 

, then (i) for every
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2
1,2, , 1l n 
  

 


, 4,nH contains exactly two edges of length l , and (ii) since every two

edges of the same length are adjacent then   : 1, 2, , 1
2 2

1,2, , 1n nr l l 
     
   
  

  
 


.

Case 2. n is odd.

The edges of length 1 are  0,1 and  0, 1n  ; ones of length 2 are  0,2 and  2,4 ones

of length l where 3 1
2

l n
 


are  4, : 7 7

2
j j n 

  
 
 

and

 4, : 29
2

nj j n  
 

 
 

, then (i) for every
2

1, 2, ,l n       
, 4,nH contains exactly

two edges of length l , and (ii) since every two edges of the same length are adjacent then

  : 1, 2, , 1 1,2, ,
2 2
nr nl l 

    
    

        


 
.∎

Theorem 7 For any positive integer 11n  , there exists a CODC of the 12-regular

 2 , 1,2,3,4,{ }6, 4Circ n n n  by 5,2nH .

Proof. Consider the following labelling  of 5,2nH : ( ) 0v ₁ ; ( ) 1v ₂ ; ( ) 4v ₃ ;

( ) 7v ₄ ; 5( ) 3v n   ; 6 1( 2)v n   ; 7 2( )v  ; 8 6( )v  ; 9 1( 0)v  ;

10( ) 4v n   ; 11( ) 2 2v n   .

Then the edges of length 1 are  0,1 and  0, 2 1n  ; ones of length 2 are  0,2 and

 0,2 2n  ; ones of length 3 are  1, 4 and  4,7 ; ones of length 4 are  2,6 and 6,10 ;

ones of length 6n are  10, 4n  and 4, 2 2n n  ; ones of length 4n are  7, 3n 
and  3,2 1n n  , then (i) for every  1,2,3,4, 6, 4l n n   , 5,2nH contains exactly two

edges of length l , and (ii) since every two edges of the same length are adjacent then

     : 1, 2,3,4, 6, 4 1,2,3,4, 6, 4{ }r l l n n n n      .∎
Theorem 8 For any positive integer 11n  , there exists a CODC of the 13-regular

 2 , 1,2,3,4,{ }6, 4,Circ n n n n  by 6,2nH .
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Proof. Consider the following labelling  of 6,2nH : 1 0( )v  ; 2 1( )v  ; 3 4( )v  ;

4 7( )v  ; 5( ) 3v n   ; 6 1( 2)v n   ; 7 2( )v  ; 8 6( )v  ; 9 1( 0)v  ;

10( ) 4v n   ; 11( ) 2 2v n   ; 12( )v n  .

Then the edge of length n is  0,n ; ones of length 1 are  0,1 and  0, 2 1n  ; ones of

length 2 are  0,2 and  0,2 2n  ; ones of length 3 are  1, 4 and 4,7 ; ones of length 4

are  2,6 and  6,10 ; ones of length 6n are  10, 4n  and  4, 2 2n n  ; ones of

length 4n are  7, 3n  and  3,2 1n n  , then (i) for every  1,2,3,4, 6, 4l n n  

, 6,2nH contains exactly two edges of length l , and (ii) since every two edges of the same length

are adjacent then       : 1, 2,3, 4, 6, 4 1,2,3,4, 6, 4r l l n n n n      .∎
Theorem 9 For any positive integer 11n  , there exists a CODC of the 15-regular

 2 , 1,2,3,4,5, 6, 4,{ }Circ n n n n  by 7,2nH .

Proof. Consider the following labeling  of 7,2nH :

1 0( )v  ; 2 1( )v  ; 3 4( )v  ; 4 7( )v  ; 5( ) 3v n   ; 6 1( 2)v n   ; 7 2( )v  ;

8 6( )v  ; 9 1( 0)v  ; 10( ) 4v n   ; 11( ) 2 2v n   ; 12 5( )v  ; 13( )v n  ;

14( ) 2 5v n   .

Then the edge of length n is  0,n ; ones of length 1 are  0,1 and  0, 2 1n  ; ones of

length 2 are  0,2 and 0,2 2n  ones of length 3 are  1, 4 and  4,7 ; ones of length 4

are  2,6 and 6,10 ; ones of length 5 are  0,5 and  0,2 5n  ; ones of length 6n are

 10, 4n  and  4, 2 2n n  ; ones of length 4n are  7, 3n  and  3,2 1n n  ,

then (i) for every  1,2,3,4,5, 6, 4l n n   , 7,2nH contains exactly two edges of length l ,
and (ii) since every two edges of the same length are adjacent then
      : 1, 2,3,4,5, 6, 4 1,2,3,4,5, 6, 4r l l n n n n      .∎

Theorem 10 For any positive integer 17n  , there exists a CODC of the 12-regular

 , 1, 2,3,4, 12, 8{ }Circ n n n  by 8,nH .
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Proof. Consider the following labelling  of 8,nH : 1 0( )v  ; 2 1( )v  ; 3 4( )v  ;

4 7( )v  ; 5( ) 1v n   ; 6 2( )v  ; 7 6( )v  ; 8 1( 0)v  ; 9( ) 2v n   ;

10( ) 14v n   ; 11( ) 9v n   .

Then the edges of length 1 are  0,1 and  0, 1n  ; ones of length 2 are  0,2 and

 0, 2n  ; ones of length 3 are  1, 4 and  4,7 ; ones of length 4 are  2,6 and 6,10 ;

ones of length 12n are  10, 2n  and 14, 2n n  ; ones of length 8n are  7, 1n 

and  1, 9n n  , then (i) for every  1,2,3,4, 12, 8l n n   , 8,nH contains exactly two

edges of length l , and (ii) since every two edges of the same length are adjacent then

      : 1, 2,3, 4, 12, 8 1,2,3,4, 12, 8r l l n n n n      .∎
Theorem 11 For any positive integers m and n there exists a CODC of 4 A B -regular

 ,Circ mn A B by  ,P G H with respect ton m.

Proof. Since G and H have Orthogonal A -labellings and Orthogonal B -labellings
respectively then the two edges of length ( , )i jd t in  ,P G H are

    , , ,
i ij jt id d t ju v u d v t  and     , , ,

j ji id dt i t ju v u d v t    and the set of all

rotation distances will be A B . Then  ,P G H has orthogonal A B -labellings with respect

ton m.

3 Conclusion

In this paper, the existences of the CODCs using certain infinite classes of graphs are completely
settled (see Theorem 3 to Theorem 11).
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