

British Journal of Mathematics & Computer Science 3(3): 425-436, 2013

SCIENCEDOMAIN international www.sciencedomain.org

On Cyclic Orthogonal Double Covers of Circulant Graphs using Infinite Graph Classes

M. Higazy^{1*}

¹Department of Physics and Engineering Mathematics, Faculty of Electronic Engineering, Minuf, Menoufiya University, Egypt.

Research Article

Received: 29 March 2013 Accepted: 29 May 2013 Published: 15 June 2013

Abstract

An orthogonal double cover (ODC) of a graph H is a collection $\mathcal{G} = \{G_v : v \in V(H)\}$ of |V(H)| subgraphs of H such that every edge of H is contained in exactly two members of \mathcal{G} and for any two members G_u and G_v in \mathcal{G} , $|E(G_u) \cap E(G_v)|$ is 1 if $\{u, v\} \in E(H)$ and it is 0 if $\{u, v\} \notin E(H)$. An ODC \mathcal{G} of H is cyclic (CODC) if the cyclic group of order |V(H)| is a subgroup of the automorphism group of \mathcal{G} . In this paper, the CODCs of certain circulants with a specific regularity by certain infinite graph classes are concerned. Keywords: *Graph decomposition, orthogonal double covers, orthogonal labelling, circulants.*

1 Introduction

Let *H* be any graph and let $\mathcal{G} = \{G_1, G_2, \dots, G_{|V(H)|}\}$ be a collection of |V(H)| subgraphs of *H*. \mathcal{G} is a *double cover* (DC) of *H* if every edge of *H* is contained in exactly two members in \mathcal{G} . If $G_i \cong G$ for all $i \in \{1, 2, \dots, |V(H)|\}$, for some graph *G*, then \mathcal{G} is a DC of *H* by *G* then |V(H)||E(G)| = 2|E(H)|.

A DC \mathcal{G} of H is an *orthogonal double cover* (ODC) of H if there exists a bijective mapping $\phi: V(H) \to \mathcal{G}$ such that for every choice of distinct vertices u and v in V(H),

^{*}Corresponding author: mahmoudhegazy380@hotmail.com;

$$\left| E(\phi(u)) \cap E(\phi(v)) \right| = \begin{cases} 1 & \text{if } \{u,v\} \in E(H), \\ 0 & \text{if } \{u,v\} \notin E(H). \end{cases}$$

If $G_i \cong G$ for all $i \in \{1, 2, ..., |V(H)|\}$, then \mathcal{G} is an ODC of H by G.

An *automorphism* of an ODC $\mathcal{G} = \{G_1, G_2, ..., G_{|V(H)|}\}$ of H is a permutation $\sigma : V(H) \to V(H)$ such that $\{\sigma(G_1), \sigma(G_2), ..., \sigma(G_{|V(H)|})\} = \mathcal{G}$, where for $i \in \{1, 2, ..., |V(H)|\}$, $\sigma(G_i)$ is a subgraph of H with $V(\sigma(G_i)) = \{\sigma(v) : v \in V(G_i)\}$ and $E(\sigma(G_i)) = \{\{\sigma(u), \sigma(v)\} : \{u, v\} \in E(G_i)\}$. An ODC \mathcal{G} of H is *cyclic* (CODC) if the cyclic group of order |V(H)| is a subgroup of the automorphism group of \mathcal{G} , the set of all automorphisms of \mathcal{G} .

Throughout this article, we used the usual notation: K_n for the complete graph on n vertices, $K_{m,n}$ for the complete bipartite graph with partition sets of sizes m and n, P_{n+1} for a path on n+1 vertices, C_n for the cycle on n vertices, S_n for the star on n+1 vertices.

For a sequence $\{d_1, d_2, \dots, d_k\}$ of positive integers with $1 \le d_1 \le d_2 \le \dots \le d_k \le \left\lfloor \frac{n}{2} \right\rfloor$, the circulant graph $Circ(n; \{d_1, d_2, \dots, d_k\})$ has vertex set $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$; two vertices v_1 and v_2 are adjacent if and only if $v_1 - v_2 \equiv \pm d_i \pmod{n}$ for some $i, i \in \{1, 2, \dots, k\}$. For an edge $\{v_1, v_2\}$ in $Circ(n; \{d_1, d_2, \dots, d_k\})$, the length of $\{v_1, v_2\}$ is $\min\{|v_1 - v_2|, n - |v_1 - v_2|\}$.

Given two edges $e_1 = \{v_1, v_2\}$ and $e_2 = \{u_1, u_2\}$ of the same length l in $Circ(n; \{d_1, d_2, ..., d_k\})$, the rotation-distance r(l) between e_1 and e_2 is $r(l) = \min\{r_1, r_2 : \{v_1 + r_1, v_2 + r_1\} = e_2, \{u_1 + r_2, u_2 + r_2\} = e_1\}$, where addition and difference are calculated inside \mathbb{Z}_n (that is, addition and difference are reduced modulo n). Note that if r(l) = l, then the edges e_1 and e_2 are adjacent; if $r(l) \neq l$, then the edges e_1 and e_2 are nonadjacent.

Consider the complete graph $K_n = Circ(n; \left\{1, 2, ..., \left\lfloor \frac{n}{2} \right\rfloor\right\})$. The author of [1] introduced the notion of an orthogonal labelling. Given a graph G = (V, E) with n-1 edges, a 1-1 mapping $\psi: V \to \mathbb{Z}_n$ is an *orthogonal labelling* of G if:

(1) For every $l \in \left\{1, 2, \dots, \left\lfloor \frac{(n-1)}{2} \right\rfloor\right\}$, G contains exactly two edges of length l,

and exactly one edge of length (n/2) if n is even, and

(2)
$$\left\{ r\left(l\right): \left\{l \in 1, 2, \dots, \left\lfloor \frac{n-1}{2} \right\rfloor \right\} \right\} = \left\{1, 2, \dots, \left\lfloor \frac{n-1}{2} \right\rfloor \right\}.$$

The following theorem of Gronau et al. [1] relates CODCs of K_n and the orthogonal labelling. **Theorem 1** A CODC of K_n by a graph G exists if and only if there exists an orthogonal labelling of G.

Sampathkumar and Srinivasan [2] called the orthogonal labelling an orthogonal $\{1, 2, ..., \left\lfloor \frac{n}{2} \right\rfloor\}$ labelling and generalized it to an orthogonal $\{d_1, d_2, ..., d_k\}$ -labelling, where $\{d_1, d_2, ..., d_k\}$ is a sequence of positive integers with $1 \le d_1 \le d_2 \le ... \le d_k \le \left\lfloor \frac{n}{2} \right\rfloor$

a) Either *n* is odd or *n* is even and $d_k \neq \frac{n}{2}$:

Given a subgraph G of $Circ(n; \{d_1, d_2, ..., d_k\})$ with 2k edges, a labelling of G, in \mathbb{Z}_n , is an orthogonal $\{d_1, d_2, ..., d_k\}$ -labelling of G if:

(i) for every $l \in \{d_1, d_2, \dots, d_k\}$, G contains exactly two edges of length l, and (ii) $\{r(l): l \in \{d_1, d_2, \dots, d_k\}\} = \{d_1, d_2, \dots, d_k\}$.

b) *n* is even and $d_k = \frac{n}{2}$:

Given a subgraph G of $Circ(n; \{d_1, d_2, \dots, d_{k-1}, \frac{n}{2}\})$ with 2k-1 edges, a labelling of G, in

 \mathbb{Z}_n , is an orthogonal $\{d_1, d_2, \dots, d_{k-1}, \frac{n}{2}\}$ -labelling of G if:

(i) for every $l \in \{d_1, d_2, \dots, d_{k-1}\}$, G contains exactly two edges of length l and G

contains exactly one edge of length $\frac{n}{2}$, and

(ii) $\{r(l): l \in \{d_1, d_2, \dots, d_{k-1}\}\} = \{d_1, d_2, \dots, d_{k-1}\}.$

The following theorem of Sampathkumar and Simaringa [2] is a generalization of Theorem 1.

Theorem 2 A CODC of Circ $(n; \{d_1, d_2, ..., d_k\})$ by a graph G exists if and only if there exists an orthogonal $\{d_1, d_2, ..., d_k\}$ -labelling of G.

For results on ODCs of graphs, see [3], a survey by Gronau et al.

In [4], we proved the following. (i) All 3-regular Cayley graphs, except K_4 , have ODCs by P_4 .

(ii) All 3-regular Cayely graphs on Abelian groups, except K_4 , have ODCs by $P_3 \cup K_2$. (iii) All 3-regular Cayley graphs on Abelian groups, except K_4 and the 3-prism, have ODCs by $3K_2$.

In [5], Sampathkumar et al. introduced a special kind of orthogonal labelling called orthogonal σ -labelling and they found it for some caterpillars of diameters 4.

In [2], Sampathkumar et al. completely settled the existence problem of CODCs of 4-regular circulant graphs.

Other results of ODCs by different graph classes can be found in [1,2,4,6].

The above results on ODCs of graphs with lower degree motivated me to consider CODCs by certain infinite graph classes which has an orthogonal $\{d_1, d_2, ..., d_k\}$ -labelling, these graph classes are:

 $H_{1,2n}$: n > 0 , $v \in \mathbb{Z}_{2n}$, graphs consisting of the edges set:

$$E(H_{1,2n}) = \{\{v, v+n+j\}, \{v+n+j, v+2j\} : 1 \le j \le n-1\} \cup \{v, v+n\}.$$

 $H_{2,2n}: n \ge 2$, $v \in \mathbb{Z}_{2n}$, graphs consisting of $(n-1)C_3$ sharing an edge, whose edges set is

$$E(H_{2,2n}) = \{\{v, v+2j\}, \{v+1, v+2j\}: 1 \le j \le n-1\} \cup \{v, v+1\}.$$

 $H_{3,n}$: $n \ge 4$, graphs consisting of n-1 vertices $x, y, z, a_i, 1 \le i \le n-4$ and edges set

$$E(H_{3,n}) = \{\{x, y\}, \{y, z\}, \{z, x\}, \{z, a_i\} : 1 \le i \le n-4\}.$$

 $H_{4,n}:n\geq 8$, graphs consisting of n-3 vertices $x,\,y,\,z,\,w,\,u,\,v,\,a_i,\,1\leq i\leq n-8$ and edges set

$$E(H_{4,n}) = \{\{x, y\}, \{y, v\}, \{x, z\}, \{z, v\}, \{x, u\}, \{u, v\}, \{v, x\}, \{s, a_i\}: 1 \le i \le n-8\}.$$

 $H_{5,2n}$: $n \ge 11$, graphs consisting of 11 vertices v_1, v_2, \dots, v_{11} connected to form two cycles of length 6 where they share a vertex then its edges set is

$$E(H_{5,2n}) = \begin{cases} \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_4\}, \{v_4, v_5\}, \{v_5, v_6\}, \{v_6, v_1\}\} \cup \\ \{\{v_1, v_7\}, \{v_7, v_8\}, \{v_8, v_9\}, \{v_9, v_{10}\}, \{v_{10}, v_{11}\}, \{v_{11}, v_1\}\} \end{cases}$$

 $H_{6,2n}$: $n \ge 11$, graphs consisting of 12 vertices v_1, v_2, \dots, v_{12} connected to form two cycles of length 6 and an edge where all of them share a vertex then its edges set is

$$E(H_{6,2n}) = \begin{cases} \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_4\}, \{v_4, v_5\}, \{v_5, v_6\}, \{v_6, v_1\}\} \cup \\ \{\{v_1, v_7\}, \{v_7, v_8\}, \{v_8, v_9\}, \{v_9, v_{10}\}, \{v_{10}, v_{11}\}, \{v_{11}, v_1\}\} \cup \\ \{\{v_1, v_{12}\}\} \end{cases}.$$

 $H_{7,2n}$: $n \ge 11$, graphs consisting of 14 vertices v_1, v_2, \dots, v_{14} connected to form two cycles of length 6 and a star S_3 where they share the center vertex of the star then its edges set is

$$E(H_{7,2n}) = \begin{cases} \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_4\}, \{v_4, v_5\}, \{v_5, v_6\}, \{v_6, v_1\}\} \cup \\ \{\{v_1, v_7\}, \{v_7, v_8\}, \{v_8, v_9\}, \{v_9, v_{10}\}, \{v_{10}, v_{11}\}, \{v_{11}, v_1\}\} \cup \\ \{\{v_1, v_i\}: 12 \le i \le 14\} \end{cases}.$$

 $H_{8,n}$: $n \ge 17$, graphs consisting of 11 vertices v_1, v_2, \dots, v_{11} connected to form two cycles of length 5 where they share a vertex and each of which connected to an edge then its edges set is

$$E(H_{8,n}) = \begin{cases} \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_4\}, \{v_4, v_5\}, \{v_5, v_1\}\} \cup \\ \{\{v_1, v_6\}, \{v_6, v_7\}, \{v_7, v_8\}, \{v_8, v_9\}, \{v_9, v_1\}\} \cup \\ \{\{v_9, v_{10}\}, \{v_5, v_{11}\}\} \end{cases}.$$

Finally, for any positive integers *m* and *n*, let *G* be a graph that has an orthogonal $\{d_1, d_2, ..., d_k\}$ -labelling, then the edges of length $d_i \in A = \{d_1, d_2, ..., d_k\}$ are $\{u_{d_i}, u_{d_i} + d_i\}$ and $\{u_{-d_i}, u_{-d_i} - d_i\}$ where $i \in \{1, 2, ..., k\}$ and $u_{d_i}, u_{-d_i} \in \mathbb{Z}_n$. Also, let *H* be a graph that has an orthogonal $\{t_1, t_2, ..., t_s\}$ -labelling, then the edges of length $t_j \in B = \{t_1, t_2, ..., t_s\}$ are $\{v_{t_j}, v_{t_j} + t_j\}$ and $\{v_{-t_j}, v_{-t_j} - t_j\}$ where $j \in \{1, 2, ..., s\}$ and $v_{t_j}, v_{-t_j} \in \mathbb{Z}_m$. Then let us define a new graph P(G, H) to be the graph with edges set $\{\{(u_{d_i}, v_{t_j}), (u_{d_i} + d_i, v_{t_j} + t_j\})\}$: $d_i \in A$ and $t_j \in B\}$. For this definition, Theorem 11 can be deduced.

2 CODCs by Certain Infinite Graph Classes

Theorem 3 For any positive integer n, there exists a CODC of (2n-1)-regular Circ $(2n, \{1, 2, ..., n\})$ by $H_{1,2n}$.

Proof. In $H_{1,2n}$, the edge of length n is $\{v, v+n\}$; the other lengths are the elements of $\{|n+j|: 1 < j \le n-1\} = \{1, 2, ..., n-1\}$ and $\{|n-j|: 1 \le j \le n-1\} = \{1, 2, ..., n-1\}$, then (i) for every $l \in \{1, 2, ..., n-1\}$, $H_{1,2n}$ contains exactly two edges of length l, and (ii) since every two edges of the same length are adjacent then $\{r(l): l \in \{1, 2, ..., n-1\}\} = \{1, 2, ..., n-1\}$.

From (i) and (ii), $H_{1,2n}$ has an orthogonal $\{1, 2, ..., n\}$ -labelling.

Theorem 4 For any positive integer n, there exists a CODC of (2n-1)-regular Circ $(2n,\{1,2,\ldots,n\})$ by $H_{2,2n}$.

Proof. In $H_{2,2n}$,

Case 1. *n* is even. The edge of length

$$n \quad \text{is} \quad \{v, v+n\} \quad \text{and} \quad \text{the edges of lengths} \quad \left\{ |2j|: 1 \le j \le \frac{n}{2} - 1 \right\} \quad \text{are}$$

$$\left\{ \{v, v+2j\}: 1 \le j \le \frac{n}{2} - 1 \right\} \quad \text{and} \quad \left\{ \{v, v+2j\}: \frac{n}{2} + 1 \le j \le n - 1 \right\} \quad \text{; ones of lengths}$$

$$\left\{ |2j-1|: 1 \le j \le \frac{n}{2} - 1 \right\} \quad \text{are}$$

$$\left\{ \{v+1, v+2j\}: 1 \le j \le \frac{n}{2} - 1 \right\} \quad \text{and} \quad \left\{ \{v+1, v+2j\}: \frac{n}{2} + 1 \le j \le n - 1 \right\} \quad \text{, then (i) for}$$

$$\text{every} \quad l \in \{1, 2, \dots, n - 1\}, \quad H_{2,2n} \text{ contains exactly two edges of length } l, \text{ and (ii) since every}$$

$$\text{two edges of the same length are adjacent then} \quad \left\{ r\left(l\right): l \in \{1, 2, \dots, n - 1\} \right\} = \{1, 2, \dots, n - 1\}.$$

Case 2. n is odd.

The edge of length
$$n$$
 is $\{v+1, n+1\}$ and the edges of lengths $\{|2j|: 1 \le j \le \frac{n-1}{2}\}$ are $\{v, v+2j\}: 1 \le j \le \frac{n-1}{2}\}$ and $\{v, v+2j\}: \frac{n+1}{2} \le j \le n-1\}$; ones of lengths $\{|2j-1|: 1 \le j \le \frac{n-1}{2}\}$ are $\{v+1, v+2j\}: 1 \le j \le \frac{n-1}{2}\}$ and $\{v+1, v+2j\}: 1 \le j \le \frac{n-1}{2}\}$ and $\{v+1, v+2j\}: 1 \le j \le \frac{n-1}{2}\}$ and $\{v+1, v+2j\}: \frac{n+1}{2} \le j \le n-1\}$, then (i) for every $l \in \{1, 2, ..., n-1\}$, $H_{2,2n}$ contains exactly two edges of length l , and (ii) since every two edges of the same length are adjacent then $\{r(l): l \in \{1, 2, ..., n-1\}\} = \{1, 2, ..., n-1\}$. From (i) and (ii), $H_{2,2n}$ has an orthogonal $\{1, 2, ..., n\}$ -labelling.

Theorem 5 For any positive integer $n \ge 4$, there exists a CODC of (n-1)-regular $Circ(n, \{1, 2, ..., \lfloor \frac{n}{2} \rfloor\})$ by $H_{3,n}$.

Proof. Consider the following labelling ψ of $H_{3,n}: \psi(x) = 0; \quad \psi(y) = 1; \quad \psi(z) = 2; \quad \psi(a_i) = i+3 \text{ if } 1 \le i \le n-4.$

Case 1. n is even.

The edge of length $\frac{n}{2}$ is $\left\{2, \frac{n}{2} + 2\right\}$; ones of length 1 are $\{0, 1\}$ and $\{1, 2\}$; ones of length lwhere $2 \le l \le \frac{n}{2} - 1$ are $\left\{\{2, j\} : 4 \le j \le \frac{n}{2} + 1\right\}$ and $\left\{\{2, j\} : \frac{n}{2} + 3 \le j \le n - 1\right\}$, then (i) for every $l \in \left\{1, 2, \dots, \frac{n}{2} - 1\right\}$, $H_{3,n}$ contains exactly two edges of length l, and (ii) since every two edges of the same length are adjacent then $\left\{r\left(l\right) : l \in \left\{1, 2, \dots, \frac{n}{2} - 1\right\}\right\} = \left\{1, 2, \dots, \frac{n}{2} - 1\right\}$.

Case 2. n is odd.

The edges of length 1 are $\{0,1\}$ and $\{1,2\}$; ones of length l where $2 \le l \le \frac{n-1}{2}$ are $\left\{\{2,j\}: 4 \le j \le \frac{n+3}{2}\right\}$ and $\left\{\{2,j\}: \frac{n+5}{2} \le j \le n-1\right\}$, then (i) for every $l \in \left\{1,2,\ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}$, $H_{3,n}$ contains exactly two edges of length l, and (ii) since every two edges of the same length are adjacent then $\left\{r(l): l \in \{1,2,\ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\} = \left\{1,2,\ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}$.

Theorem 6 For any positive integer $n \ge 8$, there exists a CODC of (n-1)-regular $Circ(n, \{1, 2, ..., \left\lfloor \frac{n}{2} \right\rfloor\})$ by $H_{4,n}$.

Proof. Consider the following labelling ψ of $H_{4,n}$: $\psi(x) = 0$; $\psi(y) = 1$; $\psi(z) = 2$; $\psi(u) = n-1$; $\psi(v) = 4$; $\psi(a_i) = i+6$ if $1 \le i \le n-8$.

Case 1. *n* is even.

The edge of length $\frac{n}{2}$ is $\left\{4, \frac{n}{2}+4\right\}$; ones of length 1 are $\{0,1\}$ and $\{0,n-1\}$; ones of length 2 are $\{0,2\}$ and $\{2,4\}$ ones of length l where $3 \le l \le \frac{n}{2}-1$ are $\left\{\{4,j\}: 7 \le j \le \frac{n}{2}+3\right\}$ and $\left\{\{4,j\}: \frac{n}{2}+5 \le j \le n-2\right\}$, then (i) for every

432

 $l \in \left\{1, 2, \dots, \frac{n}{2} - 1\right\}$, $H_{4,n}$ contains exactly two edges of length l, and (ii) since every two edges of the same length are adjacent then $\left\{r(l): l \in \left\{1, 2, \dots, \frac{n}{2} - 1\right\}\right\} = \left\{1, 2, \dots, \frac{n}{2} - 1\right\}$.

Case 2. *n* is odd.

The edges of length 1 are $\{0,1\}$ and $\{0,n-1\}$; ones of length 2 are $\{0,2\}$ and $\{2,4\}$ ones of length l where $3 \le l \le \frac{n-1}{2}$ are $\left\{\{4,j\}: 7 \le j \le \frac{n+7}{2}\right\}$ and $\left\{\{4,j\}: \frac{n+9}{2} \le j \le n-2\right\}$, then (i) for every $l \in \left\{1,2,\ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}$, $H_{4,n}$ contains exactly two edges of length l, and (ii) since every two edges of the same length are adjacent then $\left\{r\left(l\right): l \in \left\{1,2,\ldots,\frac{n}{2}-1\right\}\right\} = \left\{1,2,\ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}$.

Theorem 7 For any positive integer $n \ge 11$, there exists a CODC of the 12-regular Circ $(2n, \{1, 2, 3, 4, n-6, n-4\})$ by $H_{5,2n}$.

Proof. Consider the following labelling ψ of $H_{5,2n}$: $\psi(v_1) = 0$; $\psi(v_2) = 1$; $\psi(v_3) = 4$; $\psi(v_4) = 7$; $\psi(v_5) = n+3$; $\psi(v_6) = 2n-1$; $\psi(v_7) = 2$; $\psi(v_8) = 6$; $\psi(v_9) = 10$; $\psi(v_{10}) = n+4$; $\psi(v_{11}) = 2n-2$.

Then the edges of length 1 are $\{0,1\}$ and $\{0,2n-1\}$; ones of length 2 are $\{0,2\}$ and $\{0,2n-2\}$; ones of length 3 are $\{1,4\}$ and $\{4,7\}$; ones of length 4 are $\{2,6\}$ and $\{6,10\}$; ones of length n-6 are $\{10,n+4\}$ and $\{n+4,2n-2\}$; ones of length n-4 are $\{7,n+3\}$ and $\{n+3,2n-1\}$, then (i) for every $l \in \{1,2,3,4,n-6,n-4\}$, $H_{5,2n}$ contains exactly two edges of length l, and (ii) since every two edges of the same length are adjacent then $\{r(l): l \in \{1,2,3,4,n-6,n-4\}\} = \{1,2,3,4,n-6,n-4\}$.

Theorem 8 For any positive integer $n \ge 11$, there exists a CODC of the 13-regular Circ $(2n, \{1, 2, 3, 4, n-6, n-4, n\})$ by $H_{6,2n}$.

Proof. Consider the following labelling ψ of $H_{6,2n}$: $\psi(v_1) = 0$; $\psi(v_2) = 1$; $\psi(v_3) = 4$; $\psi(v_4) = 7$; $\psi(v_5) = n+3$; $\psi(v_6) = 2n-1$; $\psi(v_7) = 2$; $\psi(v_8) = 6$; $\psi(v_9) = 10$; $\psi(v_{10}) = n+4$; $\psi(v_{11}) = 2n-2$; $\psi(v_{12}) = n$.

Then the edge of length n is $\{0,n\}$; ones of length 1 are $\{0,1\}$ and $\{0,2n-1\}$; ones of length 2 are $\{0,2\}$ and $\{0,2n-2\}$; ones of length 3 are $\{1,4\}$ and $\{4,7\}$; ones of length 4 are $\{2,6\}$ and $\{6,10\}$; ones of length n-6 are $\{10,n+4\}$ and $\{n+4,2n-2\}$; ones of length n-4 are $\{7,n+3\}$ and $\{n+3,2n-1\}$, then (i) for every $l \in \{1,2,3,4,n-6,n-4\}$, $H_{6,2n}$ contains exactly two edges of length l, and (ii) since every two edges of the same length are adjacent then $\{r(l): l \in \{1,2,3,4,n-6,n-4\}\} = \{1,2,3,4,n-6,n-4\}$.

Theorem 9 For any positive integer $n \ge 11$, there exists a CODC of the 15-regular Circ $(2n, \{1, 2, 3, 4, 5, n-6, n-4, n\})$ by $H_{7,2n}$.

Proof. Consider the following labeling ψ of $H_{7,2n}$: $\psi(v_1) = 0; \psi(v_2) = 1; \psi(v_3) = 4; \psi(v_4) = 7; \psi(v_5) = n + 3; \psi(v_6) = 2n - 1; \psi(v_7) = 2;$ $\psi(v_8) = 6; \psi(v_9) = 10; \psi(v_{10}) = n + 4; \psi(v_{11}) = 2n - 2; \psi(v_{12}) = 5; \psi(v_{13}) = n;$ $\psi(v_{14}) = 2n - 5.$

Then the edge of length n is $\{0,n\}$; ones of length 1 are $\{0,1\}$ and $\{0,2n-1\}$; ones of length 2 are $\{0,2\}$ and $\{0,2n-2\}$ ones of length 3 are $\{1,4\}$ and $\{4,7\}$; ones of length 4 are $\{2,6\}$ and $\{6,10\}$; ones of length 5 are $\{0,5\}$ and $\{0,2n-5\}$; ones of length n-6 are $\{10,n+4\}$ and $\{n+4,2n-2\}$; ones of length n-4 are $\{7,n+3\}$ and $\{n+3,2n-1\}$, then (i) for every $l \in \{1,2,3,4,5,n-6,n-4\}$, $H_{7,2n}$ contains exactly two edges of length l, and (ii) since every two edges of the same length are adjacent then $\{r(l): l \in \{1,2,3,4,5,n-6,n-4\}\} = \{1,2,3,4,5,n-6,n-4\}$.

Theorem 10 For any positive integer $n \ge 17$, there exists a CODC of the 12-regular Circ $(n,\{1,2,3,4,n-12,n-8\})$ by $H_{8,n}$.

Proof. Consider the following labelling ψ of $H_{8,n}$: $\psi(v_1) = 0$; $\psi(v_2) = 1$; $\psi(v_3) = 4$; $\psi(v_4) = 7$; $\psi(v_5) = n - 1$; $\psi(v_6) = 2$; $\psi(v_7) = 6$; $\psi(v_8) = 10$; $\psi(v_9) = n - 2$; $\psi(v_{10}) = n - 14$; $\psi(v_{11}) = n - 9$.

Then the edges of length 1 are $\{0,1\}$ and $\{0,n-1\}$; ones of length 2 are $\{0,2\}$ and $\{0,n-2\}$; ones of length 3 are $\{1,4\}$ and $\{4,7\}$; ones of length 4 are $\{2,6\}$ and $\{6,10\}$; ones of length n-12 are $\{10,n-2\}$ and $\{n-14,n-2\}$; ones of length n-8 are $\{7,n-1\}$ and $\{n-1,n-9\}$, then (i) for every $l \in \{1,2,3,4,n-12,n-8\}$, $H_{8,n}$ contains exactly two edges of length l, and (ii) since every two edges of the same length are adjacent then $\{r(l): l \in \{1,2,3,4,n-12,n-8\}\} = \{1,2,3,4,n-12,n-8\}$.

Theorem 11 For any positive integers m and n there exists a CODC of 4|A||B|-regular Circ $(mn, A \times B)$ by P(G, H) with respect to $\mathbb{Z}_n \times \mathbb{Z}_m$.

Proof. Since G and H have Orthogonal A -labellings and Orthogonal B -labellings respectively then the two edges of length (d_i, t_j) in P(G, H) are $\{(u_{d_i}, v_{t_j}), (u_{d_i} + d_i, v_{t_j} + t_j)\}$ and $\{(u_{-d_i}, v_{-t_j}), (u_{-d_i} - d_i, v_{-t_j} - t_j)\}$ and the set of all rotation distances will be $A \times B$. Then P(G, H) has orthogonal $A \times B$ -labellings with respect to $\mathbb{Z}_n \times \mathbb{Z}_m$.

3 Conclusion

In this paper, the existences of the CODCs using certain infinite classes of graphs are completely settled (see Theorem 3 to Theorem 11).

Acknowledgement

Thanks to my wife (Rehab) for supporting me to finish this paper and many thanks to the anonymous referees for helping me to publish this paper.

Competing Interests

Author has declared that no competing interests exist.

References

- 1. Gronau HDOF, Mullin M, Rosa A. On orthogonal double covers of complete graphs by trees, Graphs Combin. 1997;13:251-262.
- 2. Sampathkumar R, Srinivasan S. Cyclic orthogonal double covers of 4-regular circulant graphs, Discrete Mathematics. 2011;311:2417-2422.
- Gronau HDOF, Grüttmüller M, Hartmann S, Leck U, Leck V. On orthogonal double covers of graphs, Des. Codes Cryptogr. 2002;27:49-91.
- 4. Scapellato R, El Shanawany R, Higazy M. Orthogonal double covers of Cayley graphs, Discrete Appl. Math. 2009;157:3111-3118.
- 5. Sampathkumar R, Sriram V. Orthogonal σ-labellings of graphs, AKCE J. Graphs Combin. 2008;5(1):57-60.
- 6. Higazy M. A Study on the suborthogonal double covers of the complete bipartite graphs, Phd thesis, Menoufiya University; 2009.

© 2013 Higazy: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) www.sciencedomain.org/review-history.php?iid=225&id=6&aid=1504