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ABSTRACT 
 

In essence, the power of compounding, together with the effect of discounting, has 
resulted in calculations of sinking funds and amortization possible. A greater aspect of this 
concept has allowed the business world to flourish and, at the same time, borrowing, 
financing, and mortgages have become extensively feasible. In this paper, we will attempt 
to provide a glimpse of these business concepts using concrete examples and 
calculations that use mathematical concepts. The Cobb-Douglas production function is 
given special consideration with a collection of related factors associated with this topic 
such as elasticity of demand and impacts of labor unions. Furthermore, in terms of the 

Cobb-Douglas Production Function, the behaviors of ( )kyxf /),(log  for the different 

choices of m  are significantly linear. An economic scenario in which unskilled and 
professionals are taken into account, the elasticity of the marginal utility function follows a 
linear, exponential, and logarithmic relationship for various choices of parameter. 
 

 
Keywords: Sinking funds; amortization; calculus; future and present values; Cobb-Douglas 

production function. 
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1. INTRODUCTION 
 
The applications of the concepts generally found in calculus textbooks have enormous 
benefits to those who explore and derive the theory behind business and economic 
phenomena [1]. It is so effective that every aspect of these ideas such as simple 
differentiations, the interactive nature of these concepts, and the ability to support and 
challenge all average citizen out there have an incredible impact on how easily it allows one 
to comprehend the theory to address the current turbulent market. In addition, substantial 
experience can be accumulated in modeling and solving of real-world problems through 
these applications from business to the economy. Equity investment minimizes the debt 
burden on the business enterprises. In addition, firms increasingly issue shares for the 
intension of cash savings. This increase is produced by increasing precautionary drives [2]. 
The tax system promotes this and even accelerates, to a certain degree, the channeling of 
saving into interest-bearing debt when compounding is possible over time. The formula for 
the future value of an ordinary annuity has another important application in this regard. For 
this and others, a few problems are restated in detail to bring this point into consideration 
[3].A production function exhibits the relationship between inputs of capital, labor, and other 
factors (if any), as well as the outputs of goods and services in any typical economic 
environment. The production functions have two main uses in the applications of economics 
theory. One determines the most efficient combination of factors that a firm can employ and 
the other is to analyze the relative shares of factors in the output of the production process.  
Borrowing from this, appropriate analyses are made in the second half of the paper [4]. 
 
2. FINANCIAL PRODUCTS 
 
Suppose the parents of a newborn child decide that they will deposit an amount of � in an 
account on each of the child’s birthdays up to the 18th year for college expenses. The 
account pays an interest rate of 8% compounded annually. We need to find the annual 
deposit (�) in order for the amount in the account to be $80,000 after the 18th deposit. Given 
the future value (��), �, and
from the formula for the future value, the amount � can be 
calculated as below. 

�� = � (1 + �)� − 1�  

 

80,000 = � (1.08)�� − 10.08  

 

� = 80,000 0.08(1.08)�� − 1 

 = $2,136.17 per year 
 
As calculated, an annuity of 18 annual deposits of $2,136.17 at 8% compounded annually 
rate will amount to $80,000 in 18 years.  
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Fig. 1. Future Values as a Function of Compound Periods 
 
From Fig. 1, it is clear that the future value is rapidly increasing over the compound period 
showing once again that the greater benefit of compounding. 
 
3. SINKING FUND 
 
An annuity is an account created by making a sequence of scheduled payments into or out 
of itat a given period of time. The most common types of annuities are ordinary annuities and 
sinking funds. In general, any account that is established for accumulating funds to meet 
future obligations or debts is called a sinking fund. Other types of annuities are long-term 
investment accounts, retirement saving accounts, college saving accounts, and lottery 
payout annuity payments. A sinking fund is a type of fund or an account into which an 
individual or establishment deposits money on a regular basis in order to repay a debt 
commitment or other liability that will be due in the future. For example, if one has a loan with 
a maturity period, one may put aside money into a sinking fund during this period to be 
prepaid or to pay off the principal when it is due.  
 
If the payments are to be made in the form of an ordinary annuity, then we have only to 
solve the problem for the sinking fund payment �. In the case of sinking funds, it is a type of 
annuity in which a specific amount of money in a stated period is invested with a goal 
amount to be accumulated. If   payments are made 
 times per year into a sinking fund with 
interest rate !, compounded 
 times per year, the payment needed to attain this 

accumulated fund is described by � = "#$%&
#�'$%&%(�, where   is the accumulated amount. As 

such, � = �� )
(�'))%(�is simply a variation of this formula.We can always find the sinking fund 

payment by first substituting the appropriate values into the formula and then solving for �. 
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4. AMORTIZATION 
 
Amortization is a process that divides the payment into the amount of installments that 
applies to interest and the principal amount of the purchase agreement. Payments close to 
the beginning of a loan contribute more interest and less principal, than payments towards 
the end of a loan, mortgage, or purchase [5]. 
 
The present value formula for an ordinary annuity has another important use. Suppose that 
an amount of $7,000 is borrowed from a bank to buy a car and agreed to repay the loan in 
36 equal monthly payments, including all interest due.  If the bank charges 1.5% per month 
on the unpaid balance (12% per year compounded monthly), how much should each 
payment be to eliminate the total debt, including interest in 36 months? Actually, the bank 
has bought an annuity from the borrower. If the bank pays the borrower $7,000 (present 
value) for an annuity paying them � per month for 36 months at 12% interest compounded 
monthly, what are the monthly payments (�)? (Note that the value of the annuity at the end 
of the 36 months is zero). To find �, we only have to use formula with �� =  $7,000, � = 0.015 and
 =  36: 
 

�� = � 1 − (1 + �)(�
�  

 

7,000 = � 1 − (1.015)(+,
0.015  

 � = $253.07 per month. 
 
At a payment of $253.07 per month, the car will be yours after 36 months; that is, when you 
have amortized the debt in 36 equal monthly payments. In general, amortizing a debt means 
that the debt is retired in a given length of time by equal periodic payments that include 
compound interest.  We are interested in computing the equal periodic payments. Solving 
the present value formula for � in terms of other variables, we obtain the amortization 

formula as � = �� )
�((�'))1%. This formula is simply a variation of the formula above, and 

either formula can be used to find the periodic payment �. 
 
Computing the payment for a sinking fund is now illustrated. A company estimates that it will 
have to replace a piece of equipment at a cost of $600,000 in 7 years. To have this money 
available in 7 years, a sinking fund is established by making equal monthly payments into an 
account paying 8.5% compounded monthly. The following steps below will explain this 
calculation. 
 

(A) How much should each payment be? To find �, we choose formula with �� =$600,000,� = 2.2�3
�4 = 0.0071, and 
 = 12 × 7 = 84: 

 

� = �� �(1 + �)� − 1 

 

      = 600,000 0.0071(1.0071)�7 − 1 

   = $5,247.93 per month 
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(B) How much interest was earned during the last year? To find the interest earned 
during the seventh year, we first use the future value formula with � =  $5,247.93,9 =  0.0071, and 
 = 12 × 6 = 72 to find the amount in the account balance after 6 
years. 

 

�� = � (1 + �)� − 1�  

 

= 5,247.93 (1.0071):4 − 10.0071  

   = $491,000.75. 
 
If the sinking fund interval is small, then the total future value of all payments can be 
approximated by  (
) = ;  <)=>? = ; 5,247.93 × <2.22:� =>? = $493,224.66.:42�2  This shows 
that the values obtained from either of these formulas are nearly identical [6]. 
 
5. MODELING AVERAGE COST 
 
An example to address this concept adequately is presented next. Given the cost 
function@(A) = B + 0.5A4, where A is the number of items produced, the graphing strategy to 
analyze the graph of the average cost function is used. The marginal cost function is plotted 
on the same set of coordinate axes. The average cost function is described by@̅(A) =D'2.3EF

E = D
E + 0.5A. 

 
For Analysis of@̅(A): 
 

(A)  Domain:  Since negative values of A do not make sense and @̅(0) is not 
defined, the domain is the set of positive real numbers. 
 

(B) Asymptotes: 
GHEH
I%E% = 2.3EF

E = 0.5A. Thus, there is no horizontal asymptote. 

 
Vertical asymptote:  The line A = 0 is a vertical asymptote since the denominator is 0 and 
the numerator is not 0 whenA = 0. 
 
Oblique asymptotes:  If a graph approaches a line that is neither horizontal nor vertical as A 
approaches ∞or −∞, then that line is called an oblique asymptote. If A is a large positive 
number, then B/ A is very small and 
 
   @̅(A) = D

E + 0.5A ≈ 0.5A.That is, 

 
   limE→∞[@̅(A) − 0.5A] = limE→∞ D

E = 0. 
 
This implies that the graph of Q = @̅(A) approaches the line Q = 0.5A as Aapproaches to ∞. 
The line is an oblique asymptote for the graph of Q = @̅(A). 
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For Analysis of @R ′(A): 
@̅ ′(A) = − BA4 + 0.5 

= 0.5A4 − BA4  

= 0.5(A − √2B)(A + √2B)A4  

 
The critical value for@̅(A)is A = √2B.So @̅(A) is decreasing during the intervalU0, √2BV, is 
increasing on U√2B,∞V, and has a local minimum at A = √2B. 
 

For Analysis of@̅ ′′(A): @̅ ′′(A) = √4D
EW .@̅ ′′(A)is positive for all positive values ofA,so that the graph 

of Q = @̅(A)is concave upward on (0,∞).A sketch of the graph of@̅is shown in Fig. 2.  

 
Fig. 2. The Graph ofXR as a function of the number of items produced 

 

C is in most part rapidly decreasing before it is asymptotically increasing following the linear 
equation, .5.0 xy =  
 
The marginal cost function is @ ′(A) = Awhichexhibits an important principle in economics. In 
fact, the minimum average cost occurs when the average cost is equal to the marginal cost. 
It is possible to recover the production function from the cost function [7]. For example, if the 

cost function is of the form, @(A, Y) = A4UY��/4 + Y4�/4V4
, then the production function 

corresponding to this cost function is Z(Q, [) = # \]
\']&�/4, where Q and [ are the conditional 

input demands [8]. In macroeconomics perspective, the output of interest, of course, is 
Gross Domestic Product (GDP). The technology sector will allow inputs to be substituted for 
each other, but not at a constant rate. A class of production function that models these 
situations in which inputs can be substituted for each other at a constant rate is known as a 
Cobb-Douglas production function. 
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6. THE COBB-DOUGLAS PRODUCTION FUNCTION 
 
Every business enterprise produces a good or a service. Of course, technologies enable 
them to flourish in terms of profitability. Roughly speaking, all input for the production 
included labor, land, and capital. If it is defined specifically, engineering, mechanics, 
electricity, insurance, water, safety equipment, and services such as postal, telephone, 
internet, and software products can also be included. The production function is a 
relationship between those of input and output. The Cobb-Douglas production function is an 
economic function resulted from the utilization of two variables, A and Q, such as labor and 
capital, and is written as Z(A, Q) = ^A_Q� , where ^, `, and
 are positive constants with ` + 
 = 1. It can be shown that the cost function will have the form, 

@(A, Y, !) = ^( aHb% c#_
� & %Hb% + #_

� &( HHb%d Y HHb% ∙ ! %Hb% ∙ A aHb%. This cost function, derived from 

the Cobb-Douglas production function, is nonlinear in A unless ` + 
 = 1.  Under this 
condition, the cost function will take the form, @(A, Y, !) = �

f Yg ∙ !�(g ∙ A. 

 
In economic theory, the production function for the good and services, together with the 
physical constraints that the enterprise regularly deals with, will assist to achieve the 
maximum output possible by employing a combination of inputs. Table 1 is obtained to 
accommodate log(Z(A, Q)/^) considering labor productivity for theA variable and capital 
productivity as the Q variable for China from 1978 to 2001. Note that labor and capital 
productivities in this analysis are calculated as being the ratios of GDP to labor and capital 
so that the Cobb-Douglas relation will not hold exactly. In fact, there were large regional 
variations in labor productivity that seem to have widened overtime [9]. 
 
Interest and depreciation are two separate concepts even though one typically depends on 
the other [10].The depreciation is essentially a decline in the value over a period of time 
largely due to physical deterioration and obsolescence. Analysis of depreciation by various 
methods has widespread use. Let i=be the book value of the asset at the end of the ?=jperiod. Clearly, i2 =  ,is the value of the asset at the beginning of the 
 period and i� = k,is the salvage value of the asset at the end of the 
 period. If l= is the depreciation 
charge for the 
=j period, then l= = i=(� − i= .The calculation of depreciation charges is 
based on the sinking fund method or the compound interest method using the book value 

i= = m"(n
o%|qqqrs t̅|u. The depreciation charge is l= = i=(� − i= = m"(n

o%|qqqrs (1 + u)=(�,where t̅|u denotes 

the sum of the accumulated values of each payment calculated at the interest rate, u[11]. An 
exponential decay model can be used to model depreciation as given byQ = @<(f= , ^ > 0, 
featuring the horizontal asymptote to Q = 0 to right, passing through (0, @), @ is the initial 
value, and the function is decreasing, but bounded below by Q = 0. Proportional capital 
depreciation with depreciation rate w from ? → ? + 1 can be expressed using the iterative 
equation,B='� = (1 − w)B= + 9= .An equilibrium with constant capital occurs when B='� = B= 
showing that9= = wB= .That is, 9= is a fraction of B= .As such, the cost of capital with 
depreciation and interest is,@(B=) = (! + w)B= , where ! is the prevailing rate of interest. 
 
Production functions include certain input costs that can be assigned monetary values, such 
as the stock of labor employed, land used, and stock of real capital that went into the 
production process. The capital costs mostly comprise physical units are often subject to 
loosely called "depreciation." A distinction has to be made between "time depreciation" and 
"output deterioration" of capital during a period. The economists are interested in knowing 
how much of this loss was due to time depreciation and how much resulted from the use 



 
 
 
 

British Journal of Economics, Management & Trade, 4(2): 158-172, 2014 
 

 

165 
 

deterioration. If capital and labor employed remain fixed, a production function yielded gross 
value added to show the distribution of gross income among factor claimants. Furthermore, 
change resulted from time depreciation rates has an immediate effect on the net incomes. 
However, the workers’ effectiveness is not initially reflected in the production factor 
calculations [4]. 
 
As we know the second-derivative tests in calculus give us sufficient conditions for a critical 
point to produce a local extremum or a saddle point. For this, calculation of first and second-
derivatives of the Cobb-Douglas production function are needed and derived below. 
 

ZE = ^`A_(�Q�(_ = ^` xAQy_(� > 0 

Z\ = ^A_(1 − `)Q(_ = ^(1 − `) xAQy_ > 0 

ZEE = ^`(` − 1)A_(4Q�(_ = ^` (` − 1) #E
\&_(4

Q < 0 

ZE\ = ^`A_(�(1 − `)Q(_ = ^` (1 − `) #E
\&_

A > 0 

Z\\ = ^A_(1 − `)(−`)Q(_(� = −^` (1 − `) #E
\&_

Q < 0.  
 

So that the calculation of ZEEZ\\ − UZE\V4 = 0. The second-derivative test for local extrema 
fails requiring further investigation of Z(A, Q). Further, the marginal products are positive 
everywhere. From the second derivatives, it can be concluded that the total products are 
rising at a diminishing rate to show that the marginal products are declining. The marginal 
productivity of capital and labor if the price is { and capital has cost ! per unit capital, and Y 
is the hourly wage, we have ! = {ZE and Y = {Z\ . Consequently, the total cost = total capital 
cost + total labor cost. We now consider a logarithmic production function instead. Thus, we 
obtain from the Cobb-Douglas production function, log Z(A, Q) = log ^ + ` log A +(1 − `) log Qand so that log(Z(A, Q)/^) = ` log A + (1 − `) log Q. Since, for a given value of `,  log(Z(A, Q)/^) is linear with respect to time variable ?, we have log(Z(A, Q)/^) = | +}(? − ?2), } > 0.  And, also Z(A, Q) = ^<g'~(=(=�) = �<~=with � = ^<g(~=� .This allows us, to 
obtain either A or Q from each other, if the values of ? are already known. For example,  A = � Q�(_<~=H = iQ(�(_)/_<~=/_,where  , i, and } are known constants. One observation 
made from Fig. 3 is that for a fixed year, the values of log(Z(A, Q)/^) for small increment of ` 
have the same differencesthat can be easily explained. For a small increment of|, 0 < | <1, we have, the difference between two values of log(Z(A, Q)/^) at ` = ` + | and ` =`is(` + |) log A + (1 − ` − |) log Q − ` log A − (1 − `) log Q = | (log A − log Q) = | log #E

\&, 

showing that the difference remains constant and in the same time, it is independent of `.Using the data found in [8], Table 1 has been constructed for the values of m as specified 
to verify this observation. For simple national economic models, the production function 
includes household consumption, government spending, and investment. In consideration of 
macroeconomic models, waste is generally not included.  Thus, the national income is � = @ + � + 9, where @ is household consumption, � is government spending, and 9is 
investment. The total output of an economy is an aggregate production function, with output 
as a function of the factors of production. However, economists usually consider the function 
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with two factors, labor and capital for production, but it is more accurate as to include land as 
a separate factor, � = Z(�, B, �), where �stands for the number of workers so that the 
logarithmic equivalent of production function is log(Z(A, Q, [)/^) = ` log A + 
 log Q +(1 − ` − 
) log [,where 
, ` > 0 and 
 + ` < 1. 
 

Table 1. Values of ���(�(�, �)/�)over choices of � 
 ���(�(�, �)/�) 

m = 0.10 m = 0.20 m = 0.30 m = 0.40 m = 0.50 m = 0.60 m = 0.70 m = 0.80 m = 0.90 
1.69452 1.83275 1.97097 2.10919 2.24741 2.38563 2.52385 2.66208 2.80030 
1.70781 1.84741 1.98702 2.12662 2.26623 2.40584 2.54544 2.68505 2.82465 
1.72066 1.86154 2.00242 2.14329 2.28417 2.42505 2.56593 2.70680 2.84768 
1.72132 1.86287 2.00441 2.14595 2.28749 2.42903 2.57057 2.71211 2.85366 
1.72376 1.86773 2.01171 2.15568 2.29966 2.44363 2.58761 2.73158 2.87556 
1.74689 1.89172 2.03656 2.18139 2.32622 2.47105 2.61588 2.76072 2.90555 
1.77096 1.91867 2.06639 2.21410 2.36181 2.50952 2.65723 2.80495 2.95266 
1.78486 1.93625 2.08764 2.23903 2.39042 2.54181 2.69320 2.84459 2.99598 
1.77772 1.93218 2.08665 2.24111 2.39558 2.55004 2.70451 2.85898 3.01344 
1.78134 1.93942 2.09751 2.25560 2.41368 2.57177 2.72986 2.88795 3.04603 
1.79445 1.95543 2.11641 2.27740 2.43838 2.59936 2.76034 2.92132 3.08230 
1.78631 1.94936 2.11242 2.27548 2.43854 2.60159 2.76465 2.92771 3.09077 
1.77801 1.94324 2.10846 2.27369 2.43892 2.60415 2.76937 2.93460 3.09983 
1.79028 1.95732 2.12435 2.29138 2.45842 2.62545 2.79248 2.95952 3.12655 
1.82334 1.99347 2.16360 2.33372 2.50385 2.67398 2.84411 3.01424 3.18436 
1.86335 2.03651 2.20967 2.38283 2.55598 2.72914 2.90230 3.07545 3.24861 
1.89201 2.06802 2.24403 2.42004 2.59606 2.77207 2.94808 3.12409 3.30010 
1.90443 2.08459 2.26474 2.44489 2.62505 2.80520 2.98536 3.16551 3.34567 
1.91608 2.09977 2.28345 2.46714 2.65083 2.83451 3.01820 3.20188 3.38557 
1.91992 2.10745 2.29498 2.48250 2.67003 2.85756 3.04509 3.23261 3.42014 
1.92508 2.11777 2.31045 2.50314 2.69582 2.88851 3.08119 3.27388 3.46656 
1.92831 2.12422 2.32013 2.51605 2.71196 2.90787 3.10378 3.29970 3.49561 
1.91592 2.11584 2.31575 2.51567 2.71559 2.91550 3.11542 3.31533 3.51525 
1.92185 2.12769 2.33354 2.53938 2.74522 2.95107 3.15691 3.36276 3.56860 
 
Fig. 3 provides the evaluations of the Cobb-Douglas function over the different choices of ` 
from 1978 to 2000. 
 

 
 

Fig. 3. Values of Cobb-Douglas function over choices of � 
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The contents of lines in Fig. 3 are nothing but the behaviors of ( )kyxf /),(log  over the 

period from 1978 to 2001 by taking into account the different choices of .m  These behaviors 
are almost linear providing a significant linear relationship among the variables under 
consideration over the parameter. 
 
7. ELASTICITY OF DEMAND 
 
It is natural to believe that a price increase leads to an increase in revenue. Economists use 
the notion of elasticity of demand to address relationships among price, demand, and 
revenue. The price elasticity of demand measures the extent of responsiveness or sensitivity 
of consumers to changes in the price of a good or service. Consumer responsiveness to a 
price change is measured by the price elasticity of demand (�), defined by the relationship, � = % ����

% ����, which is the percentage change in quantity demanded (�)against percentage 

change in price(�). The relative rate of change of a function Z(A) is defined as 
�(E)′
�(E) =

�
�E ln Z(A). Because of this equivalency, this is also referred to as the logarithmic derivative of Z(A).  If the price { and demand A are related by A = Z({), then the elasticity of demand as a 

function of { is given by �({) = − ��′(�)
�(�) = −{ �

�� ln Z({). Either a price increase will decrease 

revenue or a price decrease will increase revenue when demand is elastic so that �({) > 1.  
This easily follows from the revenue as a function of {, �({) = A ∙ { = { ∙ Z({)so that �′({) = {Z ′({) + Z({) = Z({)[1 − �({)].  In the case of inelastic demand (�({) < 1), a price 
increase or decrease follows revenue increase or decrease, respectively.  Furthermore, the 
Constant Elasticity of Substitution (CES) production function is a type of production function 
that exhibits constant elasticity of substitution that inherits a property typical of production 
functions and utility functions [12]. Recently, much has been focused on the substitution 
elasticity between labor and capital [13]. Borrowing the commonly used notations, � being 
output, � being factory production (� > 0), � being the share parameter (0 < � < 1), B, and� 

being primary production factors such as capital and labor, and −1 < ! = (o(�)
o ≠ 0, in which trepresentsthe elasticity of substitution, this takes the form, � = � ∙ (� ∙ B� + (1 − �) ∙

��)a$.Evidently, isoquants of the CES production functions are negatively sloped and strictly 
convex towards the original. One thing to note is that a scalar multiplier of Band �will 
produce a same multiple of the production output.   
 
Apair of two market combinations,  = ({, !) and i = (�, !), where { < �is shown as points   and iin Fig. 4. If � is considered a normal good, Marginal Rate of Substitution (MRS) is 
the slope of the indifference curve, that must be greater at i. If not, the consumer would not 
purchase more � at higher income. If � is an inferior good, MRSat point i would be less 
than at point  . 
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Fig. 4. Marginal Rate of Substitution (MRS) for Two Market Combinations 
 
Measuring the degree of substitutability between any pair of factors is an interest to many 
economists. The most famous, the elasticity of substitution has been introduced 
independently by John R. Hicks and Joan V. Robinson [14,15,16,17]. In fact, the elasticity of 
substitution measures the percentage change in factor proportions due to a change in the 
marginal rate of the technical substitution. If the productions function is Z(B, �), then the 
elasticity of substitution between capital (B) and labor (�) is given by � = > ln(�/B)/> ln(ZD/Z ) = [>(�/B)/>(ZD/Z )] × [(ZD/Z )(�/B)]. 
 
8. IMPACTS OF LABOR UNIONS 
 
In some situations, exorbitant benefits and retirement packages for employees are 
negotiated with employers by labor unions. American adults also believe that, by joining 
labor unions, the living standards of workers in the US would be greater than that of the 
workforce in other countries. The impact of wage rates and employment in the union and 
nonunion sectors is worth considering in addressing this issue. The theory will provide some 
answers to many questions. 
 
The formation of a labor union increases the wages and rights in the union sector, but only at 
the cost of employment reduction as some have already argued. Workers who are unable to 
find a job in the union sector would increase the workforce in the nonunion sector and as 
such, wages will dramatically go down in the nonunion sector as observed in Fig. 5. This 
certainly impacts the underlying economic reality. The union negotiated benefit and pension 
plans appear to consume a large portion of the state budget. The impact of labor unions on 
wages and employment in the union combined with nonunion sectors is vast and potentially 
contributes to the severe crisis being unfold.  
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Fig. 5. Union and nonunion sectors vs. wage rates 

 
The effect of labor unions on productivity has been extensively studied. There has been a 
study using a two-step approach [18]. One of them considered the economic influence of 
unionization on labor productivity. Other stage is the study on estimation of a production 

function model of plants using the transcendental logarithmic production function, ln #�
 & =

ln @ + |� ln #D
 & + |4 ln � + ��(ln B)4 + �4 ln B ln � + �+(ln �)4 + ∑ })¢,�)£� where �9� = 

productivity (quantity output/labor hours); @ = constant; B = capital (rentals and depreciation 
of assets); � = labor (labor hours of direct production workers); and ¢ = control variables, 
including: ¤
 of management, ¤
 of the employee turnover rate, ¤
 of absenteeism rate etc. It 
is found that unionization exerted a positive effect on labor productivity and the unionized 
plants, absenteeism and negative turnover on productivity rose as compared to that of the 
nonunionized plants [18]. 
 
If an economy consisted of unskilled workforce (�) and professionals (k), then elasticity of 

the marginal utility is ; ¥(=)a1¦(�
�(§ <(¨=>?,©2  where @(?)is consumption at time ?and ª ≥ 0 [19]. 

Using the integration by parts formula, the latter will be equivalent to 
 

11 − ª ¬ U@(?)�(§ − 1V  > <(¨=
−® ¯ = 1−®(1 − ª)

©
2 °<(¨=U@(?)�(§ − 1V − ¬ <(¨=>U@(?)�(§ − 1V

©

2
± 

= 1−®(1 − ª) °<(¨=U@(?)�(§ − 1V − ¬ <(¨=(1 − ª)@(?)(§@²(?)>?
©

2
± 

=  1−®(1 − ª) °<(¨=U@(?)�(§ − 1V − (1 − ª) ¬ @(?)�(§<(¨= @²(?)@(?) >?
©

2
± 

=  1−®(1 − ª) °<(¨=U@(?)�(§ − 1V − (1 − ª) ¬ @(?)�(§<(¨=>(log @(?))
©

2
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= 1−®(1 − ª) °<(¨=U@(?)�(§ − 1V
− (1 − ª) ³@(?)�(§<(¨= log @(?) − ¬ log @(?)>U@(?)�(§<(¨=V©

2 ´±. 
 
If ª = 0, then the utility function is linear, and the representative agent is risk-neutral. The 
utility function is logarithmic as ª → 1.From above, if @(?)�(§<(¨= is a constant, the third term 

vanishes, thus giving us@(?) = @2<# µa1¦&=which is exponentialas ? → ∞.  Fig. 6 provides all of 
these scenarios as ? → ∞.  
 

 
 

Fig. 6. All possibilities of utility functions for all · as ¸ → ∞ 
 
9. CONCLUSIONS 
 
This paper has provided a glimpse of concepts generally found in economic literature related 
to labor, capital, and production function. The themes require rigorous explanations and 
arguments to be understood by the general public unless assisted by the mathematical 
theories. It is noted throughout the first part of the paper from the calculations of financial 
products such as sinking fund, amortization, and also, the modeling average cost that the 
compounding greatly assisted these financial concepts to be viable and to exist in the same 

time. In terms of the Cobb-Douglas Production Function, the behaviors of ( )kyxf /),(log  

for the different choices of m  are significantly linear. An economic scenario in which 
unskilled and professionals are taken into account, the elasticity of the marginal utility 
function follows a linear, exponential, and logarithmic relationship as ∞→t  for various 

values of θ  as pointed out. 
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