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Abstract
In this paper, we propose a compressed sensing (CS) sound source localization algorithm based
on signal energy to solve the problem of stopping the iteration condition of the orthogonal
matching pursuit (OMP) reconstruction algorithm in CS. The orthogonal matching tracking
algorithm needs to stop iteration according to the number of sound sources or the change of
residual. Generally, the number of sound sources cannot be known in advance, and the residual
often leads to unnecessary calculation. Because the sound source is sparsely distributed in
space, and its energy is concentrated and higher than that of the environmental noise, the
comparison of the signal energy at different positions in each iteration reconstruction signal is
used to determine whether the new sound source is added in this iteration. At the same time, the
block sparsity is introduced by using multiple frequency points to avoid the problem of different
iteration times for different frequency points in the same frame caused by the uneven energy
distribution in the signal frequency domain. Simulation and experimental results show that the
proposed algorithm retains the advantages of the orthogonal matching tracking sound source
localization algorithm, and can complete the iteration well. Under the premise of not knowing
the number of sound sources, the maximum error between the number of iterations and the set
number of sound sources is 0.31. The experimental results show that the proposed algorithm has
good positioning accuracy and has certain anti-reverberation capability. Compared with other
OMP algorithms, the proposed algorithm has better iterative ability and stability. This work is
helpful in promoting the development of multiple sound source localization.

∗
Author to whom any correspondence should be addressed.

Original content from this workmay be used under the terms
of the Creative Commons Attribution 4.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

1361-6501/22/045018+10$33.00 Printed in the UK 1 © 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1361-6501/ac3d46
https://orcid.org/0000-0002-8579-5935
mailto:weiya_liu813@126.com
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6501/ac3d46&domain=pdf&date_stamp=2022-1-31
https://creativecommons.org/licenses/by/4.0/


Meas. Sci. Technol. 33 (2022) 045018 R Tang et al

Keywords: compressed sensing, sound source localization, signal energy

(Some figures may appear in colour only in the online journal)

1. Introduction

Speech interaction technology has been rapidly developed and
applied in many fields, such as in smart homes [1, 2], intel-
ligent robots [3–6], and vehicle-mounted intelligent systems.
Sound location technology based on microphone arrays plays
an important role as its front-end processing. Traditional sound
location technology is divided into three categories: (a) the
conventional beam forming algorithm [7]; (b) the time differ-
ence of arrivals algorithm [8, 9]; and (c) the high-resolution
spectrum estimation algorithm [10]. The traditional algorithm
is relatively mature, but it still has the disadvantages of low
resolution, vulnerability to environmental factors and the inab-
ility to locate coherent signals [11, 12].

In recent years, more and more scholars have begun to
explore new measures for sound source localization. The
measurement performance of the sound source positioning
system not only depends on the hardware conditions of the
microphone array [13], but is also greatly related to the soft-
ware algorithms, including the four-element microphone array
groups measure [14], machine learning, the steered response
power-phase transform (SRP-PHAT) algorithm and multiple
signal classification (Music) algorithm [15], the orthogonal
matching pursuit (OMP) algorithm and so on. The new
algorithm performs well in locating both multi-source and
monophonic sources, and has applications in many fields
[5, 6]. The OMP algorithm not only has better resolution, but
can also complete sound source location with less information.
Its contents can be divided into sparse signal representation,
the design of the sensing matrix (or measurement matrix) and
the reconstruction algorithm [16], since the sound source can
be regarded as a point source, and the number of sound sources
in space is very sparse. Based on compressed sensing (CS), by
using the spatial scarcity, the localization can be transformed
into the sparse recovery problem [17]. Angeliki et al [18] used
the CS weighted l1 normminimization algorithm for the direc-
tion of arrival estimate. The influence of the coherence of the
perceptual matrix and the signal-to-noise ratio on the perform-
ance of DOA estimation is analysed, and compared with the
traditional algorithm, and the superiority of the compressive
sensing algorithm is proved. For the mismatch of the CS basis
caused by conventional grid-based measurement matrix con-
struction, some scholars have proposed gridless compression
sensing sound location [19, 20]. For the sparse reconstruction
part of the signal, the greedy algorithm is widely used because
of its lower computational cost and low complexity. Among
them, the OMP algorithm is particularly prominent. Ning et al
[21] pointed out that the OMP algorithm can still locate the
sound source more accurately when the measurement mat-
rix does not have the restricted isometry property. Then the
author proposes the OMP-SVD algorithm which combines
singular value decomposition (SVD) and the OMP algorithm
to reduce the influence of noise. The OMP algorithm generally

has two criteria for stopping: the number of known iteration
times or the residual reaches a certain threshold. The residual
threshold is difficult to determine in different environments
for the source location [22]. Too few iterations will lead to
incomplete reconstruction and the omission of sound sources.
Too much noise causes non-zero values in most passive source
locations, which will affect the positioning performances. The
optimal number of iterations is the number of sound sources,
but the actual number of sound sources is unknown.

To overcome the defects of the OMP algorithm in mul-
tiple sound source localization measurements, an energy-
based OMP (EbOMP) is proposed, based on the energy of the
reconstruction signal [23, 24]. When the signal energy corres-
ponding to the newly-added non-zero position in the iteration
is less than the set ratio of the signal energy corresponding to
the reconstructed position, the OMP algorithm stops iteration.
At the same time, because the OMP algorithm can only calcu-
late the single frequency point at a time, as well as the energy
distribution of each frequency point of the sound source being
uneven, the block sparsity is introduced [25], all frequencies
are put into the solution model and the sum of energy of all fre-
quency points is calculated each iteration for comparison. The
simulation and experimental results show that the algorithm
solves the problem of the uncertainty of the number of itera-
tions of the OMP algorithm, and at the same time solves the
problem that only a single frequency point and the uneven
energy distribution of the frequency points can be calculated
at a time. The algorithm proposed in this paper can accurately
locate the location of sound sources and estimate the number
of sound sources.

2. Signal model and algorithm

2.1. Sparse model in sound source localization

We assume that the microphone array is a circular planar array
of radius R, and that the array has N microphones. Because the
microphone array plane is symmetric on both sides, only the
space on one side of the array is considered. The positive dir-
ection space of the array is divided into M directions accord-
ing to the angle, among which there are K sound sources from
different directions. In addition, N ≪M, K ≪M, as shown in
figure 1,

where θi is the elevation angle of the ith sound source, and
φi is the azimuth angle of the ith sound source (elevation angle
is from the x-y plane to the positive z axis, azimuth angle is
from the positive x axis to the positive y axis.). Since only the
space in front of the array plane is considered, 0◦ ⩽ θi ⩽ 90◦,
0◦ ⩽ φi ⩽ 360◦.

In the anechoic environment, the centre of the array circle
is taken as the reference position, and signals being received
by the nth microphone could be described as:
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Figure 1. Diagram of microphone array receiving signal.

yn (k) =
M∑
m=1

sm [k− τnm] + vn (k) n= 1,2, · · · ,N (1)

where sm(k) (m = 1, 2, …, M) is the signal being received at
the reference position from themth direction, sm(k) is non-zero
only in the direction with the sound source, and it is assumed
that the sound source signals in different directions are inde-
pendent of each other; τ nm is the time difference between the
nth microphone and the reference position for the signal in
the mth direction. vn(k) is the additive noise signal of the nth
microphone, and it is assumed that it is unrelated to all source
signals and observation noises of other microphones.

Transforming equation (1) to the frequency domain,

Yn (ω) =
M∑
m=1

Sm (ω)e
−jωτnm +Vn (ω) n= 1,2, · · · ,N (2)

where Yn(ω), Sm(ω) and Vn(ω) are the discrete Fourier trans-
forms of yn(k), sm(k) and vn(k) respectively. The frequency
domain signal model can be described as a vector.

Y1 (ω)
Y2 (ω)

...
YN (ω)

 =


e−jωτ11 e−jωτ12 · · · e−jωτ1M

e−jωτ21 e−jωτ22 · · ·e−jωτ2M

...
...

...
...

e−jωτN1e−jωτN2 · · ·e−jωτNM




S1 (ω)
S2 (ω)

...
SM (ω)



+


V1 (ω)
V2 (ω)

...
VN (ω)

 . (3)

This is simplified as

Y= AS+V (4)

where A(N ×M) is called the measurement matrix. The num-
ber of sound sources K≪M. Therefore, the signal vector S of
the sound source is a sparse vector. Its non-zero value position
is the space corresponding to the sound source direction.

2.2. OMP reconstruction algorithm

The essence of CS can be described by the problem of solv-
ing the sparse solution of the linear model Y = AS through
the measurement value Y and the measurement matrix A, that
is, the sparse sound source signal S is reconstructed. Due to
N ≪ M, there are multiple solutions to this problem. Usually,
the l0-norm is used to find the sparsest solution. In general,
equation (4) can be expressed as the following constrained
optimization problem

min ∥S∥l0 s.t. ∥AS−Y∥l2 ⩽ ε (5)

where ε is determined by the upper limit of the given noise V.
However, the solution of equation (5) is a non-deterministic

polynomial hard (NP-hard) problem, which is usually difficult
to calculate. Under certain conditions, the l1-normmay be used
instead of the l0-norm [26]. By constraining the sparsity of S,
a better reconstruction effect of S can be achieved.

Signal reconstruction is the core problem of CS theory. At
present, the OMP algorithm is widely used in sound source
localization. The basic idea of this algorithm is to find out
the atoms in the measurement matrix that can represent the
measurement signal in a sparse linear manner by the iterative
method.

The brief steps of the OMP algorithm are as follows.

Step 1. Determinemeasurement matrixA, measurement value
Y and iteration number K (number of sound sources).

Step 2. Initialize the residuals r0 = Y, support set Λ0 =⊘, the
number of iterations t = 1.

Step 3. The inner product of the residual and the measurement
matrix was obtained, and the atom jt with the largest
result was selected, and the support set was updated
as Λt = Λt-1∪jt.

jt = argmax
j=1,2,··· ,N

∣∣⟨rt−1,A
H
j ⟩
∣∣ (6)

where AH is the complex conjugate of A.
Step 4. The current approximate solution, St, is obtained by

the least square method.

St = argmin
z∈∁N

{∥Y−AΛtz∥2} ,z ∈ Λt. (7)

Step 5. The approximate solution Yt and the new residual rt
are calculated.

Yt = ASt (8)

rt = Y−Yt. (9)

Step 6. Determine whether the iteration number t reaches the
set value K, if it does not reach the return step (3).

Step 7. Obtain an estimate of the original signal S, St.

As can be seen from equation (3), the atoms in the measure-
ment matrix that constitute the measured values can be gradu-
ally selected in step (3) of the algorithm iteration, and the
optimal coefficient corresponding to the selected atoms can
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Figure 2. Algorithm flow steps.

be obtained by the least square method. In general, the num-
ber of iterations can be set to be consistent with the sparsity. In
source location, the number of sound sources is the sparsity of
the received signal. But in the real signal model, the number
of sound sources K is often not available in advance. Another
commonly used condition for the OMP algorithm to stop iter-
ation is: stop when the change of residuals between two suc-
cessive iterations is less than a certain threshold. However,
it is difficult to determine the threshold value, and a value
that is too small will lead to too many iterations, increase the
non-zero value of the reconstruction coefficient vector, and
increase unnecessary calculations. Too large a number of itera-
tions may result in too few iterations to completely reconstruct
all source positions. Only when the number of iterations is sig-
nal sparsity is the reconstruction result the optimal solution.

2.3. OMP algorithm based on signal energy

Based on the above analysis, signal energy is introduced as the
stop iteration condition of the OMP algorithm, and the sound
source sparsity is extended to the block sparsity considering
the majority of frequency points. The algorithm flow steps in
this paper are shown in figure 2.

According to equation (3), the non-zero elements of the
reconstructed target sparse vector S are the received sound
source signals in all directions. Because the sound source sig-
nal energy is more concentrated and general than the noise sig-
nal energy, and by the section 2.2 OMP algorithm steps, the
number of iterations does not exceed that of the sound source,
in the algorithm of step (4) the approximation of the solution
is based on the sound source signal which has great energy,
when the number of iterations is more than that of the sound
source, new solutions for the noise caused by a non-zero value
have less energy. Therefore, the change in reconstructed sig-
nal energy is taken as the condition for the algorithm to stop
iteration.

In the part of the iteration judgment condition, the energy
threshold δ is set. This determines the ratio of the newly-added
non-zero position signal energy value to the reconstructed pos-
ition signal energy in the iteration result. When the ratio is less
than the set energy threshold, the iteration is stopped.

Because the general signal energy is not uniformly distrib-
uted in the frequency domain, the sparse signal model with a
multi-frequency point construction block is selected. Accord-
ing to the literature, the signal model is extended to block
sparsity, which can be expressed as the following formula.

Y1 (ω1)
...

Y1 (ωF)
Y2 (ω1)

...
Y2 (ωF)

...
YN (ωF)


=


D(1)
D(2)
...

D(M)


T



S1 (ω1)
...

S1 (ωF)
S2 (ωF)

...
S2 (ωF)

...
SN (ωF)



+



V1 (ω1)
...

V1 (ωF)
V2 (ωF)

...
V2 (ωF)

...
VN (ωF)


(10)

where F is the number of extended frequencies. The measure-
ment matrix is extended as A= [D(1),D(2), …, D(M)], where
D(m) is the measurement matrix after frequency expansion of
the measurement vector in the mth direction.

3. Simulation results and analysis

In order to verify the feasibility and advantages of the
algorithm proposed in this paper, the parameters of the
EbOMP algorithm in this paper are analysed in the computer
simulation environment. They are compared to the SRP-PHAT
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Figure 3. Sound signal.

algorithm, the Music algorithm and the EbOMP algorithm in
this paper. This paper focuses on the improvement of the itera-
tion times of theOMP algorithm. The performance of theOMP
algorithm under different sound source spacings and different
frequencies has been fully studied by predecessors and will
not be discussed in this paper. Therefore, the simulation and
experiment focus on the effectiveness of the EbOMP algorithm
[18, 27].

3.1. Simulation conditions

The array comprises a circular planar array of six microphones
with a radius of 0.1 m, and the spatial azimuth angles and elev-
ation angles in front of it are divided according to the spa-
cing of 10◦. The simulation environment is a free field, and
the influence of noise on the signal is mainly considered. The
voice signals were randomly selected from the TIMIT data-
base, with a sampling rate of 16 kHz and a processing frame
length of 512 points. The overlap rate between the two frames
is 50%, each frame signal is added with a hamming window,
and the discrete Fourier transform is taken. Since the energy of
the speech signal is mainly distributed in the middle and low
frequencies, 94 frequency points at equal intervals between
100 and 3 kHz are selected to construct the measurement mat-
rix after the discrete Fourier transform.

3.2. Verification of reconstructed signal energy

In order to verify the accuracy of the reconstruction algorithm
on the signal energy reconstruction, a speech signal was used
for simulation verification, as shown in figure 3.

The simulation conditions in section 3.1 were used to calcu-
late the energy of the original signal and the reconstructed sig-
nal. In order to see the energy details more clearly, the length
of each frame was shortened to 512 points. The calculation
results are shown in figure 4.

Figure 4. Signal energy correlation.

It can be seen from figure 4 that the reconstructed signal
energy is approximately equal to the original signal energy. As
the reconstruction algorithm does not use all frequency points
of the signal to calculate, the reconstructed signal energy of
some frames is less than the original signal.

3.3. Selection of energy threshold

The algorithm introduces an important parameter: energy
threshold. According to the principle of the improved
algorithm, this threshold is actually a representation of the
relationship between the energy of the sound source signal and
the energy of the noise signal, so it is necessary to choose a
value that is applicable to most scenarios in daily life. A para-
meter also representing the relationship between signal energy
and noise energy is the frequently-used signal-to-noise ratio.
The signal-to-noise ratio can be calculated according to the
signal energy ratio by the following formula:

SNR(dB) = 10× log10

∑
|x(k)|2∑
|v(k)|2

(11)

where x(k) is the signal sequence and v(k) is the noise
sequence.

According to the international background noise measure-
ment standard [28], the lowest adaptive environment of the
algorithm is set as SNR= 5 dB, and then the energy threshold
is selected as approximately 0.2. After the threshold is selec-
ted, it is verified whether the number of iterations of the
EbOMP algorithm meets the expectation when the number of
sound sources and the signal-to-noise ratio are different, as
shown in figure 5.

It can be seen from the figure 5 that the number of itera-
tions of the algorithm is approximately equal to the number
of sound sources under different signal-to-noise ratios. How-
ever, it is also noted that when the number of sound sources
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Figure 5. Number of iterations for different numbers of sound
sources.

Figure 6. Audio signal contrast.

is greater than or equal to 2, regardless of the signal-to-noise
ratio, the number of iterations obtained is slightly lower than
the set number of sound sources. This is because the algorithm
calculates the average number of iterations of all frame posi-
tioning results of audio, but there may be a gap with an amp-
litude of 0 or too small between the pronunciation of audio,
audio and text, so that all sound sources cannot be detected
during this period, resulting in a lower final result. As shown
in the figure 6, the red box indicates where one is in the audio
energy intensive period and the other is in the gap.

3.4. Comparison of location of different algorithms

Assume that there are two sound sources, its azimuth angle
and elevation angle, respectively (−60◦, 60◦), (50◦, 30◦). Set
the signal-to-noise ratio to 10 dB, and the three algorithms are
simulated. Simulation environment details: the added noise is

white noise, and the reverberation is not considered in the sim-
ulation, assuming a free field scenario.

The simulation results are as follows:
It can be seen from figures 7–9 that the EbOMP algorithm

can accurately locate the positions of the two sound sources,
and it has a narrowmajor lobe. The SRP-PHAT algorithm also
locates two sound source locations, but the major lobe is wider
and the calculation time of this algorithm is longer. Among the
three algorithms, the EbOMP algorithm is not only narrow in
the main lobe, but also does not need to know the number of
sound sources in advance.

In order to further verify the performance of the EbOMP
algorithm, the positioning accuracy of the three algorithms
under different SNR conditions was counted. At the same
time, the accuracy of the EbOMP algorithm with different
numbers of sound sources is simulated. This experiment does
not consider the positioning error, it only records whether the
positioning result is correct. When the algorithm processes a
frame signal and locates all the sound source positions, it is
called accurate positioning. Therefore, positioning accuracy is
defined as the ratio of locating accurate frames to all frames.
The voice was selected from the TIMIT database, and a total of
1000 frames were tested. The length of a frame of signal is 512
sampling points, and the sampling frequency is 16kHz. White
noise was added to clean speech, different SNR environments
were simulated, and no reverberation was assumed.

As can be seen from figures 10 and 11, in the location of
the two sound sources, the accuracy of the EbOMP algorithm
is about 20% higher than that of the other two algorithms
under different SNR simulations. It can be concluded that
the algorithm can accomplish accurate positioning with less
information.

Through simulation and comparative analysis, it is found
that the EbOMP algorithm proposed in this paper has a bet-
ter main lobe performance and location success rate than
the traditional algorithm. Moreover, compared with the OMP
algorithm, it does not need to predict the number of sound
sources and has good application performance.

4. Experimental results and analysis

In order to verify the performance of the algorithm proposed
in this paper, tests were carried out in two scenarios; an empty
square and an office. A seven-microphone circular micro-
phone array with a radius of 0.1 m is adopted. The instruments
used are shown in figure 12, and seven microphones are selec-
ted, as shown in figure 13.

Themost common scenario in life is amono-source or dual-
source scene, so the dual-source scene is selected to verify the
EbOMP algorithm in practice. Two speakers are placed in the
space, the distance between the sound source plane and the
microphone array plane is set at 1 m and 2 m, respectively, as
shown in figure 14.

The two speakers broadcast different voice signals with
similar energy, and the positioning results are displayed in the
picture taken.
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(a) Three-dimensional perspective

Figure 7. EbOMP algorithm localization results.

Figure 8. SRP-PHAT algorithm localization results.

Figure 9. MUSIC algorithm localization results.
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Figure 10. Positioning accuracy of the three algorithms in different
SNRs.

Figure 11. Location accuracy of different numbers of sound sources.

Figures 15 and 16 are the positioning results at different
distances indoors and outdoors. It can be seen that the EbOMP
algorithm proposed in this paper successfully locates the posi-
tions of two sound sources in different environments. It should
be pointed out here that when modelling the received signal
of the algorithm, the reverberation factor is not considered.
However, in an indoor environment with reverberation, the
improved algorithm can still locate the sound source, indicat-
ing that the algorithm has a certain resistance to reverberation.
The ability to respond can be explained by the principle of the
algorithm.

In each test, the average number of iterations of the EbOMP
algorithm was recorded, and the results were as follows:

As can be seen from the table 1, the absolute value of itera-
tion number deviation is 0.31 at the maximum and 0.07 at the
minimum. In the simulation analysis in section 3.3, the number
of iterations of the algorithm is generally less than the set num-
ber of sound sources. The actual statistical results show that the

Figure 12. Microphone array system.

Figure 13. Schematic diagram of microphone array device.

number of iterations is larger than that of the set sound source,
because the actual sound source is not a very ideal point source
in simulation. The sound box used in this experiment has a lar-
ger sounding ‘surface’ rather than a ‘point’, so when the sound
pressure value of the sound source is large, the energy of the
sound source signal will leak to the adjacent direction of the
division, resulting in the increase of the number of iterations
of some frames.

8
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Figure 14. Schematic diagram of positioning experiment.

Figure 15. Outdoor positioning results.

Figure 16. Indoor positioning results.

Table 1. Iteration count of EbOMP algorithm in different scenarios.

Test environment Outdoors Indoors

Distance 2 m 1 m 2 m 1 m
Number of iterations 1.93 2.17 1.69 2.24
Deviation −0.07 0.17 −0.31 0.24

5. Conclusion

The main contribution of this paper is to propose an
orthogonally-matched chase source localization algorithm
based on reconstructed signal energy. The OMP algorithm

needs to know the number of sound sources or bring
unnecessary calculation amount in advance for the iteration
stopping condition. After each iteration, the energy of recon-
structed signals at different positions is compared to judge
whether new sound sources are added. Simulation results show
that the EbOMP algorithm not only has good directivity, but
also does not need to know the number of sound sources in
advance. In the experiment, the algorithm shows a certain
ability to resist reverberation. Moreover, in different envir-
onments, the maximum absolute error between the number
of iterations and the actual number of sound sources is 0.31,
indicating that iteration can be stopped within a good range
of iterations. Finally, it should be pointed out that due to the

9
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limitation of the algorithm principle, the algorithm can not dis-
tinguish multiple sound sources with large energy differences,
which should be considered in future research.
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