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ABSTRACT 
 

Sorghum is one of the important cereals consumed by humans, animals and also used for the 
production of mushroom spawns in Ghana.  
Aim: Identification of fungi present on sorghum grains before and after pretreatment (steam and 
gamma radiation) principally for mushroom cultivation.  

 Original Research Article 
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Methodology: The total number of mycoflora (Log10 CFU g
-1

) of sorghum grains and their relative 
frequency (percentage occurrence) associated with the raw grains and the mycoflora present after 
subjecting the sorghum grains to gamma radiation doses of 0, 5, 10, 15, 20, 25 and 32 kGy at a 
dose rate of 1.7 kGy/h from a Cobalt-60 source (SLL-515, Hungary) and moist heat at a 
temperature of 100- 120ºC for 2- 2.5 hours was evaluated. Mycological analysis was done by direct 
plating method on Cooke’s and Dichloran Rose Bengal Chloramphenicol (DRBC) media.  
Results: Nine fungal species belonging to six genera were associated with the sorghum grains. 
Among these fungi were Cladosporium macrocarpum, Trichoderma harzianum, Fusarium 
oxysporum, Rhodotorula spp., Penicillium spp., Aspergillus niger, Aspergillus fumigatus, 
Aspergillus ochraceous and Aspergillus flavus. Comparatively higher fungal counts of 3.27 and 
3.82 Log10 CFU g

-1
 were recorded for non-pretreated while lower counts of 0.5 Log10 CFU g

-1
 were 

recorded for pretreated sorghum grains. Gamma radiation and moist heat significantly (P<0.05) 
reduced total fungal populations by an average of 2.4 and 2.1 log cycles, respectively. Rhodotorula 
sp. (11.5%), Penicillium sp. (34.6%), Aspergillus fumigatus (29.9%) persisted on the moist heat 
sterilized while only Rhodotorula sp. (100%) persisted on gamma irradiated grains.  
Conclusion: These data indicate possible health hazards for humans and animals upon 
consumption of such contaminated food grain by toxigenic moulds and also reveal the sensitivity of 
fungal species to gamma radiation and moist heat as a selective substrate for oyster mushroom 
spawn preparation.  
 

 
Keywords: Sorghum; gamma radiation; steam; D10 value; fungi; mushroom. 
 

1. INTRODUCTION 
 
Sorghum (Sorghum bicolor (L.) Moench) is the 
fifth most important cereal after rice, wheat, 
maize and barley [1]. It is the staple food grain 
for over 750 million people who live in the semi-
arid tropics of Africa, Asia, and Latin America 
[2,3]. The sorghum crop is still a principal source 
of energy, protein, vitamins and minerals for 
millions of poor people in these regions. Besides 
its traditional use as food crop, sorghum has 
other alternative uses such as livestock and 
poultry feed, potable alcohol, starch, ethanol 
production, numerous industrial purposes [4]. 
Significantly among the list is its usage for 
mushroom spawn production.  
 
Numerous fungi associated with sorghum grains 
are implicated as macro / micro organisms 
responsible for competition with the mycelium of 
the cultivated mushroom. The source of 
contamination is largely dependent on such 
factors as place of origin, physiological maturity, 
storage quality, grain density are of serious 
concern due to their fungi toxigenic potential. 
Again, some major effects of fungal deterioration 
of grains include decreased germination, 
discoloration, development of visible mold 
growth, musty or sour odors, dry matter loss and 
nutritional heating, caking, and the potential for 
production of mycotoxins in the grain. According 
to [5], the toxigenic moulds commonly isolated 
from foods or grains are Aspergillus, Penicillium 
and Fusarium. In storage conditions, Aspergillus 

and Penicillium are predominant and the 
Fusarium spp. is an important plant pathogen. 
Aflatoxins (AFB1, AFB2, AFG1 and AFG2) are 
mycotoxins produced by Aspergillus flavus (AFB1 
and AFB2 producer) and A. parasiticus (AFB1, 
AFB2, AFG1 and AFG2 producer). These species 
are commonly recognized in grains as maize or 
peanuts. Aflatoxin B1 is most toxic of the group 
followed in decreasing toxicity by AFG1, AFB2 
and AFG2. Aflatoxins are recognized in some 
species as responsible for toxic signs and 
lesions, reduced growth, immune suppression 
and liver cancer [6,7]. The International Agency 
for Research on Cancer has classified AFB1 as a 
probable human carcinogen [8]. 
 
In Ghana, Pleurotus ostreatus (Jacq. Ex. Fr) 
Kummer, strain EM-1, is the most cultivated 
mushroom [9]. The spawns of this species of 
mushroom has been prepared using moist heat 
sterilized sorghum grains. The spawn which is 
often the innoculum is a network of pure culture 
of fungal vegetative tissues interweaves a 
medium such as cereal grain [10,11,12]. 
Published works reveals that different media has 
been used for spawn production such as wheat 
[13,14,15], rye [14], sorghum [14,15], rice [16], 
millet [16,13,15] and white maize [15]. 
Essentially, these materials serve as a 
propagative media for the cultivation of 
mushroom. Failure to achieve a satisfactory 
harvest may often be traced to unsatisfactory 
spawn used [14]. Mushroom cultivation serves as 
the most efficient and economically viable 
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biotechnology for the conversion of lignocellulose 
waste materials into high quality protein food per 
unit area [17] and this will naturally open up new 
job opportunities, especially in rural areas, urban 
and peri-urban areas in this golden age of 
enterpreneurship.  
 
Gamma irradiation as a physical treatment 
effectively eliminates spoilage and pathogenic 
microorganisms in foods [18,19,20,21] and has 
been utilized for the reduction and elimination of 
pathogens in foods [22,23]. However in order to 
utilize irradiation as a food processing 
technology, it is imperative to study the radiation 
sensitivity of contaminating microorganisms 
since this provides a basis for accurate 
estimation of inactivation doses [24,25]. 
Sensitivity to irradiation varies among microbial 
and fungal species and is affected by the 
components of foods and temperature during 
irradiation and subsequent storage [26,27]. The 
D10-value (decimal reduction dose) is the 
radiation dose required to inactivate 90% of a 
viable bacterial population or reduce the 
population by a factor of 10 [28]. There is a 
comparatively great range of D10-values and 
therefore differences in resistance to gamma 
radiation by various microorganisms of public 
health significance. Published data [29,30] on D10 
values for Aspergillus flavus was 0.43 and 0.5 
kGy in buffered saline solution and in smoked 
herrings, respectively. 
 
Studies on the relative radiation-resistant fungal 
species by Abouzeid et al. [29] illustrated that  
Aspergillus and  Penicillium species are relatively 
sensitive to ionizing radiation with a D10 values 
between 0.25 and 0.65 kGy whereas other 
species in the genus Fusarium are more 
resistant requiring high but safe D10 v alues of  
0.65 to 1.5 kGy. Estimation of D10-values may be 
incorporated into risk assessments for designing 
processes for reduction of microbial populations 
in food [31]. 
 
This paper seeks to assess the mycofloral 
population, species diversity and compare the 
effect of gamma irradiation and moist heat 
sterilization on the mycofloral population of 
sorghum grains for spawn preparation. 
 

2. MATERIALS AND METHODS 
 
2.1 Collection of Samples 
 
Sorghum samples (approximately 1000 g) were 
collected from Madina market, Accra, Ghana in 

2013. Samples were brought to the laboratory in 
sterile plastic bags and kept at 4ºC. All the 
samples were subjected to mycological analysis.  
 

2.2 Moist Heat Sterilization 
 
Grains were steeped in water overnight for about 
12 hours. About 265 g of grains were packed into 
bottles and then transferred into transparent heat 
resistant polypropylene bags (24 cm x 38 cm) 
and then plugged with cotton wool and covered 
with plain sheets. The sheets were held in place 
with rubber bands. The grains were sterilized in 
an autoclave (Priorclave, Model PS/LAC/EH150, 
England) at 121ºC for 1h. 
 

2.3 Irradiation 
 
Sorghum grains were soaked overnight and 
packaged as described above and then 
irradiated at doses 0, 5, 10, 15, 20, 25 and 32 
kGy at a dose rate of 1.7 kGy per hour in air from 
a cobalt 60 source (SLL 515, Hungary). Doses 
were confirmed using the ethanol-chlorobenzene 
(ECB) dosimetry system at the Radiation 
Technology Centre of the Ghana Atomic Energy 
Commission, Accra, Ghana. 
 

2.4 Determination of pH  
 

According to AOAC [32]. 
 

2.5 Determination of Moisture Content  
 

According to AOAC [32] 
 

2.6 Enumeration of Mycoflora 
 
The dilution plate technique was used in 
estimating fungal populations. About 10 g fresh 
weight of sample was placed in 250 ml 
Erlenmeyer flask containing 100 ml sterile 
distilled water. The mixture was shaken at 140 
rev. /min  in a Gallenkamp Orbital Shaker for 30 
min. Aliquot (1 ml) of the suspension was placed 
in sterile universal bottles (MaCartney tubes) 
containing 9 ml of 0.1% peptone, and was 
serially diluted up to 1:10

-3
. The fungal population 

was enumerated on modified Cooke’s medium 
[33] and Dichloran Rose Bengal 
Chloramphenicol (DRBC) agar incubated at 30-
32ºC for 5 to 7 days for species diversity.  
 

2.7 Characterization and Identification of 
Fungal Isolates 

 
Fungal isolates were examined under stereo-
binocular microscope (Leica 261, Germany) 
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using the needle mounts technique. Their 
identification was performed according to macro 
and micro morphological characteristics. All the 
isolates were identified up to the species using 
keys and manuals [34,35,36]. The percentage 
(%) occurrence of fungi was calculated by the 
formular according to Sreenivasa et al. [37]. 
 

Percentage (%) occurence of fungal species=  
 

Number of fungal species isolated x 100 
 Total number of fungi isolated 

 

2.8 D10 Values Determination 
 
The D10 value is the reciprocal of the slope of the 
exponential part of a survival curve. This value 
may also be obtained from equation (1). The 
data was subjected to regression analysis. The 
surviving fractions, log10 (N/N0) of 
microorganisms, was calculated and used as 
relative changes of their actual viable cell counts. 
The D10 values were calculated by plotting log10 
(N/N0) against dose (D) according to the 
equation  

 

D10 =  Radiation Dose (D) 
log10 (No- N) 

 

Where No is the initial viable count; N is the 
viable count after irradiation with dose D; D is the 
radiation dose [38,27]. The linear correlation 
coefficient (r2) and the regression equations were 
also calculated. 
                          

2.9 Statistical Analysis  
 
The values obtained for total fungal counts were 
transformed to logarithm conversions and 
subjected to analysis of variance (ANOVA) using 
SPSS (Chicago, IL) version 9 for windows. 
 

3. RESULTS AND DISCUSSION 
 
Results of the influence of gamma radiation and 
moist heat sterilization (steam) on the relative 
abundance and total microbial population on the 
surface of the sorghum grains indicated some 
significant (P<0.05) difference. Both methods of 
pretreatments were effective in reducing the 
microbial load. The non-pretreated (control) 
sample harbored comparatively higher fungal 
counts of 3.27 and 3.82 log10 CFU/g enumerated 
from the Cooke’s and DRBC growth media, 
respectively, (Fig. 1). Gamma radiation dose of 
5kGy was able to reduce the mycofloral 
population by 1.2 and 1.6 log cycles while 10kGy 
recorded 1.7 and 1.86 log cycles respectively for 

the two growth media. Dose 15 kGy reduced the 
total fungal populations by 1.7 and 3.1 log cycles 
for the two growth media, 20 kGy by 2.4 and 3.2 
log cycles, 25 kGy  by 2.4 and 3.3 log cycles, 32 
kGy 2.8 and 3.3 log cycles. The effect of doses 5 
kGy, 10 kGy and 15 kGy on the total fungal 
population enumerated on Cooke’s medium 
showed no significant (P>0.05) differences. 
Likewise, doses 20 kGy, 25 kGy and 32 kGy 
were also not significantly (P>0.05) different. 
Essentially doses 5, 10, 15, 20, 25, 32 kGy 
differed (P<0.05) significantly from the non-
pretreated (control) sample. This observation 
could be attributed to the production of free 
radicals by ionizing energy of the gamma 
radiations which cause injuries to the cells and 
ultimately death of microorganisms [39,21]. 
 
Steam sterilization was also effective in reducing 
the total fungal population by 1.6 and 2.6 log 
cycles, respectively, for the two growth media. 
The effectiveness of steam sterilization in 
reducing the total fungal population was 
comparable to doses 10 kGy and 15 kGy. Doses 
beyond 15 kGy further reduced the total fungal 
populations to range 0.9- 0.5 log 10 CFU/g on 
Cooke’s medium. However on DRBC, steam 
sterilization reduced total fungal population to 
1.23 log10 CFU/g which corresponds to an 
intermediary of 10 and 15 kGy. Statistically, there 
were no significant (P>0.05) differences recorded 
between steam sterilization and gamma radiation 
doses of 10, 15, 20, 25 and 32 kGy (Fig. 1). 
 
Results obtained corroborate results reported by 
Rico et al. [40] who observed a 1-to-2 log cycle 
reduction in initial microbial count of 10

6
 CFU/g 

with steam, while gamma irradiation at 10 kGy 
resulted in a 5-log cycle reduction in same initial 
microbial count as they investigated the 
comparative effect of steaming and irradiation on 
the physicochemical and microbiological 
properties of dried red pepper (Capsicum annum 
L.). In a similar work, Al-Bachir and Al-Dawi [41] 
reported a 1-to-2 log cycle reduction in total 
aerobic plate count with steam while a 4-log 
cycle reduction was recorded with 10 kGy dose 
of gamma radiation as they compared the effect 
of gamma irradiation and heating on the 
microbiological properties of licorice (Glycyrrhiza 
glabra L.) root powders. 
 
Radiation sensitivity of fungi isolated from 
sorghum grains cultured on Cooke’s and DRBC 
growth media were 7.9±kGy and 6.4±kGy 
respectively (Fig. 2 and Table 1). Radiation 
sensitivity (the killing effect of radiation) in 
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microorganisms is generally expressed by the 
decimal reduction dose or D10 value [38]. From 
the calculated D10 values in Table 1, it is obvious 
that the fungal spores were quite radiosensitive 
in sorghum grains as values obtained are in 

agreement with published works of Frazier and 
Westhoff [42] reported D10-values of range 4- 11 
kGy for yeasts and 1.3- 11 kGy for moulds. 
 

 

 
 

Fig. 1. Mycofloral population of Sorghum grains enumerated from two growth media 
                                       . 

 
 

Fig. 2. Radiation sensitivity curves for mycoflora of sorghum grains cultured on 2  
growth media 
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Table 1. Mean D10 values of fungi associated with sorghum grains isolated from the two (2) 
growth media 

 
Substrate Regression equation                     r2                  D10 value (kGy) 
(a) Cooke’s -0.025x + 0.993                        0.945                   7.9±1.6 
(b) DRBC -0.018x + 0.602                        0.748                     6.4±1.3              

D10 values are means of 6 replicates ± S.E 
 

3.1 Phenology of Mycofloral Population  
 
Various fungi isolated from non-pretreated 
(control) sorghum grains on Cooke’s medium 
included Cladosporium macrocarpum (14.5%), 
Trichoderma harzianum (21.25%), Fusarium 
oxysporum (2.75%), Rhodotorula spp. (1.25%), 
Penicillium spp. (7.5%), Aspergillus niger 
(13.75%), Aspergillus fumigatus (26.25%), 
Aspergillus ochraceous (2.75%) and Aspergillus 
flavus (10.0%) (Fig. 3). Fungi enumerated from 
DRBC also included Fusarium oxysporum 
(8.33%), Penicillium spp. (28.33%), Aspergillus 
niger (34.14%), Aspergillus fumigatus (16.67%), 
Aspergillus flavus (8.33%) and Aspergillus 
ochraceous (4.17%) (Fig. 4). 
 
The dynamics of a fungal community may be 
attributed generally to abiotic variables and 
nature of substrate [43]. Pretreatment of 
sorghum grains resulted in the disappearance 
and appearance of certain fungal species which 
was recorded as the percentage occurrence of 
the fungal species relative to the total population 
/ number of species recorded. Antagonism 
between fungi according to Obodai and 
Odamtten [44] may be in the form of competition 

for nutrients, chemical antibiosis and lysis of 
mycelia. Antibiosis is the inhibition of one 
generation by the metabolic product of another. 
Although it is usually an inhibition of growth and 
sporulation, it may be lethal. Metabolites 
produced by protagonist fungi penetrate the cell 
wall of the antagonist and inhibit activity by 
chemical toxicity [45]. 
 
The vulnerability of microorganisms and their 
spores to gamma radiation has been well 
recognized by researchers [46,25,27,21]. The 
ionizing radiation produces chemical changes on 
substrate that inactivate microorganisms. Many 
applications are realized also to reduce the 
microorganism number and consequently 
eliminate the risks of a poisoning disease. The 
energy of ionizing radiation affects directly the 
microbial DNA molecules, causing the damage 
on fungal or bacterial cells. The ability of an 
organism to withstand a physical stress (gamma 
radiation and/or steam) depends on how quickly 
it is able to repair its damaged DNA as a result of 
denaturing [47].  
 
Generally on both growth media, fungal 
populations and species number decreased as 

 

 
 

Fig. 3. Mycoflora isolated on DRBC medium after pretreatment of sorghum grains 
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Fig. 4. Mycoflora isolated on cooke’s medium after pretreatment of sorghum grains 
 

gamma radiation doses increased. At gamma 
radiation dose 10 kGy, A. fumigatus (30%) and 
Penicillium spp. (70%) persisted. Also only 
Rhodoturula spp. (100%) persisted at 15kGy. 
Nonetheless, doses beyond 15kGy recorded no 
microorganism growth on DRBC. 
 
Similarly on Cooke’s medium, Rhodotorula spp. 
(14.0%), Penicillium spp. (67.5%), and 
Aspergillus fumigatus (18.5%) persisted at 10 
kGy. At 15 kGy, A. fumigatus (10.0%) and 
Rhodotorula spp. (90.0%). However, beyond 15 
kGy no fungi survived except Rhodotorula spp. 
(100.0%). Steam sterilized sorghum grains 
harbored Penicillium spp. (77.0%), Aspergillus 
fumigatus (18.0%) and Aspergillus ochraceous 
(5.0%) enumerated from DRBC. While 
Rhodotorula spp. (11.54%), Penicillium spp. 
(34.62%), Aspergillus niger (11.54%) and 
Aspergillus fumigatus (29.9%) were enumerated 
from Cooke’s medium.  
 
The variation in resistance of adverse conditions 
such as gamma radiation, steam, drought etc.  in 
filamentous fungus strains can be explained by 
multiple factors. The cell walls of some fungi 
contain appreciable fractions of lipids (up to 20%) 
as in the case of some Aspergillus species. 
Some investigators postulated that filamentous 
fungi produce numerous metabolites, such as 
alcohols, acids, enzymes, pigments, 
polysaccharides, and steroids, as well as some 
complex compounds, such as ergotinine, and 
antibiotics, including penicillin, notatin, flavicin, 
and fumigacin. In addition, intracellular fungal 

components (sulfhydric compounds, pigments, 
amino acids, proteins and fatty acids) have been 
reported to be responsible for radioresistance of 
fungi [48]. Aquino et al. [30] demonstrated a 
higher resistance of the Aspergillus flavus to 
gamma radiation, which showed no growth after 
exposure to 10 kGy. 
  
The genus Aspergillus was the most dominant 
fungi among 10 fungi reported in this study. It 
was reported as a natural contaminant in cereals 
and also in many other agricultural commodities 
in previous studies by Hocking, [49] and Thakur 
et al. [50]. Mycological studies conducted on 
sorghum by Sreenivasa et al. [36] revealed that 
sorghum was contaminated by nine species of 
Aspergillus (Table 2). The predominant 
Aspergillus species isolated were A. flavus 
(72.7%) and A. niger (59.1%) with the relative 
percentage of 51.1 and 33.3%, respectively. The 
three Aspergillus species such as A. ochraceus, 
A. versicolor and A. candidus were recorded with 
a similar frequency of 20.5%. A low frequency of 
A. sydowii (2.3%) was recorded in Table 2. 
Surveys conducted worldwide also revealed that, 
A. flavus and A. niger were known to frequently 
contaminate peanuts and were able to produce 
mycotoxins such as aflatoxins [51,52,53,54]. A. 
flavus contamination and aflatoxin production in 
sorghum is a serious problem in most of 
sorghum producing countries where the crop is 
grown under rain fed conditions [54]. Fungi 
isolated in this work were common to previous 
mycological works by some researchers 
[55,56,57] on sorghum grains. 
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3.2 Moisture Content (%) and pH 
 
In the present study, moisture content ranged 
18.21±0.78 - 18.85±0.65% for sorghum grains 
irradiated at doses 10 kGy and 32 kGy and also 
for control, respectively, (Table 2) which 
apparently supported growth of a wide range of 
fungal diversity as well as load of > 103 CFU/g. 
Higher moisture content makes a substrate 
favorable for fungal invasion [58]. This is in direct 
agreement with the findings of Quezada et al. 
[59] who reported a gradual increase in fungal 
load and diversity with an increase in moisture 
content of stored maize sample. Moisture content 
along with substrate type and nutrient availability 
and presence of secondary metabolites also 
affect the extent of fungal contamination [60,61]. 
Essentially, moisture content which is too high (> 
65%) could cause oxygen depletion and losses 
of nutrients through leaching [44]. On the other 
hand, low moisture content below a critical level 
(< 30%), would decrease activities of 
microorganisms by restricting the motility and 
make them dormant [62]. Under drier conditions, 
the ammonium and ammonia present generate a 
higher vapor pressure; thus conditions are more 
favorable for nitrogen loss.  
  
The hydrogen environment of fungi is difficult to 
study because fungi change the pH as they 
grow. Some species increase and others 
decrease pH of their medium. pH of the medium 
is important because it influences mineral 
availability, enzyme activity and membrane 
function. Generally speaking, fungi can tolerate a 
wide range of pH, though most media used to 
culture fungi are acidic. During present 
investigation, samples with a low pH range 
(5.61±0.05 - 6.36±0.04) were found to harbor a 
good number of fungi. Reports of [12,44] indicate 
that low pH (acidic range pH 4– 6) favors good 
fungal growth and recolonization of fungi [63]. 
Generally, there were significant differences 
(P<0.05) between the treatments. Aspergillus 
was recorded as the most dominant genus in 
samples of all pH ranges; this can be attributed 
to the ability of the Aspergilli to grow in a wide 
range of pH. Wheeler et al. [64] reported that 
Aspergillus species are more tolerant to alkaline 
pH, while Penicillium are more tolerant to acidic 
pH. This is in accordance with our findings where 
A. niger and Penicillium sp. were recorded as the 
most dominant fungal species in the pH ranges 
of 3.50 to 7.0. Some scientists [65,12] stated that 
optimum pH ranges are mainly related to 
different species, strains, enzymatic systems, 
important vitamin entry in the cell, mineral 

capture, and surface metabolic reactions. High 
pH tends to suppress the growth as well as 
antagonize certain fungi in compost thus 
reducing competition for the mushroom [66].  
 

Table. 2. Effect of pretreatment on physical 
and chemical properties of Sorghum bicolor 

 
Treatment Moisture content 

(%) 
 pH 

Control 18.85±0.65 6.36±0.08            
5 kGy 18.53±0.66 5.67±0.05            
10 kGy 18.21±0.38              5.62±0.05            
15 kGy 18.27±0.33             5.92±0.05            
20 kGy 18.56±0.45             5.65±0.05            
25 kGy 18.84±0.64             5.85±0.05            
32 kGy 18.85±0.64             5.61±0.05            
Steam 18.69±0.62             5.77±0.05            

 

4. CONCLUSION 
 
The use of gamma irradiation treatment is a vital 
tool for the control of fungal microorganisms in 
foods and seeds. These products are often 
consumed raw or in their natural state. Data 
obtained reveal the type of fungi and an estimate 
of microbial loads on the sorghum grains as well 
as the level of reduction obtained when 
pretreated with steam and gamma radiation. 
Gamma irradiation proved to be an effective 
method for the control of microbes and so could 
be used as an alternative method of sterilization 
for sorghum spawn preparation. Despite the 
existence of these sterilization technologies, it is 
necessary to have a monitoring Program of Good 
Manufacturing Produce (GMP) and Hygienic 
practices to avoid fungal contamination during 
manufacturing process, storage and exposure of 
products on the market. 
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