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A novel method for road network mining from floating car data
Yuan Guo , Bijun Li , Zhi Lu and Jian Zhou

State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan, China

ABSTRACT
Vehicles have been increasingly equipped with GPS receivers to record their trajectories, which 
we call floating car data. Compared with other data sources, these data are characterized by 
low cost, wide coverage, and rapid updating. The data have become an important source for 
road network extraction. In this paper, we propose a novel approach for mining road networks 
from floating car data. First, a Gaussian model is used to transform the data into bitmap, and 
the Otsu algorithm is utilized to detect road intersections. Then, a clothoid-based method is 
used to resample the GPS points to improve the clustering accuracy, and the data are clustered 
based on a distance-direction algorithm. Last, road centerlines are extracted with a weighted 
least squares algorithm. We report on experiments that were conducted on floating car data 
from Wuhan, China. To conclude, existing methods are compared with our method to prove 
that the proposed method is practical and effective.
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1. Introduction

A road map is a compilation of roads and transport 
links (“Roadmap” 2021). It plays an important role in 
many aspects of our lives, such as navigation, urban 
management (Wu, Gui, and Yang 2020) and Location- 
Based Services (LBSs) (Huang and Wang 2020; Zuo, 
Liu, and Fu 2020). Along with the development of 
LBSs, demands for map accuracy are increasingly 
stringent. However, road construction is a frequent 
activity, and roads are quickly updated. For instance, 
in China, the total length of highways was 3:73� 106 

km in 2008, and grew to 5:2� 106 km in 2020. 
Therefore, the road map needs to keep up to date to 
follow the increase in road construction. There are two 
main sources of update data: (1) road information 
extracted from aerial images (Yuan and Cheriyadat 
2016; Karaduman, Cinar, and Eren 2019; Zhang et al. 
2019; Wang, Hou, and Ren 2017) and (2) road infor
mation collected by professionally operated probe cars 
(Gwon et al. 2017; Jo and Sunwoo 2014; Massow et al. 
2016). The first source consists of high-resolution 
satellite images that are processed with a shape classi
fication algorithm to estimate the boundaries of roads. 
Aerial images are an important source of road map 
updates. However, it is costly to acquire suitable satel
lite images. The second source requires probe cars 
equipped with on-board sensors such as Real-Time 
Kinematic (RTK) GPS, Post-Processing Kinematic 
(PPK) devices, and laser scanners to collect road infor
mation (Sester 2020). The accuracy of the resulting 
maps is higher than that of the first method. However, 

in addition to the high cost of on-board sensors, this 
method is a labor-intensive way to collect road 
information.

Considering the limitations of the two men
tioned methods, some researchers have proposed 
extracting road maps from floating car data 
(Wang et al. 2015; Zheng and Zhu 2019; Fang 
et al. 2016). As the cost of GPS and communication 
technologies has decreased this year, many vehicles 
are equipped with a GPS to record trace data. In 
contrast to aerial images, floating car data is acces
sible, has wide coverage, is available in large 
amounts, and is quickly updated. However, the 
accuracy of GPS data can only reach 5 m – 30 m 
due to signal interruptions and multipath transmis
sion. The large set of trajectories can compensate 
for the shortcomings in accuracy, but the accuracy 
makes it difficult to mine road networks from these 
data. In this paper, we propose a novel method of 
extracting road maps from floating car data.

In general, the main contributions of this paper are 
as follows:

(1) An Otsu-based background segmentation algo
rithm is introduced to detect road intersections;

(2) A gamma-correction-based spatiotemporal 
prediction algorithm is utilized to increase the 
accuracy of intersection detection;

(3) A clothoid curve is used to resample the GPS 
data, and the distance and direction similarity 
are combined to cluster the data.
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2. Related work

There are three main steps to mining road maps from 
floating car data: intersection detection, data cluster
ing, and centerline extraction of roads from the clus
tering data. As an important component of roads, the 
structure of intersection is more complex than road 
segments. Therefore, intersection detection is the first 
step in generating a road network from floating car 
data. Then, it is necessary to cluster the trajectories 
together that belong to the same road. Finally, to 
describing the shape of road, centerline extraction is 
essential.

Road intersection extraction is one of the most 
important and difficult steps in road network mining. 
Some studies have identified road intersections and 
segments from the angle and distance of their trajec
tory (Fathi and Krumm 2010; Yang et al. 2018). In 
addition, the speed threshold combined with direction 
changes was used to detect intersections (Chen et al. 
2020). In reference (Deng et al. 2018), a local G* 
statistic was introduced to detect GPS points with 
large turning angles. Wang et al. (2015) determined 
intersection boundaries by analyzing conflict points 
that have large intersection angles. The turning angle 
is an important feature for detecting intersections 
from trajectory data in the studies mentioned above. 
However, the heading angles of GPS points are inac
curate because of signal interruptions and multipath 
transmission.

The methods of clustering include (1) clustering 
based on the density of GPS points (Biagioni and 
Eriksson 2012; Li et al. 2018) and (2) clustering 
based on the direction and distance features of GPS 
traces (Tang et al. 2016; Deng et al. 2018; Li et al. 2012; 
Liu et al. 2012). The kernel density method is the most 
commonly used way to build the probability function 
of similar GPS points for clustering (Biagioni and 
Eriksson 2012). The Delaunay triangulation network 
is also utilized to cluster the GPS points (Li et al. 2018). 
However, this density-based method cannot cluster 
points correctly in road intersections.

Clustering methods based on the direction and 
distance of traces are widely used and work on most 
occasions. Tang et al. (2016) presented a region grow
ing clustering method to cluster GPS trajectories that 
used the vertical and angular differences of trajectory 
vectors and assigned different weighting values to the 
vertical distance and angle to calculate trajectory simi
larity. Deng et al. (2018) combined the longest com
mon sub-track with a distance-direction function to 
calculate the total similarity of adjacent tracks. First, 
the shape similarity of two adjacent tracks was mea
sured by calculating the ratio of the longest matched 
sub-trace between two associated trajectories. Then, 
a distance-direction function was used to compute the 
heading direction similarity. The overall similarity was 

measured by combining the two steps. Based on the 
position and direction components of GPS traces, Li 
et al. (2012) added a semantic relationship to classify 
GPS points. In addition, Liu et al. (2012)further opti
mized the distance and direction-based method. The 
orientation similarity and geographical distance were 
used first to perform basic clustering. Then, 
a clustering refinement method was proposed. The 
main concept of the refinement method was to calcu
late backbone curves to represent roads first and then 
group the closest samples to a smaller cluster. The 
algorithms mentioned above can work effectively in 
some instances, but they fail on complex roads.

Extracting the centerline of a road from floating car 
data is an important step. Various algorithms have 
been proposed to accurately describe the geometrical 
shape of roads. Some researches converted floating car 
data into bitmaps and used a grayscale map skeletoni
zation method to thin and prune the data to generate 
its centerline (Shi, Shen, and Liu 2009; Biagioni and 
Eriksson 2012; Chen and Cheng 2008). This method 
can extract centerlines successfully when the density of 
GPS points remains moderate. However, it failed 
when the density of points became very large or 
small. Li et al. (2012) and Bruntrup et al. (2005) used 
an incremental method to generate road networks 
from GPS data. They grouped the traces that belonged 
to the same road first and utilized an incremental 
approach to generate the centerline. This method 
needs to match all trajectories and modify the center
line step by step, causing low efficiency. Some studies 
introduced a Gaussian mixture model to extract the 
number and location of lanes from GPS data (Chen 
and Krumm 2010; Guo, Iwamura, and Koga 2007), 
assuming that these data follow a normal distribution. 
However, this method is better suited to data with 
high accuracy and obtained in a controlled environ
ment (Winden, Biljecki, and Van Der Spek 2016; 
Ahmed et al. 2015). In addition, Cao and Krumm 
(2009) proposed a point-based physical attraction 
model to generate the centerline. It was assumed that 
there are two types of forces acting on a GPS point. 
One is the total gravitation force from the neighboring 
points. Another is the spring force to keep a point in 
its original position. The efficiency of this method is 
low and is invalid when the density of GPS points is 
high.

In contrast to these methods, in this paper, the Otsu 
algorithm, which is often used in computer vision to 
segment foreground and background, is adopted to 
detect road intersections. Furthermore, a clothoid 
curve is utilized to resample the floating car data, 
and a direction-distance clustering algorithm is used 
to cluster the data to group similar trajectories 
together. Finally, the centerline of the road is extracted 
with a weighted least squares algorithm.
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3. Method

In this section, we elaborate on our methods, which 
include road intersection detection and data cluster
ing. First, we convert the GPS data to raster data with 
a Gaussian model and detect road intersections with 
the Otsu algorithm. Then, we use a clothoid-based 
method to resample the trajectories and calculate 
their distance and direction similarity to cluster the 
similar ones together. Finally, we describe a piecewise 
weighted least square fitting method that extracts the 
centerline of the clustered data and builds a road net
work that describes the topology and geometry of the 
roads.

3.1. Problem statement

A complete road can be separated into road segments 
and intersections, as shown in Figure 1. Road intersec
tion detection is critical to mining road networks from 
floating car data. A road intersection is a junction where 
more than two roads meet or cross. Compared with 
a road segment, intersections are more complex because 
they may include a left-turn lane, right-turn lane, straight 
lane, and U-turn lane as represented in Figure 1. To 
exactly represent the road shape, the road intersection 
cannot be described by a single point. Therefore, cluster
ing is necessary to group similar GPS trajectories. 
Centerline extraction is another important step in 
mining road networks. We need to calculate the center
line from the clustered data to describe the road. Specific 
to these problems, this paper proposes a novel method to 
extract the road network from floating car data. To detect 
road intersections from trajectories, we attempt an Otsu- 
based background segmentation method. To the best of 
our knowledge, this is the first study to use this method 
to extract intersections from floating car data.

3.2. Road intersection detection

To avoid interference with other traffic, the speed of 
vehicles will be slowdown and traffic signals are 
usually assigned in the intersection. As a result, there 

are significant differences in the distribution of float
ing car data between road segments and intersections. 
Compared with the road segment, the data are more 
dense in the intersection, as shown in Figure 2. Based 
on this, an Otsu-based background segmentation 
algorithm is utilized to detect road junctions. First, 
a Gaussian model is used to resample the data to 
a grid. To increase the distinction between the seg
ments (background) and intersections (foreground), 
we utilize a gamma-correction-based spatiotemporal 
prediction algorithm to process the grid images. 
Finally, Otsu is introduced to divide the background 
and foreground features.

3.2.1. Resampling
Resampling is used to transform the GPS data into 
raster data. A raster can integrate a large amount of 
GPS data efficiently. A Gaussian model is used to 
calculate the weight of each grid cell. The cell’s inten
sity is calculated from the weight of the surrounding 
GPS points as illustrated in Figure 3(a). P is a grid cell, 
and B is a buffer with a 3σ radius (σ is relevant to the 
error of GPS). The weight values of GPS points in 
B are calculated with Equation (1). The intensity of 
P is computed by accumulating the weights in buffer 
B as Equation (2) shows. 

W xi;yið Þ¼
1
ffiffiffiffiffi
2π
p

σ
exp �

xi � x0ð Þ
2
þ yi � y0ð Þ

2

2σ2

 !

; xi;yið Þ2B

(1) 

G Pð Þ ¼
X

xi;yið Þ2B
W xi; yið Þ (2) 

dist P; Pið Þ< 3σ (3) 

where W xi; yið Þ is the weight value of any point Pi in 
B, G Pð Þ is the intensity value of grid P, σ represents the 
variance, and x0; y0ð Þ represents the coordinate of the 
center point of the gird. ðxi; yiÞ is the coordinate of 
GPS point Pi. dist P; Pið Þ is the distance between P and 
Pi. The result of resampling is depicted in Figure 4. 
The brighter the color, the greater the intensity value, 

Figure 1. An e 
xample of a road segment and an intersection.
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and the result reveals that the intensity value of inter
section points is obviously larger than the GPS points 
in the road segment.

3.2.2. Gamma-correction-based spatiotemporal 
prediction
As Figure 4 shows, the population of GPS points in 
intersections is obviously greater than that of points in 
road segments. With the increase in GPS data, the 
intensity differences become increasingly distinct. 
However, the calculation load also increases. To 
improve the accuracy and efficiency of Otsu, a gamma- 
correction-based spatiotemporal prediction algorithm is 
used in this paper. Gamma correction modifies the 
gamma curve of an image to edit the image non- 
linearly to detect the dark part and light part in the 
image, and increase the ratio of the two part to improve 
the image contrast and is widely used in image proces
sing. We introduce a time coefficient A based on gamma 
correction as in Equation (4). A is the ratio of target 
time to test time. The gamma- correction-based spatio
temporal prediction method can increase the variance 
between the background (segments) and foreground 
(intersections), which can improve the accuracy of Otsu. 

Ig ¼ A � Iγ
i (4) 

A ¼ T=T0 (5) 

Ii ¼
Gi � Gmin

Gmax � Gmin
; Gi 2 G and Gi�0f g (6) 

where A is the time coefficient based on the ratio of the 
prediction time T and to base time T0. γ is the separation 
coefficient between the background and foreground. Ii 
represents the normalization intensity of the grid. Gi is 
the density of the gird corresponding to Equation (3). 
The results of the gamma-correction-based spatiotem
poral prediction algorithm are shown in Figure 5. From 

Figure 2. Data density difference between road intersections and segments.

Figure 3. An example of the resampling process.

Figure 4. The result of resampling in a crossroad.
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the figure, it can be seen that the variance between the 
background and foreground is increased with this 
method.

3.2.3. Otsu-based intersections detection
Otsu is a method often used in computer vision and 
image processing. It assumes that images contain two 
classes of pixels, background and foreground, and cal
culates the optimum threshold to maximize the inter
class variance and separate the two classes (Otsu 1979). 
In this paper, we utilize this method to detect intersec
tions from the results of the gamma- correction-based 
spatiotemporal prediction method. The ratios of inter
sections and segments are represented by w1;w2. The 
mean values are u1; u2. The interclass variance can be 
calculated with Equation (7). By traversing different 
gray thresholds, the relevant ratio and mean value are 
calculated. Finally, the optimum gray threshold is 

calculated to classify the road segments and intersec
tions, and the result is illustrated in Figure 6. The red 
dots indicate the points selected as foreground by Otsu, 
and the black dots are the background points. 

g ¼ w1w2 u1 � u2ð Þ
2 (7) 

3.3. Clustering

Because the sampling frequency of floating car data 
ranges from 20s to 60s, the distance between two 
consecutive GPS points is usually long and change
able. We introduce a clothoid-based method to resam
ple the trajectory. We cluster the trajectories in road 
segments and road intersections separately, as we have 
detected the boundary of a road intersection in 
Section 3.2.

Figure 5. An example of a gamma-correction-based spatiotemporal prediction algorithm.

Figure 6. The result of Otsu.

GEO-SPATIAL INFORMATION SCIENCE 201



3.3.1. Clothoid-based trajectory resampling
Clothoids are widely used as transition curves in road 
engineering for their connection to the geometry 
between tangents and circular curves (Meek and 
Walton 1992). The curvature of a clothoid changes 
linearly with its curve length, which is in accordance 
with the law of vehicle dynamics. Therefore, we utilize 
a clothoid curve to resample the trajectories. 
A clothoid curve can be described with an expansion 
of the Fresnel integral as shown in equations (8) 
and (9). 

x sð Þ ¼ x0 þ

ðs

0
cos

1
2

k0τ2 þ kτ þ #0

� �

dτ; (8) 

y sð Þ ¼ y0 þ

ðs

0
sin

1
2

k0τ2 þ kτ þ #0

� �

dτ (9) 

where s is the length of the curve from its start point 
(x0;y0), #0 is the direction of the start point, k is the 
curvature of the curve at the start point, and k’ is the 
rate of change of curvature.

In floating vehicle data, the positions of the start 
and end points and their directions can be deduced. 
The main problem of generating a clothoid curve 
between two adjacent GPS points on a trajectory is 
to calculate the k and k’ of the clothoid curve. 
According to the proposed method in reference 
(Bertolazzi and Frego 2015), the parameters of 
a clothoid curve can be calculated by the positions 
and directions of two points as depicted in Figure 7 

(a). To generate a clothoid curve between two points, 
the distance d between the points and the incline angle 
φ of the line segment are calculated first. Then, the 
angle between the incline angle φ and the direction of 
the start and end points #0, #1 are denoted as ;0and;1. 
The total arc length St of the curve is calculated by 
dividing the value between d and the Fresnel integrals 
of ;0-;1, #0-#1 and ;0. The curvature of the start 
points k and the rate of curvature change k0 is calcu
lated based on the arc length St according to reference 
(Bertolazzi and Frego 2015).

According to the previous step, we create a series of 
clothoid curves to link the trajectories. To calculate the 
similarity accurately between different trajectories, we 
resample the clothoid curve of the trajectories with an 
arc length step l as shown in Figure 7(b). The orange 
dots are the original GPS points, and the red points 
represent the resample points. The blue line is the 
polyline composed of the original GPS points, and 
the green line is the clothoid curve composed of the 
original points and the resample points. The red 
arrows depict the direction of the original points.

3.3.1. Distance similarity
There is a high probability that two adjacent trajectories 
belong to the same road. Therefore, we propose 
a distance-contribution function to calculate the dis
tance similarity of two associated trajectories. As illu
strated in Figure 8, T1 and T2 are two adjacent 
trajectories T1 ¼ p1; p2; � � � ; pkf g, and T2 ¼

q1; q2; � � � ; qkf g after resampling by a clothoid curve. 

Figure 7. Clothoid-based trajectory resampling.

Figure 8. An example of two associated trajectories.
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We set T1 as the matching trajectory and set T2 as the 
reference trajectory. In the first step, we calculate the 
shortest distance di from pi to T2. If di < r (r is the 
distance threshold), then we continue to calculate the 
discrimination disradius of the turning radius of two 
points. If disradius < dr (dr is the turning radius thresh
old), as depicted in Figure 9(a), di < rdisradius < drð Þ. 
We calculate the value of the distance-contribution 
function fcon with Equation (10). If disradius > dr, as 
shown in Figure 9(b), the value of fcon is zero. In addi
tion, if di > r at first, as represented in Figure 9(c), the 
value of fcon is zero.

Then, the total value of the distance-contribution 
function of T1 is calculated with Equation (11). 
Finally, the distance similarity from T1 to T2 is calcu
lated as the ratio of FCON to the length of T2 as shown 
in Equation (12). 

fcon ¼
ffiffiffiffiffiffi
2π
p

σ � exp
r2

σ2

� �

; di < rdradius < dr (10) 

FCON ¼
X

i2 1;kð Þ
ðfcon � sÞ (11) 

Simdis ¼
FCON T1

LenT2

(12) 

where di is the distance from pi to T2 and σ represents 
the precision of the position. FCON denotes the total 
value of the distance-contribution function of T1, and 
Simdis is the distance similarity of T1 and T2. LenT2 

represents the length of T2.

3.3.2. Direction similarity
Direction is another important parameter for cluster
ing floating car traces. According to the expansion of 
a clothoid in Equations (8) and (9), the direction of 
any point on the curve can be calculated using the arc 
length to the start point of the curve. Therefore, we can 
use a piecewise function to calculate the direction of all 
the resample nodes. When the resampled node is 
between two GPS points Ni and Niþ1 of a trajectory, 
the direction of the resample node can be calculated 
with Equation (13). 

D sð Þ ¼ #i þ ki s � sið Þ þ
1
2

k0i s � sið Þ
2
; s 2 si; siþ1½ �; i

2 0;mð Þ

(13) 

where s is the arc length to the start point of the 
trajectory, #i is the direction of Ni, ki is the curvature 
of the curve at Ni, and k0i is the rate of the change in the 
curvature.

The direction similarity between two trajectories 
can be calculated using a resample node that meets 
the distance and turning radius requirements. Figure 9 
(a) shows a resampling node qj in the reference trajec
tory T2 that has a corresponding nearest node pi in the 
matching trajectory T1 that meets the distance and 
turning radius requirements. The direction similarity 
function can be described, as in Equation (14). 

Simori¼
Xn

i¼0
min D1 sið Þ� D2 sj

� ��
�

�
�; D1 spi

� �
� D2 sqj

� ��
�
�

�
�
� � π

� �
=π

(14) 

3.3.3 Clustering the trajectories
The overall similarity function is calculated by con
sidering both the distance similarity and the direction 
similarity as in Equation (15). 

Sim T1;T2ð Þ ¼ 0:5 � Simdis þ 0:5 � Simori (15) 

A hierarchical clustering method is used to classify all 
the trajectories in the intersections for different turn
ing directions.

Step 1: All the trajectories are marked as “unused”, 
and the base clusters are initialized to empty.

Step 2: Two trajectories are chosen and their simi
larity value is calculated. If the similarity is less than 
a given threshold Tg , two different clusters are added 
to the base clusters, and the trajectories are marked as 
the corresponding base cluster index.

Step 3: The following trajectories are compared to 
all the list clusters. If the similarity between one tra
jectory of the list is larger than the given threshold, the 
trajectory is added to that cluster. If the similarity 
value to all the list clusters is smaller than the given 
threshold, the trajectory is realized as a new cluster 
and added to the base clusters.

Figure 9. Different scenarios for f con.
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Step 4: After all the trajectories of the intersection 
are clustered, the clusters that have more than 
N trajectories are selected.

3.4. Centerline extraction

In the clustering result for an intersection, the trajec
tories having the same direction contain many discrete 
points that have certain aggregation characteristics. 
A piecewise weighted least square fitting method is 
used to extract the centerline of the clusters. The 
detailed step of the proposed method are as follows:

Step 1: A rectangular fitting region is created in 
front of the entry point of the cluster. The direction 
of the region is the same as the direction of the entry 
point as shown in Figure 10.

Step 2: Corresponding bitmap generated in 
Section 3.2 that corresponds to the rectangular region 
are selected if they contain intensities greater than the 
threshold Ti The selected girds are designed as the key 
points to fit the line segments of the region.

Step 3: A weighted least squares fit is used to com
pute the parameters of the line segment of the region. 
The weights of the key points are the normalized 
values of their intensities. The result of the weighted 
least squares fitting is shown in Figure 11.

The fitting line segment of the rectangular region 
can be described as follows: 

f xð Þ ¼ axþ b (16) 

The residual error E of fitting the line segment under 
weight W is shown as Equation (17). 

E ¼
Xn

i¼0
Wi � f xið Þ � yið Þ (17) 

By minimizing the residual error E, the parameter 
matrix c ¼ a; b½ �

T can be calculated with 
Equation (18). 

c ¼ ATWA
� �� 1ATWb (18) 

where A and b are the matrix styles of the horizontal 
and vertical coordinates, respectively, and W is the 
weight matrix. 

A ¼
1 x1

..

. ..
.

1 xn

2

6
4

3

7
5; b ¼ y1 � � � yn½ � ;W ¼

W1

. .
.

Wn

2

6
4

3

7
5 (19) 

Step 4: Sequences of line segments are extracted 
along with the cluster in Step 1 to Step 3. The direction 
of the next rectangular region is replaced with the 
direction of the current rectangular region.

Step 5: A clothoid curve is used to fit the global 
segments of the clusters, which can make the center
line smooth and more like the real road.

3.5. Road network building

Because we calculate the boundary of an intersection in 
section 3.2.3, the traces are divided into two parts: road 
segment and intersection. The cutting points are the 
crossing points of the centerline of the clustered data 
and the boundary of the intersection. If the direction of 
a point is toward the inside of a road intersection, it is 
defined as an entry point. Otherwise, it is defined as an 
exit point as depicted in Figure 12. If the start point of 
a road can be matched with the endpoint of another 
road, it means that the two roads are connected. As 
shown in Figure 12, L1 is connected to L9 L10, L11 and 
L12. The road segments are connected by road intersec
tions. The connectivity attribute of Figure 12 is expressed 
in Table 1.

4. Experimental results and discussions

To evaluate the proposed approach, experiments are 
conducted on two datasets in Wuhan, China. In this 
section, we first introduce two datasets and the para
meters used in this paper. Thereafter, we show the 

Figure 10. An example of a rectangular fitting region.

Figure 11. An example of weighted least squares fitting.
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results of intersection detection, clustering and center
line extraction. Then, we compare and evaluate the 
proposed method with the two other methods. Finally, 
we discuss the advantages and disadvantages of the 
proposed method.

4.1. Experimental data and parameters

To test the method proposed in this paper, we use two 
datasets collected by thousands of vehicles in Wuhan, 
China. Figure 13(a) illustrates data 1, which contains 
700,000 track points and was cleaned in our previous 
study (Li et al. 2018). The sampling frequency of the 

data ranges from 20 s to 60 s and the position accuracy 
ranges from 5 m to 30 m. Figure 13(b) illustrates the 
original floating car data (data 2). We collected 
approximately 1.4 million track points in one week. 
The parameter setting values are shown in Table 2.

In this article, some parameters need to be set. 
First, σ is relevant to the GPS error, and we set 
σ ¼ 30. A means the time coefficient in the gamma- 
correction-based spatiotemporal prediction process. 
In our study, A ¼ 12. γ is the separation coefficient 
between the background and foreground. The arc 
length step l is used to resample the clothoid curve 
of the trajectories, and we set l ¼ 5 for this paper. 
Between two different trajectories, the distance 
threshold r and turning radius threshold dr are 
used to calculate their distance similarity. We set 
r = 10 m and dr = 20 m. To cluster all the trajec
tories, we use a threshold Tg to decide whether 

different trajectories are similar to each other. 
When the number of a cluster is more than N, 
the cluster is selected as a director of the intersec
tion. We set Tg = 0.45 and N = 10.

Figure 12. An example of building a road network.

Table 1.
Exit Entry L2 L4 L6 L8

L1 L9 L10 L11 L12

L7 L15 L14 L13 0

Figure 13. The experimental floating car data.

Table 2. The parameter setting values.
Intersection detection clustering

σ A r l r dr Tg N Ti
30 12 2 5 10 20 0.45 10 6
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For centerline extraction, the centerlines of the 
clusters are generated along the trajectories by 
a series of rectangular regions. The bitmaps of the 
rectangular regions are used in this step. The intensi
ties of the grid cells that are larger than Ti are selected 
as key points to fit the centerline segment in this 
rectangular region with the least squares method. In 
addition, we set Ti = 6 for this paper.

4.2. Results

4.2.1. Intersection detection results
The results of intersection detection in data 1 are 
depicted in Figure 14. Figure 14(a) shows the 
results of Otsu, and the detection results are 
shown in Figure 14(b). Each circle presents the 
spatial coverage of the intersection. There are four 
kinds of results by manual inspection: correctly 
detected, incorrectly detected, correctly excluded 
and not detected.

As the area of data 1 is one of the CBDs of Wuhan, 
there is high traffic flow and often traffic jams there. 
However, more than 92% of the intersections are cor
rectly detected by our method, indicating the validity of 
the Otsu-based intersection detection algorithm. There 
is one road intersection not detected, as shown in 

rectangle A. The main reason for not being detected 
in A is that the variation of the data density in this 
intersection is not obvious compared with the nearby 
road segments. In addition, three intersections are 
incorrectly detected. As shown in rectangle B, the den
sity of data in the red rectangle is greater than that of the 
near data as it is the entrance to a community, as 
a result, these data are incorrectly detected as 
intersections.

The results of intersection detection in data 2 are 
depicted in Figure 15. Data 2 is the original floating car 
data that are full of noise points. Compared with data 
1, data 2 contains more road scenarios and is more 
complex. However, from Figure 15(a,b), we can see 
that more than 85% of the road intersections are 
accurately detected by our method, demonstrating 
the robustness of the algorithm.

Some of the minor intersections are not detected or 
are incorrectly detected. For instance, intersections 
C and D in Figure 15(b) are not detected. The main 
reason is that there are few vehicles turning at these 
intersections, so the data density is not significantly 
different than the surrounding data. In this case, Otsu 
cannot tell the foreground from the background. 
Additionally, intersections E and F are incorrectly 
detected, and the main reasons for the “incorrectly 

Figure 15. The results of intersection detection in data 2.

Figure 14. The results of intersection detection in data 1.
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detected” are that on these roads, there is frequent 
traffic blockage or there is a community or shopping 
mall entrance and many vehicles stop there. Therefore, 
the data density is significantly greater than that of the 
surroundings.

4.2.2. Results of clustering and centerline 
extraction
In the data clustering part, we use a clothoid- 
based method to resample the GPS trajectory 
first. The clothoid-curve can correctly resample 
the trajectory to make it closer to the real trajec
tory of the vehicle, and the accuracy of clustering 
is not affected by the low sampling frequency of 
floating cars after clothoid-based resampling. 
Then, we calculate the distance and direction 
similarity of the trajectories to cluster them. Data 
with greater distance and direction similarity have 
a greater probability of belonging to the same 
cluster. We use satellite images as the background 
for comparison with the clustering and centerline 
extraction results as shown in Figure 16. The 
results demonstrate that the proposed clustering 
and centerline extraction method can correctly 
delineate the geometries of road intersections and 
segments.

The result of centerline extraction is illustrated in 
Figure 17. Most road segments and intersections are 
correctly extracted. In addition, the clothoid curve is 
also used in the centerline extraction part to fit the 
global segments of the clusters, which can make the 
centerline smoother and closer to the real road com
pared with a polyline. The position accuracy of the 
road network can reach 2 m to 5 m.

4.2.3. Results comparison and evaluation
In the intersection detection step, we compare the 
proposed method with the algorithm proposed by 
Deng et al. (2018) through three indicators precision, 
recall, and F value in data 1 and data 2, illustrated in 
Equation (20–22). Deng detected intersections by 
a hotspot analysis, and we detected intersections 
through a computer-vision based OTSU method. 
The comparative results of the two methods are 
shown in Figure 18. The recall value of our method 
is higher than Deng’s method for data 1. However, the 
precision of our method is lower than that of the 
method by Deng. The main reason for the result is 
that our method is sensitive to the data density change. 
The roads where a traffic block frequently form are 
easily recognized as intersections by our algorithm. 
For data 2, road scenarios are complex and data qual
ity is low. However, our method achieved higher 

Figure 16. The results of clustering in different road intersections.

Figure 17. Centerline extraction results of data 1.
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precision value and significantly higher recall value 
and F value than Deng’s method, which proved the 
robustness of our method for intersection detection. 

precision ¼
correctly detected

correctly detectedþ incorrectly detected
(20) 

recall ¼
correctly detected

correctly detectedþ not detected
(21) 

F � value ¼
2� precision � recall

presionþ recall
(22) 

In addition, in the centerline extraction parts, we 
compare our method with the existing algorithm pro
posed by Biagioni and Eriksson (2012). The author 
proposed a classic map inference method. First, the 
author extracted the map centerline from density esti
mate data through a grayscale map skeletonization 
method. Then, the author pruned and merged the 
edge and intersection based on a trajectory-based 
topology refinement technique. Finally, the author 
estimated intersection geometries by a trajectory- 
based geometric refinement technique. We used 
a manually interpreted section of OpenStreetMap as 
ground truth. The method proposed in reference (Liu 
et al. 2012b) is used to perform a quantitative mea
surement of the two methods. In reference (Liu et al. 
2012b), the author performed a quantitative evalua
tion by measuring the precision and recall of the 

inferred map M and ground truth map Tm. In addi
tion, the author determined the true positive length 
Tp ¼ M \Tm as a measure of common road length. To 
calculate the true positive length Tp, we sample the 
map at 5 m intervals first and then compute it by one- 
to-one map matching. 

precision ¼
Tp

Mk k
(23) 

recall ¼
Tp

Tmk k
(24) 

The comparison result is shown in Figure 19. In data1 
and data 2, the proposed method achieved 
a significantly higher precision and recall value. The 
main reason is that the proposed method clustered the 
data first and extracted the centerline of the road from 
the clustering results, which can describe the geometry 
of the road more specifically. In addition, we use 
a clothoid-based trajectory resampling algorithm to 
increase the density of data, which also improves the 
accuracy of the results, as shown in Figure 20.

4.3. Discussion

The overall method of this paper can be divided into 
two parts: (1) intersection detection and (2) data clus
tering and centerline extraction. In the first part, we 
experimented with the algorithm on two datasets and 
compared our method with Deng’s. The results show 

Figure 18. Results comparison of intersection detection.

Figure 19. Results comparison of centerline extraction.

208 Y. GUO ET AL.



that our method can achieve an obviously higher recall 
value, which proves the robustness of our method. 
However, the precision of the algorithm needs to be 
further improved, as it is sensitive to data density 
changes. The roads where a traffic block frequently 
formed or the entrance to a shopping mall may be 
recognized as intersections. But in general, the method 
in this paper can achieve better results in complex 
environments as we use a computer-vision based 
OTSU method. In our future work, we will consider 
the direction change of the data at the intersection, 
combine the direction change and density difference 
of road intersections and segments, and try to use 
machine learning to extract road intersections. In part 
two, we compared our method with Biagioni’s. The 
algorithm in this article achieved a higher precision 
and recall value. Our method can describe the geometry 
and topology of roads in more detail, because we 
resample the trajectories based on clothoid curves and 
cluster the data in different classes. However, in places 
where GPS satellite coverage is severely occluded, tra
jectory errors will make it impossible to resample, 
which will affect the results of clustering and centerline 
extraction. In our future work, we will try to incorpo
rate the image data to infer higher precision road 
information.

5. Conclusions

In this paper, we proposed a novel method to mine 
road networks from floating car data. We first pre
sented an Otsu-base algorithm in the intersection 
detection part, which is the first time using this 
method in intersection detection. In the clustering 
step, we proposed a clothoid-based method to resam
ple the trajectory for improved cluster accuracy. Then, 
a distance-direction method was used to cluster the 
data. Last, a piecewise weighted least square fitting 
method was used to extract the cluster centerlines. 
We compared the proposed method with others. Our 
method can detect intersections effectively and 
robustly, and the extracted road centerline is more 
accurate and smoother than other algorithms. The 
geometric information and topological structure of 

the road are important parts of HD maps. Our method 
can be used to update the road map and provide 
a geometric basis for the HD map, and in our future 
work, we can try to extract more detailed and accurate 
road information and build a complete HD map.
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