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ABSTRACT

The main concern of this paper is to derive the TL-moments (Trimmed Linear moments) of the
exponentiated Pareto distribution (EPD) and use the TL-moments to estimate the unknown
parameters of the EPD. Many special cases may be obtained such as L-moments (Linear
moments), LH-moments (Linear Higher moments) and LL-moments (Linear Lower moments).
Also, the LQ-moments (Linear Quantile moments) with the three cases (trimean, median and
Gastwirth) will be obtained and used to estimate the unknown parameters of the EPD. The
estimation of the EPD parameters is studied in numerical simulations where the method for
obtaining TL-moment estimators is compared with other estimation methods (L-moment
estimators, LQ-moment [trimean, median and Gastwirth] estimators, maximum likelihood
estimators and the method of moment estimators). According to these comparisons, it is
suggested that the method of L-moments is preferable for small sample size.
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1. INTRODUCTION

The exponentiated Pareto distribution (EPD) is
an important extension of the Pareto family as a
lifetime model and can be used quite effectively
in analyzing many lifetime data. The EPD is a
generalized version of the Pareto distribution.
EPD has the following cumulative distribution
function:

F(x) = (1—(1+ x)'”)a, x>0, a>0, n>0,
(€]
wherea >0andn >0 are two shape

parameters. The corresponding density function
will be:

t09=arfi-r) " "1y ™, x>0 a>a >0 (1-2)

Ifa =1, the above distribution reduces to the
standard Pareto distribution of the second kind.
Gupta et al. [1] obtained the quantile function for
the EPD as follows:

— [, Ya _]/’7_
Qu) =fi-u**)*" -1 o0<u<1 .

Shawky and Abu-Zinadah (King Abdulaziz
University, Jeddah, Saudi Arabia, Unpublished
results, 2006) studied EPD and studied some of
its mathematical properties and obtained the "
classical moments (Traditional moments) as
follows:

r

H =Z(‘1)H[FJ']AJ(”)+(-1)‘, n>r,1=0123..,

(1-4)
where

A (@) =aB(a, 1-j/n), n> ]

where B(a, 1-j/n) is a beta function with

n>]. The above closed form of 4, allows

them to derive the following statistical measures
for the EPD, the mean and the variance of the
EPD will be:

H= A.(a)_ll 7 >1 and o = Az(a)_A.z(a)v n> 2 (1_5)

They derived the skewness, kurtosis and the
coefficient of variation for the EPD. The
coefficient of variation (CV) is:

A(@)-A(a)
A(a)-1

Cv =

, N>2.
(1-6)

The measure of
respectively are:

skewness and kurtosis,

g, = A@- A(@)(2A(a)-3A,(@))

D >3,
(A @) - A @) §

(1-7)
and

g, = @)+ A@-4A(0) +6A (@) A@) ~38(@)
(A(@-A@]

, n>4
(1-8)

Shawky and Abu-Zinadah [2] estimated the
unknown parameters of the EPD by the
maximum likelihood method. Also, they
considered five other estimation procedures
(method of moment estimators, estimators based
on percentiles, least squares estimators,
weighted least squares estimators, L-moments
estimators) and compared their performances
through numerical simulations with respect to
their biases and root mean squared errors
(RMSEs). Compering the performance of all the
estimators, they concluded that the maximum
likelihood estimator performs best in most cases
considered. Interestingly, while estimating/) , the

biases and RMSEs of the L-moments estimators
are lower than the other estimators most of the
times. They recommended to use the maximum
likelihood estimator for estimatinga andzn

when both are unknown.

Hosking [3] introduced the concept of the linear
moments (L-moments) and concluded that L-
moments of a probability distribution to be
meaningful, we require only that the distribution
has a finite mean; for standard errors of L-
moments to be finite, we require only that the
distribution has a finite variance and L-moments
are being linear functions of the data, are less
sensitive than are classical moments to sampling
variability or measurement errors in the extreme
data values.

Elamir and Seheult [4] introduced the trimmed
linear moments (TL-moments) and concluded
that TL-moments are more resistant to outliers,
TL-Moments assign zero weight to the extreme
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observations and they are easy to compute and
a population TL-Moments may be well defined
where the corresponding population L-Moments
(or central moment) does not exist. Mudholkar
and Hutson [5] introduced the concept of the
linear quantile moments (LQ-moments) and
concluded that LQ-moments are often easier to
evaluate and estimate than L-moments, LQ-
moments always exist and unique and their
asymptotic distributions are easier to obtain.

Abu EI-Magd [6] introduced the theoretical
comparison between the TL-moments, L-
moments and LQ-moments with explain the
advantages of each moments with numerical
comparison for the exponentiated generalized
extreme value (EGEV) distribution. He
introduced the TL-moment and LQ-moment
estimators of the EGEV distribution with a
numerical simulation. He compared the TL-
moment estimators with other estimation
methods (L-moment estimators, LQ-moment
estimators and the method of moment
estimators) mainly with respect to their biases
and root mean squared errors (RMSEs). He
recommended using the TL-moment estimators
for estimating the parameters of EGEV
distribution for large sample size (n =50, 100)
and recommended using the LQ-moment
estimators for small sample size (n = 15, 25).

Zaher et al. [7] obtained the fuzzy least-squares
estimator for the two-parameter Pareto
distribution. Also, they obtained the TL-moments,
L-moments and LQ-moments formulas for the
two-parameter Pareto distribution. Numerical
comparisons  between fuzzy least-squares
estimators and the different estimators for the
two-parameter Pareto distribution are
implemented. They suggested that the fuzzy
least-squares estimator is preferable all times.

In this paper, two different types of moments
namely TL-moments and LQ-moments (with the
three different cases median, trimean and
Gastwirth) of the EPD will be derived and used to
estimate the unknown parameters of EPD.

InL=nlna+ninp+ (a—l)iZ:‘In(l—(H X )_’7)—(/7 +1)i221:|n(1+ X ).

Different special cases {TL-moments with the
first trimmed, L-moments, Linear higher moments
(LH-moments) and Linear lower moments (LL-
moments)} for the EPD will be obtained.
Algorithms are suggested for parameters
estimation and a numerical illustration for the
new results will be given. Numerical comparisons
between seven estimators {maximum likelihood
estimators, method of moment estimators, TL-
moment estimators, L-moment estimators and
LQ-moment estimators (median, trimean and
Gastwirth)} will be carried out.

In section 2, the maximum likelihood estimators
for the unknown parameters of the EPD will be
reviewed and in section 3, the method of moment
estimators for the unknown parameters of the
EPD will be reviewed. In section 4, the TL-
moments formulas will be obtained for the EPD
with many special cases of the EPD. Also, the
TL-moment estimators and the L-moment
estimators for the unknown parameters of the
EPD will be derived. In section 5, the LQ-
moments formulas with different cases (median,
trimean and Gastwirth) will be obtained for the
EPD. Also, the LQ-moment estimators with
different cases for the unknown parameters of
the EPD will be derived. In section 6, a
simulation study is conducted. Finally, the results
and conclusions will be introduced for the EPD in
section 7.

2. MAXIMUM LIKELIHOOD ESTIMATORS
FOR (MLEs) THE EPD

Maximum Likelihood estimators (MLEs) are
those values of the parameters that maximize the
log likelihood function. Shawky and Abu-Zinadah
[2] introduced the MLEs of the EPD with two
different cases. First, they considered the
estimation of @ and/} when both are unknown. If

X1 X5,..,X,iS @ random sample of size n from

the EPD, then the log-likelihood function for the
EPD is given by:

(2-1)

To maximize function (2-1), they obtained the partial derivatives of the function with respect to each
parameter, and then set the resulting two equations equal to 0 and solve the equations for the two

parameters. The partial derivatives are:
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aILL_ﬂ+Z|n(1 1+)§ ) (2-2)

and

L _0 gy X)) Y inex) (2-3)
6/7 i= W)

The MLEs are the values of the parameters that satisfy:

6InL:0, and dlnL

oa on

=0 (2-4)

Then, they obtained:

a = —n[zn: In(l— (1+x)" )j_l (2-5)
i=1
Putting a’in (2-1), they obtained:
g(7) =ninn-nin Zn:(— In(l— (1+x )"’))+ ning-n —iln(l— (1+x )"’)— (7 +1)Zn“|n(1+ x) (2-6)
= = =1
Therefore, the estimatorl7* can be obtained by maximizing g(/7) with respect to/}. They observed

that g(/7) is a unimodal function, and/)” which maximizes g(77) can be obtained from the fixed point
solution of h(17) =1 where

) - izzl“(l+xi):7 |n(1+X1-)/(1_ (1+Xi)_/7)+£i ) |n(1+xi)_ . 2-7)
> int-@+x)7) "

They obtained that a very simple iterative moments: sample mean and variance. These
procedure can be used to find a solution of sample moments are equated to their population
h(,7) =n, and it worked very well. Once they analogues, and the resulting equations are:

obtained/f, the estimator@ can be obtained

from (2-5). =a B(a 1-—
n

3.METHOD OF MOMENT ESTIMATORS
(MMEs) FOR THE EPD and

j 17>, @

Heters

Shawky and Abu-Zinadah [2] introduced the
method of moment estimators (MMEs) of the R
$=a'Ba 1-

unknown parameters of the EPD. First, they
considered the estimation of @ and 77 when both

are unknown. For the EPD, they have two
parameters, so they require the first two sample
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Where Xand S are the sample mean and the
sample variance, respectively. Then, the MMEs

of @ andr, say a’ and /7** , respectively, can

be obtained by solving the two equations (3-1)
and (3-2). Clearly, it was not possible to obtain

the exact variances of @~ and /7**.

When the shape parameter /] is known, they

obtained the MME of @ can be obtained by
solving the non-linear equation (3-1) with respect
to a . In the same way, if the shape parameter
a is known, then the MME of/7) can be

obtained by solving the nonlinear equation (3-2)
with respect to 7

4. TL-MOMENTS ESTIMATORS (TLMES)
FOR THE EPD

In this section, the TL-moments with generalized
trimmed for the EPD will be obtained. Many
special cases from the TL-moments with
generalized trimmed will be obtained for the EPD
such as the TL-moments with the first trimmed,
L-moments, LL-moments and LH-moments. The
TL-moments estimators with the first trimmed
(TLMEs) and L-moments estimators (LMEs) will
be derived for the unknown parameters of the
EPD.

4.1 TL-Moments

Let, X, X,,...,.X, be a conceptual random
sample (used to define a population quantity) of

(r +s+t)!

size n from a continuous distribution and let,
Xan S Xan S Xy denote the
corresponding order statistics. Elamir and
Seheult [4] defined the " population TL-moment
AY as follows:

. 1 r-1 r-1
Ao =r§<—1>{ ’ JE(xm-mm)’

r=12,. (4-1)
where s, t = 0, 1, 2,...., they considered the
symmetric case S =t. Hosking [8] obtained TL-
moments with generalized trimmed for s and t
(symmetric case s=t and asymmetric case
S#1t) and obtained the TL-moments coefficient
of variation (TL-CV), the TL-skewness and the
TL-kurtosis as follows:

(s,it) — (sit) (s,t) (s,t) — 3(sit) (s,t)
r _/]2 /Al ’T3 _/]3 //]2 ’

and 750 = A&0 /)50 (4-2)

Maillet and M“edecin [9] introduced the relation
between the r™ TL-moments and the first TL-
moments with generalized trimmed for s and t

(for the two cases: symmetric case(S=t) and
asymmetric case (S#t)). They obtained the r"

TL-moments by using the quantile function Q(u)
and as follows:

(4-3)

(S’t):}r_l —1\i r-1 h rs=j=1q _ 1 (\tH] =
& r;o( 1)1[ j J(V+S—j—1)!(t+j)!~([Q(u)u P-utdy, r=1 2, .,

Using the ' TL-moments, they introduced an important relation between the first TL-moment

and the " TL-moments A*" as follows:

(r=1 e
A(rs,t) :12(_1)][ J j/‘ims—]—ltﬂ)’ r ::L 2, ,3,
0

M=

/lis,t)

4

where s, t =0, 1, 2,..... . Using the quantile function of the EPD (1-3), the first TL-moments with

generalized trimmed /]is't) will be:
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on _ (S+HT+I) T

T jQ(u)uS(l—u)‘du,

((1 u”" 1)1 (1-u)'du

1
@]
O =y o

I
O

I
O
Ot O—— 1 Ot—r

(1—u’/")]/” S(l-u)'du - Cju 1-u)'du,

(L-u¥" )Y us@-u)'du - CB(s+1,t +1),

=cf@-u" )Y us@-u)'du-1.
(4-5)
_ (s+t+1)! {_N T« .
where, C=———= and (1-u) =) (-1 u", then, (4-5) will be:
(9)!(t)! ; k
: t)f -Yn
=C> (-1 J'(l—u]/") u**du - 1.
k=0 Ko (4-6)
Let, y=U"" | then, (4-6) will be:
t t )i
/]is,t) — CZ (_1)k[kj‘|‘ aya(s+k)+a—l(l_ y)‘J/Udy -1
k=0 0
: k t); a(s+k+1)-1 -
=Cay (-0 [y (-y)*dy-1,
k=0 0
X k t i a(s+k+1)-1 1-1/n-1
=Cay (-1 [y (@-yy*"dy-1
k=0 0
! K T 1
=Ca) (D" Bla(stk+D1-=|-1
k=0 k ,7 (4_7)
Hence, the first TL-moments with generalized trimmed for s and t will be:
1)! 1
PO Chatul (-1 [ j (a(s+k+1),1——j—
L (9 § Z -8

Now, we will introduce the second, third and fourth TL-moments with generalized trimmed for any

positive integer s and t for the EPD by using the relation (4-4) between AES’U and /]i”s_j_l”j), we can
obtain the second TL-moments with generalized trimmed for s and t as follows:
/](s,t) — 1 /](s+1,t) _/](s,t+1)
2 T 5l 1 )
2 (4-9)
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and by using the formula (4-8) for /](S") , we will obtain:

st (s+t+2)! 21

A0 = 2 L+1)‘(t)'z( )[ J (a(s+k+2)l /7)
_(s+t+2) & 1

(S)‘(t+l)|z( 1) [ j (a’(s+k+D.1 ,7]:‘

:1a(s+t+2)!{z‘: (-D*
27 (s+1)! | & RNt-K)!

L k+1 1
_Ets:n)'[ ["‘“m‘j*z‘ K [ j [”(“k*Z"l‘nm
_1 (sHt42) (s+D) g 1) L& (D _1
~29 (s+1) { (t+1)! [a(s b1 j Z(k)l(t |<)!E{a(s+k+2);L nJ

L (-D¥(s+D) 1
* 2 DK [”(““2)1 nﬂ

B(a(s+ k + 2),1—1j
n

(4-10)
Hence, the second TL-moments with generalized trimmed for s and t will be:
I
Joo 2L SHUE2 S+ o pcypyg L
2 (s+1)! (t+1)! n
Z( D*(s+k+ 2) (a’(8+k+2),1—1ﬂ-
(k+D)!(t—k)! 7 (4-11)

Similarly, using the same relation (4-4), we can also obtain the third TL-moments with generalized
trimmed for any positive integer s and t for the EPD as follows:

1
(st) — (s+2t) _ o a(s+lt+1) (st+2)
A0 = 220 _ g perien 4 jed)]
3 (4-12)
and using the formula (4-8) of /]is't) , then we have:

(s) — (s+t+3) ¢/ 21
» 3‘{<s+2)'<t)'z‘ )[ ) [”‘5””3)’1 ﬂ]
(s+t+3)!

t+1 l
—ZWKZ%( 1) ( ] (a(s+k+2),1—;]

(s+t+3) & (t+2 _1
+7(s)!(t+2)!KZ:D( 1) [ K jB(a(s+k+1),l ”]jl

1 (s+t+3)[ & (-
“3% (s+2) [Z:D(k)l(t—

-2 J1), 5 DD 1
2(t+1)![8(a(3+2)'1 ] Z(|<+1)'(t k)! [”(S”Hm '7]]
(s+2)(s+1) N
+W[B(0(s+1),1—;]—(t+2)3(0,(5+2)’1_;]

L (D)<t +2)! 1
+§(k+2>!(t—k)!8(”(s+k+3)’1 r/m

1, (s+t+3) (SJfl)(SJrz)B[a(su)l—l —7(“2)(“3)B[a(3+2)1—i
37 (s+2) (t+2)! T p (t+1) Ton

B[a(s+ K+3)1- 1]
k)! n

I (2).1(): k)!B(a(S+ K+ 3),1—”3]{(k F1)(k+2) +2(k + 2)(s+ 2) + (s+1)(s+ 2)}}

(4-13)
Hence, the third TL-moments with generalized trimmed for s and t will be:
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A(st 1 (S+t+3)| (S+1)(S+2) a'(s+1),1—£
37 2 | @2y n

_(s+2)(s+3) 1
7(t+1)' B(a’(s+2),1 Uj

o (D" k3—1j(k3 k4}
"2 (K (”(“ rat= flerkedfsriea) @-14)

Also, the fourth TL-moments with generalized trimmed for s and t by using the relation (4-4) for /]Es‘t)
with the case r = 4 can be obtained as follows:

/]Els,t) = E[Agsﬁs,t) _3/]§-s+2,t+1) + 3/]§-s+:|,t+2) _/]g-s,t+3) ]’
4

(4-15)
and using the formula (4-8) of A{*" | then we will have:
A0 = {E:;;(‘g' e L]B[a(s+ k+ 4),1—/3
(s(i;)t'z;i)l)' tZﬂ]( D" tlleB(a(m k+ 3)1—,3
(s:)f(:i)z)l tf,( ik tEZJB(a(H k+ 2)1-;]
-GS et
Then, we will have:
A0 :%a (s(: ;)ﬂ ‘ (_1)k§'|:;))(u'zt+- 2k))(lk+3)B(a(s+ k+ 4)1—,3
N e o e L
+3(SJEt2J)r(;)!+3)(B(a(S+ 2)1—,7] —(t+ 2)B(a(s+ 3)1—;]
E e o)
- (S+1)EIS: 32))!(S+3) (B[a(s+l),l—;J—(t +3)B(a(S+ 2)1—/1}
+%(t +3(t+ 2)B(a(s+ 3),1—;) - ;mB(a(w K+ 4)1—;m, o
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So, we will have:

@ -1, (s+t+4)| (s+3 1 1

Ay 4 (s+3)! { (t+1)!(3+3(s+2)+2(s+2)(s+1)JB(a(s+3)1 UJ
(o2 2 Ilard 1)+ D5+ !
+ ((+2) B(a(s+2),1 ”j ((+3) B(a(sﬂ),l ,7]

i £ (k +(3)|l()t ! ["(S+ k+ 4)1-;}(k +1)(k+ 2)(k +3)+ 3(k + 2)(k +3)(s+3)

+3(k +3)(s+2)(s+3) + (s+1(s+2)(s+3)} }

(4-18)
Hence, the fourth TL-moments with generalized trimmed for s and t will be:
oo -1, (s+t+4)l) (s+3) 1 _1
A 4 (5+3) { (t+1)!(3(s+3)+2(s+2)(s+1)jB(a(s+3);L /7]
L (s+2(s+3)(s+4) B(a(s+ 21— 1)_ (s+1(s+2)(s+3) B[a(s+ ) 1_1]
(t+2)! n (t+3)! n
! (-D* 1
kz TRy [a(s+k+4);L—I7J{(s+k+4)(s+k+5)(s+k+6)}}. 1o

We also can obtain the ™ TL-moments for the EPD with generalized trimmed (s, t = 0, 1 2,3,...), by
using the relation between the first TL-moments with generalized trimmed and the ™ TL- moments
with generalized trimmed, then we will obtain:

ad, (r-1 sk t+] .1
Al =r2(—1)‘[ j J(B(r +s-jt+j+1)D (-D)* ‘ "B a(r+s+k-j)1-=|
j=0 k=0 n (4_20)
wherer = 2. Putting r = 2, 3 and 4, we can obtain the equations for the second third and fourth TL-
moments with generalized trimmed for s and t as a special cases from the ™ TL-moments. From
these results we can also obtain the TL-CV7®", TL-skewness T(St and TL-kurtosis Tff’t) for the
EPD. Using equations (4-8) and (4-20), many special cases can be obtained as follows:

4.2 Special Cases

Now, we will obtain the TL-moments with the first trimmed, the L-moments, the LH-moments and the
LL-moments for the EPD as a special cases of the TL-moments with generalized trimmed for s and t
(s,t=0,1,2,3,....) for the EPD.

4.2.1 When( S=t =1): The TL-Moments with first trimmed

The first four TL-moments for the EPD with the first trimmed can be obtained by substituting S=1,
and t =1for AV, ASY - ASY and A®Yin equations (4-8), (4-11), (4-14) and (4-19) respectively,
as follows :
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0 — )y — (3) E — i —
A i & )(Ma(k”)l nj -

= GG{B(ZGJ—EJ - B(Sa,l—lﬂ -1
n d (4-21)

and the second TL-moments with the first trimmed for the EPD will be:

- -1 @ @ _1) < (FDM(k+3) 21
G _2”(2)!{ (2)!3[2”1 nj%(kﬂ)!(l—k)!B[a(“3)1 OH

= 6“{35(3a1—% - 28(401—% - B(za;L—lﬂ,
7 7 7 (4-22)

and the third TL-moments with the first trimmed for the EPD will be:

0 =0 =1, 6) [(2)(3) B(Za 1 gj _ Q@ B(&, - 1}
37 @)1 @) n) @ 7

D [a<k+4)1—gj{(k+4>(k+5)}}

(k+2)!1-k)!

AN WA S B

Then, the fourth TL-moment with the first trimmed for the EPD will be:

A= =2 (6){ 303{ ’7‘1J+1OB(3a;L—1j
4" (@) n n

e I e LR e (e )]

o (K +3)1@-k)!

(4-24)
So, we will have:
AP =AM == 15 {358(50’,1 ] 148(60',1— ] 308(40',1 ]+lOB(3a,1 J
2 n n n n
- B(Za ,1—1}}.
7 (4-25)
Also, from the TL-coefficient of variation I , the TL-skewness 1'3(St and the TL-kurtosis T(St) with

generalized trimmed for s and t for the EPD, and by putting s =t = 1, we can compute the TL-
coefficient of variation7*? , TL-skewness T(ll and TL-kurtosis Tfl) with the first trimmed for the
EPD.

Also, from the ™ TL-moments with generahzed trimmed for the EPD for sand t(s,t=0, 1, 2, 3, ...)
and by putting s =t =1, we can obtain the r' " TL-moments with the first trimmed for the EPD as foIIows
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r-1 j+l

/L(Ll) _ gZ:(_l)j[I’j—lJ(B(r +1-j,j+ 2))—12 (_1)1{ jk+1jB{a(l’ +k+1- J)l_%)
j (4-26)

4.2.2 When( s=t =0): The L-Moments

Now, we can obtain the first four L-moment for the EPD as a special case from the TL-moments with
generalized trimmed for the EPD by substitutingS=0, and t =0 for A, ASY &Y and A8V in

(0,0)
equations (4-8), (4-11), (4-14) and (4-19) respectively, we will obtain A°?, A9 45

follows:

, and ALY as

Al:aB(a;L—lj—l
n

(4-27)
A, = a{ZB[Zal—lj - B[a,l—lﬂ,
d d (4-28)
Ay = G[GB(MJ—EJ - GB[ZO’J.—EJ + B(O’,l—lJ}
7 d d (4-29)

and

A= a{208[4a,1—1j —308[3a1—1j +12|3(2a,1—1J - B[al-iﬂ.
i d d d (4-30)

The results for the first two L-moments in equations (4-27) and (4-28) are the same as the results that
obtained by Shawky and Abu-Zinadah [2].

Also, from the TL-coefficient of variation T(S’t), the TL-skewness Tés’t) and the TL-kurtosis Tis’t) with
generalized trimmed for s and t for the EPD, and by putting s =t =0, we can compute the L-coefficient
of variation T, L-skewness 7; and L-kurtosis 7, for the EPD.

From the r'"" TL-moments with generalized trimmed for the EPD forsand t (s,t=0, 1, 2, 3, ...)and by
putting s =t = 0, we can obtain the ™ L-moments for the EPD as follows:

A =280 =5§(—1)i[r ) 1j(B(r -] +1))‘1i(—1){jj8(a(r +k- 1)1—1}
rs J k=0 k n (4-31)

wherer = 2, and by putting r = 2, 3, 4, we can obtain the second, the third and the fourth L-moments
for the EPD as special cases.
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4.2.3 When(t =0): The LH-Moments

By taking t =0 for the TL-moments with generalized trimmed for the EPD, we will obtain the LH-
moments with generalized trimmed for s for the EPD. The LH-moments are linear functions of the
expectations of the highest order statistic and introduced by Wang [10] as a modified version of L-
moments, to characterize the upper part of a distribution. When one wants to put more emphasis on
extreme events, LH-moment approach allows to giving more weight to the largest ones. When S=0
corresponds to the L-moments. As s increases, LH-moments reflect more and more the
characteristics of the upper part of the data. Wang [10] found that the method of LH-moments resulted
in large sampling variability for high s, and recommended not to use values of s higher than 4.

By substitutingt =0, for A%V, ALY ALY and Af’t) in equations (4-8), (4-11), (4-14) and (4-19)

respectively, then we will obtain the first four LH-moments with generalized trimmed for s for the EPD
as follows:

A0 = a(s+1)B[a(s+ 1),1—%} -1

(4-32)
pe0 = (8+2) { (s+1)B(a(s+ 11— J+ (s+ 2)B[a(s+ 2),1——H
2 n n (4-33)
pe0 = (5+3) { (s+1)(s+ 2)B(a(s+ 91— j
3 n
—(s+ 2)(s+3)B(a(s+ 2),1—1j+1(s+3)(s+ 4)B(a(s+ 3),1—%}
n 2 n (4-34)
and
A0 (524) a{— (s+ 3)(3(s+ 3+ % (s+ 2)(S+1)jB[a(S+ 31~ %j
+ st (s+3)(s+ 4)B(a(s+ 2)1—1j ~Lise(st 2)(s+3)B(a'(s+ 1)1—1j
2 n) 6 n
+1(s+ 4)(s+5)(s+ 6)B(a(s+ 4);L—iﬂ.
6 U (4-35)

Hence, from these results we can also obtain the LH-ratios as the LH-coefficient of variation 70 ,
LH-skewness TS(S’O) and LH-kurtosis Tis’o) with generalized trimmed for s for the EPD.By puttingt =0 in

the r™ TL-moments with generalized trimmed, we can obtain the " LH-moments for the EPD with
generalized trimmed for s (s =0, 1, 2, 3, ...)as follows:

/‘ES,O) _TZ( ) [ 1](B(r +s-1,]j +1))‘1i(_1)k[ij8{0’(r +s+k- J)l‘%}
j= ) (4-36)
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wherer = 2, and by putting r = 2, 3, 4, we can obtain the equations for the second, third and fourth
LH-moments for the EPD as a special cases from the ™ LH-moments for the EPD. Also, we can

obtain the LH-moments with the first timmed S=1, second trimmed S= 2, third trimmed S= 3and

the fourth trimmed S=4 as a special cases from the LH-moments with generalized trimmed for s for
the EPD.

4.2.4 When( s=0): The LL-Moments

By taking S=0 for the TL-moments with generalized trimmed for the EPD, we will obtain the LL-
moments with generalized trimmed for t for the EPD. The LL-moments are linear functions of the
expectations of the lowest order statistic and introduced by Bayazit and Onéz [11]. L-moments are a

special case for S=0. As t increases, increases the weight of the lower part of the data.
By substituting S=0, for AV, A8V, ABY and /]Ef’t) in equations (4-8), (4-11), (4-14) and (4-19)

respectively, then we will obtain the first four LL-moments with generalized trimmed for t for the EPD
as follows:

200 = (t+3ay. (-1>k@5(a(k : 1)1—1j -1

(4-37)
Jo0 = (+2)! [ 1 { J L(-D)4(k+2) ( ks 2 _lﬂ’
5 a (t+1)! kz: (k +D)!(t - K)! (k+2)1 n w3
qoo = (L3 2 Blax-1]-— 8 pgloga-1
* 6 (t+2)! n) (t+1)! n
- (_ (k+3)(k+4)( k 31_1H
PRI TI Gl | (4-39)
and
24 (t+1)! n) t+2)! n) (t+3)! n
(=) (k + 4)(k +5)(k +6) _1
+kz=(; (k+3)!(t —k)! At n)| (4-40)

We also can obtain the ™ LL-moments for the EPD with generalized trimmed t (t =0, 1, 2, 3, ...), by
putting s = 0 in the r' " TL-moments with generalized trimmed, then we will have:

A0 :%rz_l(_l)j[l’j—lj(B(r - j,t+] +1))_l§(_1)k(tl.: jJB(O’(r +k- J),l—%j

1=0 (4-41)

wherer = 2. Hence, from these results we can compute the LL-coefficient of variation T LL-

skewness T,ofo‘t) and LL-kurtosis Tio’t) with generalized trimmed for t for the EPD. Also, fort (t=0, 1, 2,
3, ...), we can obtain the LL-moments with any trimmed for the EPD.
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4.2.5 When( @ =1): Results for the Standard Pareto Distribution

By putting @ =1, we can obtain the r'" TL-moments for the standard Pareto distribution as a special
case from the '™ TL-moments with generalized trimmed for s and t for the EPD and from the r'" TL-
moments, we can obtain the first four TL-moments with generalized trimmed (s, t =0, 1, 2, ...) for the
standard pareto distribution and so, we can obtain the TL-ratios.

Let, a =1 in equation (4-8) and (4-20), the first TL-moments for the standard Pareto distribution can
be obtained as a special case from the first TL-moments for the EPD as follows:

(st) — (S+t+1)| _1y
A= & DU(SH”H nj -

and the r™ TL-moments will be:

a0 =1 Z( N ( 1J(B(r+s—j,t+j+1))'lti(—1)k(t:jJB£r+s+k—jl_%j.

j=0

(4-42)

(4-43)

Where r >2. And by taking s = t = 0 with @ =1, for the ™ TL-moments for the EPD, we will obtain
the ™ L-moments for the standard Pareto distribution and from these we can obtain the first four L-
moments and L-ratios for the standard Pareto distribution. Also by taking t = 0 in the ™" TL-moments
for the standard Pareto distribution, we will obtain the ™ LH-moments for the standard Pareto
distribution and from these we can obtain the first four LH-moments and the LH-ratios and by taking s
= 0, we will obtain the ™ LL-moments for the standard Pareto distribution and from these we can
obtain the first four LL-moments and the LL-ratios for the standard Pareto distribution.

4.3 TL-moments Estimators (TLMES) for the EPD

The TL-moment estimators (TLMES) for the unknown parameters of the EPD can be obtained by
equating the first two population TL-moments (/\&S’t) , /1(25’0) to the corresponding sample TL-moments

(|1(S’t) , |§S’t) ) for the EPD. Hosking [9] obtained the first two sample TL-moments as follows:

o 1 ot (=1 n-]
e

s+t+1 (4-44)
and
1 (i1 n=g)Y(j-s-1) (n-j-t)
[0 = - o
e Z( J(t ]( s+ (v SO
S+t+2 (4-45)

Now, the TL-moment estimators (TLMEs) & and ﬁof the EPD will be obtained by solving the
following two equations:
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st) (S+t+1) A _l —
" (9)'(1)! §( )( J (a(s+k+1)1 ﬁj

(4-46)
and

0 _ 1 - (s+t+2)! _(s+1) (-D*(s+k+2)_( . 1
2 =0 se) { (D) [“(S - J kz (KAD)IE-K)! B[”(S+k+2)1 nﬂ a7

Equations (4-46) and (4-47) are valid for any trimmed s and t. Since, beta function is a function of two
shape parameters a and /], these equations will be solved numerically. As a special case, the L-

moments estimators @ and ﬁfor the EPD will be obtained by putting s = t = 0 which are the same as

Shawky and Abu-Zinadah [2] results for the EPD. Also, as a special case, the TLMEs a and /?With
the first trimmed for the EPD may be obtained by putting s =t=1. For @ =1, and by putting s = t= 1,
the TLMEﬁWith the first trimmed for the standard Pareto distribution can be obtained.

5. LQ-MOMENTS ESTIMATORS (LQMEs) FOR THE EPD

In this section, LQ-moments with the three different cases (median, trimean and Gastwirth) for the
EPD will be obtained and used to estimate the unknown parameters of the EPD.

5.1 LQ-Moments for the EPD

Let, X;,X,,...,X,, be a random sample from a continuous distribution function F(X) with quantile

function Q (U) = F,*(U) and let, X, < X < X|un) denote the order statistics. Mudholkar

@n) S -
and Hutson [5] defined the ™ population LQ-moments Zr of X, as:

-t r-1
(r = r_lkzzc;(_l)k( Kk ]Tp,d(x(r—k:r))! r=12,...

where 0<sd<Y2, 0<p<Yl2, and

(5-1)

Tya(Xmn) = Py, (@) + A-20)Q W2+ POy, (=)

The linear combination 7, ; is a 'quick’ measure of the location of the sampling distribution of the

order statistic X The candidates for T, ;include the function generating the common quick

(r=jr)-
estimators by using the median (p =05, d =05), the trimean (p=1/4, d =1/4) and the
Gastwirth (p = 0.3, d =1/3). They introduced the LQ-skewness and LQ-kurtosis for the population
by 73 ={3/{,and 1, ={,/{, respectively; it may be used for identifying the population and
estimating the parameters. The LQ-skewness takes the value of zero for symmetrical distributions.

The LQ-moments with the three cases (median, trimean and Gastwirth) will be obtained for the EPD
as follows:
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5.1.1 Using the median case (p = 05, d = 05)

By using the quantile function for the EPD, the first four LQ-moments for the EPD will be:

&.=[o- 09)" |- (5-3)
g =1 [(1— 0707 " - (1- 0293* )" ]
2 (5-4)
& =11- 0794% )™ -2~ 05« )™ +(1- (0.209" )" ]
; 3 (55)
an
&, :% (- 847" )" -31- (0614% " +31- (0.386" " - (- (0.1593/”)‘””1
(5-6)
5.1.2 Using the trimean case (p=1/4, d =1/4)
By using the quantile function for the EPD, the first four LQ-moments for the EPD will be:
& =1li- 025% )" +20- 05 )" + [1- (75 )‘””]—1
4 (6-7)
, :;[2(1— 0707 )" - 201~ 0293 )" +(1- (0866*" )" - (1- (0134 )‘””],
(5-8)
& = 112 [(1— 0909"" )" +2(1- (0.794% |*" - 201~ (0674 )" +(1- (0630*" )"
~4f1- 5)% )" +(1- (0370 )" - 201~ (0.326" )" + 201~ (0.206** )"
o\
d +{- 0099) q]’ (5-9)
an
&= % [(1— 0939 )" + 21~ 084 ¥ -1~ 0.757* )" + 1~ (707 ¥
—6f1- (0.614" )" +31- (0.544% ¥ -31- (0456"* ) *" + 6[L- (0.386" )"
~([1- 0293 )" +301- (0243% )" - 21~ 0159 )" - (1~ (0.069* )‘””l 610
5.1.3 Using the Gastwirth case (p= 0.3, d =1/3)
By using the quantile function for the EPD, the first four LQ-moments for the EPD will be:
& = = l3- (0333% )™ +aft- (05 )" +31- (0667 )‘””]—1
1C (5-11)
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&= 2710 [3(1— 0816 ¥ + 41— 07079% )" +31- (0577 ¥ 31— (0423" )"

~8l1- (02037 )" -3[1- (0.184" )‘””}

(5-12)
¢ = %[3(1— 0874 )" + 4ft- 0.794")*" + 3~ 0.693% " - 6L~ (061377 )*”
~g1- 05" 61~ (0:389" )" +31- (0:309" )" + 41~ (020" "

and
& = 4*10 [3(1— 0904 )" + 4f1— (0847 )" + 31~ 0.769*" )" - oL~ (0.709" "

121 (0614 )" +oft- (0514% " - oft- (0.486" )" +121- (03867 )"

+of1- (0299 )*" ~3[1- (0.240" )" - 4f1- (0159"")*" - 3{1- (0.096" )'””] 510

Then, the LQ-skewness and the LQ-kurtosis for each case (median, trimean and Gastwirth) for the
EPD can be obtained by using the results for the first four LQ-moments for the EPD.

5.2 LQ-Moments Estimators (LQMESs) For the EPD

To estimate the unknown parameters & and /) for the EPD using the LQ-moments, the first and the

second sample LQ-moments for the EPD will be obtained by using the following definition of the r™
sample LQ-moments:

s 1 r-=1).

¢ =r‘1Z(—1)k( . ervd(x(r_k,)), r=12,...
) k=0 (5-15)
where

fpyd (X(r_k:r)) = pr(r—k:r) (d) + (1_ 2p)Qx(r—k:r) (]/2) + pr(r—k:r) (1_ d).
(5-16)
fp’d(X(r_k:r)) is the quick estimator of the location for the distribution of X, _,.., in a random sample

of size r, and QX () denotes the linear interpolation estimator of Q(u) given by:

Qx (U) = (1_ ‘E)X[n’u]:n + gx[n’u]+:|.'n, (5_17)

where € =n'u-[n'u], n'=n+land [n'u] denotes the integral part of nu. Then, the first two
sample LQ-moments are given by:

A

¢, = Tp,a(x(]:l.))’ (5.18)
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and

s _ 1. .

{,= > [Tp,a(x (zz)) Y (X(:L'Z) )] 5-19)
By equating the first two population LQ-moments with the first two sample LQ-moments for the EPD
for each case (median, trimean, and Gastwirth), the LQ-moments estimators for the two unknown
parameters will be obtained for each case. Now, the unknown parameters & and /) for the EPD

using the LQ-moments with the median case (LQMEm) will be estimated by solving the following
equations:

&=16 05)-1 (5-20)
and
~ 1= -
£ =210 ©709-G (0293
(5-21)
where
) N\ /i
Q(u)= (1— U]/”) -1 (5-22)

For the trimean case, the LQ-moments estimates (LQMEt) Qand ﬁwill be obtained by solving the
following equations:

&=416 029+23 09+6 ©o79]1
(5-23)
and

& = %[2@0 (0.707-2Q, (0.293 +Q, (0.866 - Q, (0.134)].

(5-24)

For the Gastwirth case, the LQ-moments estimates (LQMEQ) Qand ﬁwill be obtained by solving the
following equations:

£=-:[30.0339+4G 09 +30 ©0667)]-1

(5-25)
and
£,= {30 (0816+4Q 0707 +33 0579 -3Q (0423 - 4Q (0293 -2 (0184)
(5-26)

As a special case, if a =1, the unknown 6. A SIMULATION STUDY OF THE EPD
parameter /7 will be estimated for the standard

Pareto distribution using the LQ-moments. To A simulation study will be introduced to compare
) . 2 . the performances of seven different estimators:
obtain the LQ-moments estimator/7, solving the  maximum likelihood estimators (MLEs), method
_ g% ) of moment estimators (MMEs), L-moments
equation for “inumerically for the standard estimators (LMEs), TL-moments estimators
Pareto distribution. (TLMEs) and the three LQ-moments estimators
for the three different cases [median (LQMEm),
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trimean (LQMEt) and Gastwirth (LQMEQ)] for the
unknown parameters of the EPD. The
comparison will be mainly based on their biases
and root mean squared errors (RMSEs). The
simulation experiments are performed using the
Mathcad (14) software, different sample sizes n
= 10, 30 and 50, and different values for the

shape parametera =05, 1.0 and 3.0 and

11 =3. For each combination of the sample size
and the shape parameters values, the
experiment will be repeated 10,000 times. In
each experiment, the biases and RMSEs for the
estimates of @ and 77 will be obtained and listed

in Table (1) and (2).
7. RESULTS AND CONCLUSION

It is observed that the biases and RMSEs of the
different estimators of @ and 77 depend on the
value of the shape parameter a (as «
increases the biases and RMSEs increase (see
Table (1)). On the other hand, the biases and
RMSEs of the estimators of 77 decrease asd
increases for all methods (see Table (2)) except
for the MME (increase). For all cases, the biases

and RMSEs of the different estimators of & and
) decrease as sample size increases.

From (Table 1), it can be seen that most of the
estimators are positively biased, this indicates
that most of the methods overestimate & except
for MME, where the method underestimates &

when @ = 05and n = 50. Comparing the biases
of different estimators of @, it is clear that the
method of LQMEt yields the minimum bias in
almost all cases considered for estimating O .
Considering the RMSEs of the different
estimators of@, it is clear that the estimator
have the minimum RMSEs for small sample size
(n = 10) is the LME, and the MLE (TLME is more
close to MLE) for large sample size.

From (Table 2), by comparing the biases of
different estimators of7), it is clear that the

method of LQMEg and LQMEt yield the minimum
bias in almost all cases considered for estimating
n . Considering the RMSEs of the different
estimators of /7, it is clear that the estimator have
the minimum RMSEs is the MME (LQMEt is
more close to MME), except when@ =3 for n =
30 and 50 (MLE).

Table 1. Biases and RMSEs of the parameter estimatorsfor different types of Estimators for @

n a MLE MME LME TLME LQMEm LQMEt LQMEg

10 0.5 Bias 0.16219  0.09738 0.15322 0.16741 0.30339 0.04504* 0.14721

RMSEs 0.42785* 1.65547 0.57901 0.93265 2.06768 0.54777 0.87889

1 Bias 0.43797  0.39387 0.41133 0.54533  1.34588 0.09513* 0.34748

RMSEs 1.36990  1.71575 1.26170* 2.22309 25.81104  1.61855 2.58212

3 Bias 2.75322  3.94666 2.34675* 2.70429 3.08388 2.58646 2.90643
RMSEs 21.34106 8.66075 7.22688* 8.06349 27.99000 23.99594  21.47583

30 0.5 Bias 0.03980  -0.01036* 0.05148 0.02811 0.08068 0.03076 0.03319

RMSEs 0.13412* 0.23816 0.19149 0.17775 0.31117 0.20593 0.20611

1 Bias 0.10360  0.13696 0.13218 0.09592 0.20355 0.05816* 0.07752

RMSEs 0.31539* 0.51715 0.44034 0.44045 0.83288 0.45062 0.48871

3 Bias 0.47390  2.05877 0.58325 0.44669 1.14465 0.28993* 0.32826

RMSEs 1.35975* 2.82931 1.75961 1.80699 5.07045 2.01536 2.23890

50 0.5 Bias 0.02488  -0.03050 0.03735 0.01876* 0.04772 0.02076 0.02153

RMSEs 0.09467* 0.15817 0.14637 0.12816 0.21283 0.15402 0.15230

1 Bias 0.05374  0.08842 0.08166 0.05308 0.10451 0.03172* 0.04715

RMSEs 0.21370* 0.32618 0.30362 0.28634 0.49856 0.32676 0.34818

3 Bias 0.24269  1.73710 0.37710 0.27037 0.55135 0.16246* 0.21473

RMSEs 0.85929* 2.22061 1.20961 1.16154 2.35047 1.27926 1.41299

*: The least biased value or the least root mean squared errors
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Table 2. Biases and RMSEs of the parameter estimators for different types of Estimators for 77

n a MLE MME LME TLME LQMEmM LQMEt LQMEg
10 05 Bias 1.35703  0.12075* 1.31193 1.36834 1.31477 -0.15435 0.57616
RMSEs 3.16399 0.31467* 3.10277 3.98730 5.56854 2.33895 3.34210
1 Bias 0.91537 0.37564 0.88814 0.89269 0.57578 -0.25659 0.20028*
RMSEs 2.09403 0.51654* 2.06783 2.53510 2.94179 1.69342 2.12387
3 Bias 0.62313  0.80033 0.62267 0.50269* 0.28800 -0.29263 0.04819
RMSEs 1.46533  0.90798*  1.49749 1.77815 2.06737 1.29886 1.51195
30 05 Bias 0.35391 -0.05697* 0.45036 0.31724 0.43029 0.06779 0.12725
RMSEs 1.11678  0.21263* 1.24428 1.25377 2.11674 1.39515 1.48544
1 Bias 0.25454  0.17889 0.33503 0.23671 0.21880 -0.00692*  0.04290
RMSEs 0.85113 0.30604* 0.98660 0.97594 1.47889 0.99805 1.08783
3 Bias 0.17896  0.57845 0.22555 0.13552 0.12865 -0.03614 -0.02406*
RMSEs 0.64893* 0.65179 0.76381 0.78213 1.09864 0.77465 0.83157
50 05 Bias 0.21594 -0.10618  0.30564 0.19639 0.25089 0.04608* 0.07574
RMSEs 0.79535 0.21790* 0.93668 0.89612 1.51765 1.02708 1.09073
1 Bias 0.13653  0.11450 0.21190 0.13820 0.11168 -0.01403* 0.02767
RMSEs 0.61147 0.24516* 0.73476 0.69733 1.08774 0.77194 0.82453
3 Bias 0.09852 0.50415 0.15328 0.09106 0.07285 -0.01483 -0.00312*
RMSEs 0.47190* 0.57042 0.59068 0.56005 0.82720 0.59665 0.64384
*: The least biased value or the least root mean squared errors
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